1
|
Tanner JC, Justison J, Bee MA. SynSing: open-source MATLAB code for generating synthetic signals in studies of animal acoustic communication. BIOACOUSTICS 2019. [DOI: 10.1080/09524622.2019.1674694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jessie C. Tanner
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Joshua Justison
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Mark A. Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Stumpner A, Lefebvre PC, Seifert M, Ostrowski TD. Temporal processing properties of auditory DUM neurons in a bush-cricket. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:717-733. [PMID: 31327050 DOI: 10.1007/s00359-019-01359-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Abstract
Insects with ears process sounds and respond to conspecific signals or predator cues. Axons of auditory sensory cells terminate in mechanosensory neuropils from which auditory interneurons project into (brain-) areas to prepare response behaviors. In the prothoracic ganglion of a bush-cricket, a cluster of local DUM (dorsal unpaired median) neurons has recently been described and constitutes a filter bank for carrier frequency. Here, we demonstrate that these neurons also constitute a filter bank for temporal patterns. The majority of DUM neurons showed pronounced phasic-tonic responses. The transitions from phasic to tonic activation had different time constants in different DUM neurons. Time constants of the membrane potential were shorter in most DUM neurons than in auditory sensory neurons. Patterned stimuli with known behavioral relevance evoked a broad range of responses in DUM neurons: low-pass, band-pass, and high-pass characteristics were encountered. Temporal and carrier frequency processing were not correlated. Those DUM neurons producing action potentials showed divergent processing of temporal patterns when the graded potential or the spiking was analyzed separately. The extent of membrane potential fluctuations mimicking the patterned stimuli was different between otherwise similarly responding neurons. Different kinds of inhibition were apparent and their relevance for temporal processing is discussed.
Collapse
Affiliation(s)
- Andreas Stumpner
- Department Cellular Neurobiology, University of Göttingen, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.
| | | | - Marvin Seifert
- School of Life Science, Baden Lab for Vision and Visual Ecology, University of Sussex, BN1 9QR, Falmer, UK
| | - Tim Daniel Ostrowski
- Kirksville College of Osteopathic Medicine, A.T. Still University, 800 W. Jefferson Street, Kirksville, MO, 63501, USA
| |
Collapse
|
3
|
Siegert ME, Römer H, Hartbauer M. Maintaining acoustic communication at a cocktail party: heterospecific masking noise improves signal detection through frequency separation. J Exp Biol 2013; 216:4655-65. [PMID: 24307713 PMCID: PMC3971153 DOI: 10.1242/jeb.089888] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined acoustic masking in a chirping katydid species of the Mecopoda elongata complex due to interference with a sympatric Mecopoda species where males produce continuous trills at high amplitudes. Frequency spectra of both calling songs range from 1 to 80 kHz; the chirper species has more energy in a narrow frequency band at 2 kHz and above 40 kHz. Behaviourally, chirper males successfully phase-locked their chirps to playbacks of conspecific chirps under masking conditions at signal-to-noise ratios (SNRs) of -8 dB. After the 2 kHz band in the chirp had been equalised to the level in the masking trill, the breakdown of phase-locked synchrony occurred at a SNR of +7 dB. The remarkable receiver performance is partially mirrored in the selective response of a first-order auditory interneuron (TN1) to conspecific chirps under these masking conditions. However, the selective response is only maintained for a stimulus including the 2 kHz component, although this frequency band has no influence on the unmasked TN1 response. Remarkably, the addition of masking noise at 65 dB sound pressure level (SPL) to threshold response levels of TN1 for pure tones of 2 kHz enhanced the sensitivity of the response by 10 dB. Thus, the spectral dissimilarity between masker and signal at a rather low frequency appears to be of crucial importance for the ability of the chirping species to communicate under strong masking by the trilling species. We discuss the possible properties underlying the cellular/synaptic mechanisms of the 'novelty detector'.
Collapse
Affiliation(s)
- M. E. Siegert
- Institut für Zoologie, Karl-Franzens-Universität, Universitätsplatz 2, A-8010 Graz, Austria
| | - H. Römer
- Institut für Zoologie, Karl-Franzens-Universität, Universitätsplatz 2, A-8010 Graz, Austria
| | - M. Hartbauer
- Institut für Zoologie, Karl-Franzens-Universität, Universitätsplatz 2, A-8010 Graz, Austria
| |
Collapse
|
4
|
Schul J, Mayo AM, Triblehorn JD. Auditory change detection by a single neuron in an insect. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:695-704. [PMID: 22733366 DOI: 10.1007/s00359-012-0740-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 06/09/2012] [Accepted: 06/10/2012] [Indexed: 11/28/2022]
Abstract
The detection of novel signals in the auditory scene is an elementary task of any hearing system. In Neoconocephalus katydids, a primary auditory interneuron (TN-1) with broad spectral sensitivity, responded preferentially to rare deviant pulses (7 pulses/s repetition rate) embedded among common standard pulses (140 pulses/s repetition rate). Eliminating inhibitory input did not affect the detection of the deviant pulses. Detection thresholds for deviant pulses increased significantly with increasing amplitude of standard pulses. Responses to deviant pulses occurred when the carrier frequencies of deviant and standard were sufficiently different, both when the deviant had a higher or lower carrier frequency than the standard. Recordings from receptor neurons revealed that TN-1 responses to the deviant pulses did not depend on the population response strength of the receptors, but on the distribution of the receptor cell activity. TN-1 responses to the deviant pulse occurred only when the standard and deviant pulses were transmitted by different groups of receptor cells. TN-1 responses parallel stimulus specific adaptation (SSA) described in mammalian auditory system. The results support the hypothesis that the mechanisms underlying SSA and change-detection are located in the TN-1 dendrite, rather than the receptor cells.
Collapse
Affiliation(s)
- Johannes Schul
- Biological Sciences, University of Missouri, 207 Tucker Hall, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
5
|
Siegert ME, Römer H, Hashim R, Hartbauer M. Neuronal correlates of a preference for leading signals in the synchronizing bushcricket Mecopoda elongata (Orthoptera, Tettigoniidae). ACTA ACUST UNITED AC 2012; 214:3924-34. [PMID: 22071183 PMCID: PMC3236105 DOI: 10.1242/jeb.057901] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acoustically interacting males of the tropical katydid Mecopoda elongata synchronize their chirps imperfectly, so that one male calls consistently earlier in time than the other. In choice situations, females prefer the leader signal, and it has been suggested that a neuronal mechanism based on directional hearing may be responsible for the asymmetric, stronger representation of the leader signal in receivers. Here, we investigated the potential mechanism in a pair of interneurons (TN1 neuron) of the afferent auditory pathway, known for its contralateral inhibitory input in directional hearing. In this interneuron, conspecific signals are reliably encoded under natural conditions, despite high background noise levels. Unilateral presentations of a conspecific chirp elicited a TN1 response where each suprathreshold syllable in the chirp was reliably copied in a phase-locked fashion. Two identical chirps broadcast with a 180 deg spatial separation resulted in a strong suppression of the response to the follower signal, when the time delay was 20 ms or more. Muting the ear on the leader side fully restored the response to the follower signal compared with unilateral controls. Time-intensity trading experiments, in which the disadvantage of the follower signal was traded against higher sound pressure levels, demonstrated the dominating influence of signal timing on the TN1 response, and this was especially pronounced at higher sound levels of the leader. These results support the hypothesis that the female preference for leader signals in M. elongata is the outcome of a sensory mechanism that originally evolved for directional hearing.
Collapse
Affiliation(s)
- M E Siegert
- Department of Zoology, Karl-Franzens University Graz, Graz, Austria
| | | | | | | |
Collapse
|
6
|
Hartbauer M, Radspieler G, Römer H. Reliable detection of predator cues in afferent spike trains of a katydid under high background noise levels. ACTA ACUST UNITED AC 2010; 213:3036-46. [PMID: 20709932 DOI: 10.1242/jeb.042432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Katydid receivers face the problem of detecting behaviourally relevant predatory cues from echolocating bats in the same frequency domain as their own conspecific mating signals. We therefore tested the hypothesis that katydids are able to detect the presence of insectivorous bats in spike discharges at early stages of nervous processing in the auditory pathway by using the temporal details characteristic for responses to echolocation sequences. Spike activity was recorded from an identified nerve cell (omega neuron) under both laboratory and field conditions. In the laboratory, the preparation was stimulated with sequences of bat calls at different repetition rates typical for the guild of insectivorous bats, in the presence of background noise. The omega cell fired brief high-frequency bursts of action potentials in response to each bat sound pulse. Repetition rates of 18 and 24 Hz of these pulses resulted in a suppression of activity resulting from background noise, thus facilitating the detection of bat calls. The spike activity typical for responses to bat echolocation contrasts to responses to background noise, producing different distributions of inter-spike intervals. This allowed development of a 'neuronal bat detector' algorithm, optimized to detect responses to bats in afferent spike trains. The algorithm was applied to more than 24 hours of outdoor omega-recordings performed either at a rainforest clearing with high bat activity or in rainforest understory, where bat activity was low. In 95% of cases, the algorithm detected a bat reliably, even under high background noise, and correctly rejected responses when an electronic bat detector showed no response.
Collapse
Affiliation(s)
- Manfred Hartbauer
- Institute of Zoology, Neurobiology and Behaviour Group, Karl-Franzens University, Universitätsplatz 2, A-8010 Graz, Austria.
| | | | | |
Collapse
|
7
|
Triblehorn JD, Schul J. Sensory-encoding differences contribute to species-specific call recognition mechanisms. J Neurophysiol 2009; 102:1348-57. [PMID: 19571187 DOI: 10.1152/jn.91276.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Object recognition is a fundamental function of the auditory system, but the underlying mechanisms are not well understood. Acoustic communication in the Tettigoniid genus Neoconocephalus provides a useful system for studying these mechanisms. We examined the ascending interneuron pathway in three Neoconocephalus species with diverse calls and recognition mechanisms. This pathway processes spectral information and transmits call temporal patterns to the supraesophageal ganglion where the recognition circuits reside. For each species, we describe one local auditory interneuron (ON) and three with ascending projections (AN-1, AN-2, TN-1), which were physiologically and morphologically similar to those described in other Tettigoniids. TN-1 responded only to the beginning of call models. For AN-1, each call model pulse elicited a single action potential in N. robustus and N. bivocatus, whereas every other pulse elicited an action potential in N. triops. Individual pulses did not reliably evoke AN-2 responses in all three species. AN-1 responses were limited to frequencies<20 kHz. AN-1 tuning differed among the three species, reflecting their differences in the dominant frequency of the calls. AN-2 was broadly tuned, and responses increased with intensity in all three species. In behavioral experiments, N. robustus showed greater spectral selectivity than the other two species. Adding the second harmonic to the spectrum of call models suppressed phonotaxis in N. robustus, but not N. triops or N. bivocatus. Adding the second harmonic reduced AN-1 responses in N. robustus but not in the other two species. We discuss the potential function of the ascending neurons for call recognition.
Collapse
Affiliation(s)
- J D Triblehorn
- Department of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | |
Collapse
|
8
|
Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera. ZOOLOGY 2009; 112:48-68. [PMID: 18835145 DOI: 10.1016/j.zool.2008.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 03/13/2008] [Accepted: 04/13/2008] [Indexed: 11/23/2022]
|
9
|
ter Hofstede HM, Fullard JH. The neuroethology of song cessation in response to gleaning bat calls in two species of katydids, Neoconocephalus ensiger and Amblycorypha oblongifolia. ACTA ACUST UNITED AC 2008; 211:2431-41. [PMID: 18626077 DOI: 10.1242/jeb.017285] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated whether the use of primary or secondary behavioural defences is related to prey sensory thresholds using two species of North American katydids, Neoconocephalus ensiger and Amblycorypha oblongifolia. Male katydids produce intense calling songs to attract mates, and many gleaning bat species are known to use these calls to locate them as prey. Low duty cycle calling (i.e. sporadic calls) is a primary defence against gleaning bats (prevents attacks), and song cessation is a secondary defence (enables survival of an attack), for which these two species show behavioural differences. Echolocation calls of Myotis septentrionalis, a sympatric gleaning bat species, were broadcast to singing katydids and to neural preparations of these katydids to test if differences in behavioural response were related to differences in auditory sensitivity. We measured thresholds and firing patterns of the T-cell, an auditory interneuron involved in predator detection. We hypothesized that low duty cycle calling is the best defence for species not sensitive enough to mount a secondary defence in response to predator cues; therefore, we predicted that N. ensiger (high duty cycle song) would have lower behavioural and T-cell thresholds than A. oblongifolia (low duty cycle song). Although more N. ensiger ceased singing than A. oblongifolia, the number and maximum firing rate of T-cell action potentials did not differ between species for echolocation call sequences. We suggest that the T-cell has divergent functions within the Tettigoniidae, including predator and mate detection, and the function could be context dependent in some species.
Collapse
Affiliation(s)
- Hannah M ter Hofstede
- Biology Department, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| | | |
Collapse
|
10
|
YAGER DAVIDD, SVENSON GAVINJ. Patterns of praying mantis auditory system evolution based on morphological, molecular, neurophysiological, and behavioural data. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2008.00996.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Kostarakos K, Rheinlaender J, Römer H. Spatial orientation in the bushcricket Leptophyes punctatissima (Phaneropterinae; Orthoptera): III. Peripheral directionality and central nervous processing of spatial cues. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:1115-23. [PMID: 17713767 DOI: 10.1007/s00359-007-0262-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/03/2007] [Accepted: 08/04/2007] [Indexed: 11/26/2022]
Abstract
We examined peripheral and central nervous cues underlying the ability of the bushcricket Leptophyes punctatissima to orient to elevated and depressed sound sources broadcasting the female acoustic reply. The peripheral spatial directionality of the ear was measured physiologically using monaural preparations of an auditory interneuron (T-fibre). In the azimuth, maximal interaural intensity differences of 18 dB occur between ipsi- and contralateral stimulation. With increasing elevation or depression of the sound sources, IIDs decrease systematically and reach zero with the source exactly above or below the preparation. Bilateral, simultaneous recordings of the activity of the pair of interneurons allowed determining the binaural discharge differences which occur in response to the extremely short (1 ms) female reply. These discharge differences are large (four action potentials/stimulus) and reliable in the azimuth with lateral stimulation, and decrease gradually with more frontal stimulation. With elevation and depression of sound sources these differences again decrease to one action potential/stimulus at 60 degrees or 75 degrees elevation, and lateral stimulus angles of about 60 degrees . We also calculated the reliability with which a receiver could correctly determine the location of the sound source. We discuss these quantitative measures in relation to the spatial phonotactic behaviour of male L. punctatissima.
Collapse
|
12
|
Schul J, Sheridan RA. Auditory stream segregation in an insect. Neuroscience 2005; 138:1-4. [PMID: 16378693 DOI: 10.1016/j.neuroscience.2005.11.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 10/28/2005] [Accepted: 11/08/2005] [Indexed: 11/26/2022]
Abstract
Auditory stream segregation is the perceptual grouping of the acoustic mixture reaching the ear into coherent representations of sound sources. It has been described in a variety of vertebrates and underlies auditory scene analysis or auditory image formation. Here we describe a phenomenon in an invertebrate that bears an intriguing resemblance to auditory stream segregation observed in vertebrates: in Neoconocephalus retusus (Orthoptera, Tettigoniidae) an auditory interneuron segregates information about bat echolocation calls from background male advertisement songs. This process utilizes differences between the temporal and spectral characteristics of the two stimuli, a mechanism which is similar to those of auditory stream segregation in vertebrates. This similarity suggests that auditory stream segregation is a fundamental feature of auditory perception, widespread from invertebrates to humans.
Collapse
Affiliation(s)
- J Schul
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
13
|
Triblehorn JD, Yager DD. Timing of praying mantis evasive responses during simulated bat attack sequences. J Exp Biol 2005; 208:1867-76. [PMID: 15879067 DOI: 10.1242/jeb.01565] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYPraying mantids perform evasive maneuvers that vary with the level of danger posed by their bat predators. The vocalization pattern of attacking bats provides cues that mantids can potentially use to decide how and when to respond. Using pulse trains simulating bat attack echolocation sequences, this study determines when in the attack sequence the mantis power dive (its response to high-level threat) occurs and predicts the parameters within the echolocation sequence that are important for eliciting the response. For sequences with a rapid transition from low to high pulse repetition rates(PRRs), the evasive response occurred close to the point during the simulated sequence when the bat would have contacted the mantis. However, the evasive response occurred earlier if the transition was gradual. Regardless of the transition type, the prediction data show that sequences trigger the response when PRRs reach 20-40 pulses s-1. These results suggest that a bat gradually increasing its PRR could `tip off' the mantis, enabling it to escape. Attack sequences contain gradual transitions when bats engage in strobing behavior, an echolocation phenomenon that may help the bat perceive the auditory scene. Conversely, bat attack sequences that contain rapid increases in PRR close to the point of capture could circumvent the mantid's auditory defense. Based on these findings, mantids as well as other insects could benefit from having a back-up defense response to offset any advantage the bat gains by rapidly switching from low to high PRRs.
Collapse
|
14
|
Fullard JH, Ratcliffe JM, Guignion C. Sensory ecology of predator-prey interactions: responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus to the echolocation calls of sympatric bats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:605-18. [PMID: 15886992 DOI: 10.1007/s00359-005-0610-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2004] [Revised: 01/19/2005] [Accepted: 01/28/2005] [Indexed: 10/25/2022]
Abstract
We observed the responses of the AN2 interneuron in the Pacific field cricket, Teleogryllus oceanicus, a cell implicated in eliciting avoidance flight away from bats, to acoustic stimuli representing the echolocation calls of bats as well as field recordings of search and gleaning attack calls of six species of insectivorous sympatric bats (West Australia, Australia: Tadarida australis, Chalinolobus goudii, Nyctophilus geoffroyi; Queensland, Australia: Vespadelus pumilus, Myotis adversus; Kaua'i, Hawai'i: Lasiurus cinereus). The broad frequency sensitivity of the AN2 cell indicates that T. oceanicus has evolved to detect a wide range of echolocation call frequencies. The reduced sensitivity of this cell at frequencies higher than 70 kHz suggests that some bats (e.g., the gleaning species, N. geoffroyi) may circumvent this insect's auditory defences by using frequency-mismatched (allotonic) calls. The calls of the freetail bat, T. australis evoked the strongest response in the AN2 cell but, ironically, this may allow this bat to prey upon T. oceanicus as previous studies report that under certain conditions, flying crickets exhibit ambiguous directional responses towards frequencies similar to those emitted by this bat. Short duration calls (1--2 ms) are sufficient to evoke AN2 responses with instantaneous spike periods capable of causing defensive flight behaviours; most bats tested emit calls of durations greater than this. The short calls of N. geoffroyi produced during gleaning attacks may reduce this species' acoustic conspicuousness to this cricket.
Collapse
Affiliation(s)
- James H Fullard
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6.
| | | | | |
Collapse
|
15
|
Fremouw T, Faure PA, Casseday JH, Covey E. Duration selectivity of neurons in the inferior colliculus of the big brown bat: tolerance to changes in sound level. J Neurophysiol 2005; 94:1869-78. [PMID: 15888527 DOI: 10.1152/jn.00253.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At and above the level of the inferior colliculus (IC), some neurons respond maximally to a limited range of sound durations, with little or no excitatory response to durations outside of this range. Such neurons have been termed "duration tuned" or "duration selective." In this study we examined the effects of varying signal amplitude on best duration, width of tuning, and first spike latency of duration tuned neurons in the IC of the big brown bat, Eptesicus fuscus. Response areas as a function of stimulus duration and intensity took a variety of forms, including open (V-shaped), narrow and level tolerant (U-shaped), or closed (O-shaped). The majority (82%) of duration tuned neurons had narrow U-shaped or O-shaped duration response areas. Those with narrow U-shaped response areas retained their duration tuning across a broad dynamic range, < or = 50 dB above threshold, whereas those with O-shaped response areas were narrowly tuned to both stimulus duration and amplitude. For about one-half (55%) of the neurons with either a U- or O-shaped response areas, best duration (BD) changed by <1 ms across the range of suprathreshold amplitudes tested. Changes in BD most often took the form of a shift to slightly shorter durations as stimulus level increased. For the majority (65%) of U- and O-shaped neurons, 50% width of duration tuning changed by <2 ms with increasing amplitude. Latency of response at BD remained stable across changes in sound level, suggesting that the relative strengths of excitatory and inhibitory inputs to duration tuned neurons remain in balance over a wide dynamic range of sound pressure levels.
Collapse
Affiliation(s)
- Thane Fremouw
- Department of Psychology, 301 Little Hall, University of Maine, Orono, Maine 04469-5742, USA.
| | | | | | | |
Collapse
|
16
|
Triblehorn JD, Yager DD. Implanted electrode recordings from a praying mantis auditory interneuron during flying bat attacks. J Exp Biol 2002; 205:307-20. [PMID: 11854368 DOI: 10.1242/jeb.205.3.307] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYUsing an implanted electrode, we recorded the responses from the ultrasound-sensitive mantis interneuron 501-T3 during flying bat attacks in a large flight room where the mantis served as the target. 501-T3 responds to each vocalization emitted with multi-spike bursts when pulse repetition rates (PRRs) are below 55 pulses s–1. As PRR increases and pulse durations fall below 3 ms, 501-T3 ceases burst activity. On average, spike bursts cease 272 ms before contact (when the bat is 73 cm away from the preparation). The timing of cessation of activity in 501-T3 is similar to the latency for the diving portion of the response of the mantid (242 ms). Experiments using vocalizing stationary bats confirm that 501-T3 responds more reliably to longer pulse durations (⩾3 ms) when intensities are below 90 dB pe SPL. The cessation of 501-T3 activity is probably due both to the increasing PRR and to the decreasing pulse duration that occur in the terminal buzz phase of a bat attack. 501-T3 may be actively shut off at high PRRs and/or intensities to protect the interneuron from habituation while the mantis performs an escape response. The cessation of 501-T3 activity is consistent with the lack of a very late ultrasound-mediated evasive response by the mantis. However, cessation of 501-T3 activity may allow a true ‘last-chance’ response to be mediated by other neural systems.
Collapse
Affiliation(s)
- Jeffrey D Triblehorn
- Department of Psychology, University of Maryland, College Park, MD 20742-4411, USA.
| | | |
Collapse
|
17
|
MILLER LEEA, SURLYKKE ANNEMARIE. How Some Insects Detect and Avoid Being Eaten by Bats: Tactics and Countertactics of Prey and Predator. Bioscience 2001. [DOI: 10.1641/0006-3568(2001)051[0570:hsidaa]2.0.co;2] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Abstract
The tuning and pure-tone physiology of the T-cell prothoracic auditory interneuron were investigated in the nocturnal katydid Neoconocephalus ensiger. The T-cell is extremely sensitive and broadly tuned, particularly to high-frequency ultrasound (>20 kHz). Adult thresholds were lowest and showed their least variability for frequencies ranging from 25 to 80 kHz. The average best threshold of the T-cell in N. ensiger ranged from 28 to 38 dB SPL and the best frequency from 20 to 27 kHz. In females, the T-cell is slightly more sensitive to the range of frequencies encompassing the spectrum of male song. Tuning of the T-cell in non-volant nymphs was comparable with that of adults, and this precocious ultrasound sensitivity supports the view that it has a role in the detection of terrestrial sources of predaceous ultrasound. In adults, T-cell tuning is narrower than that of the whole auditory (tympanic) organ, but only at audio frequencies. Superthreshold physiological experiments revealed that T-cell responses were ultrasound-biased, with intensity/response functions steeper and spike latencies shorter at 20, 30 and 40 kHz than at 5, 10 and 15 kHz. The same was also true for T-cell stimulation at 90 degrees compared with stimulation at 0 degrees within a frequency, which supports early T-cell research showing that excitation of the contralateral ear inhibits ipsilateral T-cell responses. In a temporal summation experiment, the integration time of the T-cell at 40 kHz (integration time constant tau =6.1 ms) was less than half that measured at 15 kHz (tau =15.0 ms). Moreover, T-cell spiking in response to short-duration pure-tone trains mimicking calling conspecifics (15 kHz) and bat echolocation hunting sequences (40 kHz) revealed that temporal pattern-copying was superior for ultrasonic stimulation. Apparently, T-cell responses are reduced or inhibited by stimulation with audio frequencies, which leads to the prediction that the T-cell will encode conspecific song less well than bat-like frequency-modulated sweeps during acoustic playback. The fact that the T-cell is one of the most sensitive ultrasound neurons in tympanate insects is most consistent with it serving an alarm, warning or escape function in both volant and non-volant katydids (nymphs and adults).
Collapse
Affiliation(s)
- P A Faure
- Section of Neurobiology and Behavior, Cornell University, Seeley G. Mudd Hall, Ithaca, NY 14853-2702, USA.
| | | |
Collapse
|
19
|
Abstract
The study of biological symmetry continues to be an important and active area of research, yet in the hearing sciences there are no established quantitative methods for measuring auditory asymmetries and dissimilarities in threshold tuning curves (i.e. audiograms). Using a paired design and adopting methods from the analysis of fluctuating asymmetry, we describe methods for auditory researchers interested in delineating auditory asymmetries and comparing tuning curves, behavioral or neural. We illustrate the methods using audiograms of the prothoracic T-cell interneuron in a nocturnal katydid (Neoconocephalus ensiger). The results show that 87–92 % of T-cells had right-minus-left threshold asymmetries no larger than expected from measurement error alone. Thus, apart from small random fluctuating asymmetries, T-cell pairs in N. ensiger showed no sensory bias and were bilaterally symmetrical from 5 to 100 kHz. The sensitivity of the methods for detecting tuning curve dissimilarities was confirmed in a sound lateralization paradigm by comparing the ‘symmetry’ (i.e. similarity) of T-cell tuning curves measured at 0 degrees stimulation with tuning curves measured at 90 degrees stimulation for the same T-cell. The results show that T-cell thresholds measured frontally (0 degrees) were significantly higher than those measured laterally (90 degrees), particularly for ultrasonic frequencies. Statistically, the directional shift (increase) in auditory thresholds was detected as a directional asymmetry in T-cell tuning, whose origin and functional significance to an insect behaving normally are discussed. The paper discusses practical considerations for detecting auditory asymmetries and tuning curve dissimilarities in general, and closes by questioning the relevance of auditory symmetry for sound localization in both vertebrates and insects.
Collapse
Affiliation(s)
- P A Faure
- Section of Neurobiology and Behavior, Cornell University, Seeley G. Mudd Hall, Ithaca, NY 14853-2702, USA.
| | | |
Collapse
|
20
|
Faure PA, Hoy RR. Neuroethology of the katydid T-cell. II. Responses to acoustic playback of conspecific and predatory signals. J Exp Biol 2000; 203:3243-54. [PMID: 11023844 DOI: 10.1242/jeb.203.21.3243] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although early work on the tettigoniid T large fiber suggested that it might mediate early-warning and escape behavior in katydids, the majority of research thereafter has focused on the ability of the T-cell to detect, localize and/or discriminate mate-calling song. Interestingly, T-cell responses to conspecific song are rarely examined for more than a few seconds, despite the fact that many katydids sing for minutes or hours at a time. In this paper, the second of a pair examining the physiology of the T-cell in Neoconocephalus ensiger, we recorded T-cell responses using longer-duration playbacks (3 min) of conspecific song (Katydid signal 30 ms syllables, 9–25 kHz bandwidth, 12–15 kHz peak frequency) and two types of bat-like ultrasound, a 10 ms, 80->30 kHz frequency-modulated sweep (Bat 10 signal) and a 30 ms, 80->30 kHz frequency-modulated sweep (Bat 30 signal). Spiking responses were distinctly biased towards the short-duration ultrasonic signal, with more spikes per pulse, at a shorter spike latency and at a higher instantaneous firing frequency to the Bat 10 signal than to the Katydid signal or, surprisingly, to the Bat 30 signal. The ability of the T-cell to encode the temporal pattern of the stimulus was particularly striking. Only for the predatory bat signals did T-cell spiking faithfully copy the stimulus; playbacks of conspecific song resulted in significantly weaker spiking responses, particularly in male katydids. The results demonstrate that responses from the T-cell alone may be sufficient for katydids to discriminate biologically relevant signals pertinent to the phonotactic behavior patterns involved in mate attraction and predator avoidance.
Collapse
Affiliation(s)
- P A Faure
- Section of Neurobiology and Behavior, Cornell University, Seeley G. Mudd Hall, Ithaca, NY 14853-2702, USA.
| | | |
Collapse
|