1
|
Hecker FA, Leggio B, König T, Kim V, Osterland M, Gnutt D, Niehaus K, Geibel S. Cell Painting unravels insecticidal modes of action on Spodoptera frugiperda insect cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105983. [PMID: 39084786 DOI: 10.1016/j.pestbp.2024.105983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 08/02/2024]
Abstract
The "Cell Painting" technology utilizes multiplexed fluorescent staining of various cell organelles, to produce high-content microscopy images of cells for multidimensional phenotype assessment. The phenotypic profiles extracted from those images can be analyzed upon perturbations with biologically active molecules to annotate the mode of action or biological activity by comparison with reference profiles of already known mechanisms of action, ultimately enabling the determination of on-target and off-target effects. This approach is already described in various human cell cultures, the most commonly used being the U2OS cell line, yet allows broad applications in additional areas of chemical-biological research. Here we describe for the first time the application and adaptation of Cell Painting to an insect cell line, the Sf9 cells from Spodoptera frugiperda. By adjusting image acquisition and analysis models, specific phenotypic profiles were obtained in a dose-dependent manner for 20 reference compounds, including representatives for the most relevant insecticidal modes of action categories (nerve & muscle, respiration and growth & development). Through a dimensionality-reduction method, both calculations of phenotypic half maximal inhibition concentration (IC50) values as well as similarity analysis of the obtained profiles by hierarchical clustering were performed. By Cell Painting effects on the phenotype could be obtained at higher sensitivity than in other assay formats, such as cytotoxicity assessments. More importantly, these analyses provide insight into mechanistic determinants of biological activity. Compounds with similar modes of action showed a high degree of proximity in a hierarchical clustering analysis while being distinct from actives with an unrelated mode of action. In essence, we provide strong evidence on the impact of Cell Painting mechanistic understanding of insecticides with regards to determinants of efficacy and safety utilizing an insect cell model system.
Collapse
Affiliation(s)
- Franziska A Hecker
- University Bielefeld, Proteome and Metabolome Research, Bielefeld, Germany
| | - Bruno Leggio
- R&D Disease Control, Bayer SAS, Crop Science Division, Lyon, France
| | - Tim König
- R&D Image-based Screening Systems, Bayer AG, Pharma Division, Wuppertal, Germany
| | - Vladislav Kim
- R&D Machine Learning Research, Bayer AG, Pharma Division, Berlin, Germany
| | - Marc Osterland
- R&D Machine Learning Research, Bayer AG, Pharma Division, Berlin, Germany
| | - David Gnutt
- R&D Image-based Screening Systems, Bayer AG, Pharma Division, Wuppertal, Germany
| | - Karsten Niehaus
- University Bielefeld, Proteome and Metabolome Research, Bielefeld, Germany
| | - Sven Geibel
- R&D Hit Discovery, Bayer AG, Crop Science Division, Monheim, Germany.
| |
Collapse
|
2
|
Burton-Smith RN, Song C, Ueno H, Murata T, Iino R, Murata K. Six states of Enterococcus hirae V-type ATPase reveals non-uniform rotor rotation during turnover. Commun Biol 2023; 6:755. [PMID: 37507515 PMCID: PMC10382590 DOI: 10.1038/s42003-023-05110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The vacuolar-type ATPase from Enterococcus hirae (EhV-ATPase) is a thus-far unique adaptation of V-ATPases, as it performs Na+ transport and demonstrates an off-axis rotor assembly. Recent single molecule studies of the isolated V1 domain have indicated that there are subpauses within the three major states of the pseudo three-fold symmetric rotary enzyme. However, there was no structural evidence for these. Herein we activate the EhV-ATPase complex with ATP and identified multiple structures consisting of a total of six states of this complex by using cryo-electron microscopy. The orientations of the rotor complex during turnover, especially in the intermediates, are not as perfectly uniform as expected. The densities in the nucleotide binding pockets in the V1 domain indicate the different catalytic conditions for the six conformations. The off-axis rotor and its' interactions with the stator a-subunit during rotation suggests that this non-uniform rotor rotation is performed through the entire complex.
Collapse
Affiliation(s)
- Raymond N Burton-Smith
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Chihong Song
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institute for Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
3
|
Yao X, Duan Y, Deng Z, Zhao W, Wei J, Li X, An S. ATP Synthase Subunit α from Helicoverpa armigera Acts as a Receptor of Bacillus thuringiensis Cry1Ac and Synergizes Cry1Ac Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37036055 DOI: 10.1021/acs.jafc.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Insect resistance to Bacillus thuringiensis (Bt) toxins has led to an urgent need to explore the insecticidal mechanisms of Bt. Previous studies indicated that Helicoverpa armigera ATP synthase subunit α (HaATPs-α) is involved in Cry1Ac resistance. In this study, a real-time quantitative polymerase chain reaction (RT-PCR) confirmed that HaATPs-α expression was significantly reduced in the Cry1Ac-resistant strain (BtR). Cry1Ac feeding induced the downregulated expression of HaATPs-α in the susceptible strain, but not in the BtR strain. Furthermore, the interaction between HaATPs-α and Cry1Ac was verified by ligand blotting and homologous competition experiments. The in vitro gain and loss of function analyses showed HaATPs-α involved in Cry1Ac toxicity by expressing endogenous HaATPs-α and HaATPs-α double-stranded RNAs in Sf9 and midgut cells, respectively. Importantly, purified HaATPs-α synergized Cry1Ac toxicity to H. armigera larvae. These findings provide the first evidence that HaATPs-α is a potential receptor of Cry1Ac, it shows downregulated participation in Cry1Ac resistance, and it exhibits higher enhancement of Cry1Ac toxicity to H. armigera larvae.
Collapse
Affiliation(s)
- Xue Yao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunpeng Duan
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhongyuan Deng
- College of Life Science, Zhengzhou University, Zhengzhou, Henan450000, China
| | - Wenli Zhao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
4
|
Occurrence of Capnophilic Lactic Fermentation in the Hyperthermophilic Anaerobic Bacterium Thermotoga sp. Strain RQ7. Int J Mol Sci 2022; 23:ijms231912049. [PMID: 36233345 PMCID: PMC9570489 DOI: 10.3390/ijms231912049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Capnophilic lactic fermentation (CLF) is an anaplerotic pathway exclusively identified in the anaerobic hyperthermophilic bacterium Thermotoga neapolitana, a member of the order Thermotogales. The CO2-activated pathway enables non-competitive synthesis of hydrogen and L-lactic acid at high yields, making it an economically attractive process for bioenergy production. In this work, we discovered and characterized CLF in Thermotoga sp. strain RQ7, a naturally competent strain, opening a new avenue for molecular investigation of the pathway. Evaluation of the fermentation products and expression analyses of key CLF-genes by RT-PCR revealed similar CLF-phenotypes between T. neapolitana and T. sp. strain RQ7, which were absent in the non-CLF-performing strain T. maritima. Key CLF enzymes, such as PFOR, HYD, LDH, RNF, and NFN, are up-regulated in the two CLF strains. Another important finding is the up-regulation of V-ATPase, which couples ATP hydrolysis to proton transport across the membranes, in the two CLF-performing strains. The fact that V-ATPase is absent in T. maritima suggested that this enzyme plays a key role in maintaining the necessary proton gradient to support high demand of reducing equivalents for simultaneous hydrogen and lactic acid synthesis in CLF.
Collapse
|
5
|
Miranda-Astudillo H, Ostolga-Chavarría M, Cardol P, González-Halphen D. Beyond being an energy supplier, ATP synthase is a sculptor of mitochondrial cristae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148569. [PMID: 35577152 DOI: 10.1016/j.bbabio.2022.148569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Mitochondrial F1FO-ATP synthase plays a key role in cellular bioenergetics; this enzyme is present in all eukaryotic linages except in amitochondriate organisms. Despite its ancestral origin, traceable to the alpha proteobacterial endosymbiotic event, the actual structural diversity of these complexes, due to large differences in their polypeptide composition, reflects an important evolutionary divergence between eukaryotic lineages. We discuss the effect of these structural differences on the oligomerization of the complex and the shape of mitochondrial cristae.
Collapse
Affiliation(s)
- Héctor Miranda-Astudillo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcos Ostolga-Chavarría
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pierre Cardol
- InBios/Phytosystems, Institut de Botanique, Université de Liège, Liège, Belgium
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
6
|
Seidel T. The Plant V-ATPase. FRONTIERS IN PLANT SCIENCE 2022; 13:931777. [PMID: 35845650 PMCID: PMC9280200 DOI: 10.3389/fpls.2022.931777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/03/2022] [Indexed: 05/25/2023]
Abstract
V-ATPase is the dominant proton pump in plant cells. It contributes to cytosolic pH homeostasis and energizes transport processes across endomembranes of the secretory pathway. Its localization in the trans Golgi network/early endosomes is essential for vesicle transport, for instance for the delivery of cell wall components. Furthermore, it is crucial for response to abiotic and biotic stresses. The V-ATPase's rather complex structure and multiple subunit isoforms enable high structural flexibility with respect to requirements for different organs, developmental stages, and organelles. This complexity further demands a sophisticated assembly machinery and transport routes in cells, a process that is still not fully understood. Regulation of V-ATPase is a target of phosphorylation and redox-modifications but also involves interactions with regulatory proteins like 14-3-3 proteins and the lipid environment. Regulation by reversible assembly, as reported for yeast and the mammalian enzyme, has not be proven in plants but seems to be absent in autotrophic cells. Addressing the regulation of V-ATPase is a promising approach to adjust its activity for improved stress resistance or higher crop yield.
Collapse
|
7
|
ATP synthesis in an ancient ATP synthase at low driving forces. Proc Natl Acad Sci U S A 2022; 119:e2201921119. [PMID: 35512103 DOI: 10.1073/pnas.2201921119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe ATP synthases of many anaerobic archaea have an unusual motor subunit c that otherwise is only found in eukaryotic V1VO ATPases. The evolutionary switch from synthase to hydrolase is thought to be caused by a doubling of the rotor subunit c, followed by a loss of the ion binding site. By purification and reconstitution of an ATP synthase with a V-type c subunit, we have unequivocally demonstrated, against expectations, the capability of such an enzyme to synthesize ATP at physiological relevant driving forces of 90 to 150 mV. This is the long-awaited answer to an eminent question in microbial energetics and physiology, especially for life near the thermodynamic limit of ATP synthesis.
Collapse
|
8
|
Fontecilla-Camps JC. The Complex Roles of Adenosine Triphosphate in Bioenergetics. Chembiochem 2022; 23:e202200064. [PMID: 35353443 DOI: 10.1002/cbic.202200064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Indexed: 11/09/2022]
Abstract
ATP is generally defined as the "energy currency" of the cell. Its phosphoanhydride P-O bonds are often considered to be "high energy" linkages that release free energy when broken, and its hydrolysis is described as "strongly exergonic". However, breaking bonds cannot release energy and ATP hydrolysis in motor and active transport proteins is not "strongly exergonic". So, the relevance of ATP resides elsewhere. As important as the nucleotide are the proteins that undergo functionally relevant conformational changes upon both ATP binding and release of ADP and inorganic phosphate. ATP phosphorylates proteins for signaling, active transport, and substrates in condensation reactions. The ensuing dephosphorylation has different consequences in each case. In signaling and active transport the phosphate group is hydrolyzed whereas in condensation reactions the phosphoryl fragment acts as a dehydrating agent. As it will be discussed in this article, ATP does much more than simply contribute free energy to biological processes.
Collapse
|
9
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
10
|
Folch PL, Bisschops MM, Weusthuis RA. Metabolic energy conservation for fermentative product formation. Microb Biotechnol 2021; 14:829-858. [PMID: 33438829 PMCID: PMC8085960 DOI: 10.1111/1751-7915.13746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/02/2022] Open
Abstract
Microbial production of bulk chemicals and biofuels from carbohydrates competes with low-cost fossil-based production. To limit production costs, high titres, productivities and especially high yields are required. This necessitates metabolic networks involved in product formation to be redox-neutral and conserve metabolic energy to sustain growth and maintenance. Here, we review the mechanisms available to conserve energy and to prevent unnecessary energy expenditure. First, an overview of ATP production in existing sugar-based fermentation processes is presented. Substrate-level phosphorylation (SLP) and the involved kinase reactions are described. Based on the thermodynamics of these reactions, we explore whether other kinase-catalysed reactions can be applied for SLP. Generation of ion-motive force is another means to conserve metabolic energy. We provide examples how its generation is supported by carbon-carbon double bond reduction, decarboxylation and electron transfer between redox cofactors. In a wider perspective, the relationship between redox potential and energy conservation is discussed. We describe how the energy input required for coenzyme A (CoA) and CO2 binding can be reduced by applying CoA-transferases and transcarboxylases. The transport of sugars and fermentation products may require metabolic energy input, but alternative transport systems can be used to minimize this. Finally, we show that energy contained in glycosidic bonds and the phosphate-phosphate bond of pyrophosphate can be conserved. This review can be used as a reference to design energetically efficient microbial cell factories and enhance product yield.
Collapse
Affiliation(s)
- Pauline L. Folch
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Markus M.M. Bisschops
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Ruud A. Weusthuis
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| |
Collapse
|
11
|
Westphal L, Litty D, Müller V. Functional production of an archaeal ATP synthase with a V-type c subunit in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148378. [PMID: 33460587 DOI: 10.1016/j.bbabio.2021.148378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 01/09/2021] [Indexed: 11/18/2022]
Abstract
ATP synthases are the key elements of cellular bioenergetics and present in any life form and the overall structure and function of this rotary energy converter is conserved in all domains of life. However, ancestral microbes, the archaea, have a unique and huge diversity in the size and number of ion-binding sites in their membrane-embedded rotor subunit c. Due to the harsh conditions for ATP synthesis in these life forms it has never been possible to address the consequences of these unusual c subunits for ATP synthesis. Recently, we have found a Na+-dependent archaeal ATP synthase with a V-type c subunit in a mesophilic bacterium and here, we have cloned and expressed the genes in the ATP synthase-negative strain Escherichia coli DK8. The enzyme was present in membranes of E. coli DK8 and catalyzed ATP hydrolysis with a rate of 35 nmol·min-1·mg protein-1. Inverted membrane vesicles of this strain were then checked for their ability to synthesize ATP. Indeed, ATP was synthesized driven by NADH oxidation despite the V-type c subunit. ATP synthesis was dependent on Na+ and inhibited by ionophores. Most importantly, ATPase activity was inhibited by DCCD and this inhibition was relieved by addition of Na+, indicating a functional coupling of the F1 and FO domains, a prerequisite for studies on structure-function relationship. A first step in this direction was the exchange of a conserved arginine (Arg530) in the FO motor subunit a which led to loss of ATP synthesis whereas ATP hydrolysis was retained.
Collapse
Affiliation(s)
- Lars Westphal
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Dennis Litty
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
12
|
Kabra R, Singh S. Transporter proteins and its implication in human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:1-21. [PMID: 33632463 DOI: 10.1016/bs.apcsb.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Drug transporters, classified in various ways like efflux transporters and influx transporters; secretory transporters and absorptive transporters; ATP-driven transporters and Solute Linked Carrier (SLC) transporters are of great importance while studying pharmacokinetics. They have impeccable roles in the drug discovery process of infectious diseases. Many of these find a pivotal role in synthetic antimicrobial peptides. The chapter briefly elucidates the varied types and their significance.
Collapse
Affiliation(s)
- Ritika Kabra
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Shailza Singh
- National Centre for Cell Science, SP Pune University Campus, Pune, India.
| |
Collapse
|
13
|
Zhang S, Tang H, Wang Y, Nie B, Yang H, Yuan W, Qu X, Yue B. Antibacterial and antibiofilm effects of flufenamic acid against methicillin-resistant Staphylococcus aureus. Pharmacol Res 2020; 160:105067. [PMID: 32650057 DOI: 10.1016/j.phrs.2020.105067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are one of the most serious surgery complications, and their prevention is of utmost importance. Flufenamic acid is a non-steroid anti-inflammatory drug approved for clinical use to relieve inflammation and pain in rheumatoid arthritis patients. In this study, we explored the antibacterial efficacy of flufenamic acid and the mechanisms underlying this effect. By using minimal inhibitory concentration (MIC), time-kill, resistance induction assays, and the antibiotic synergy test, we demonstrated that flufenamic acid inhibited the growth of methicillin-resistant staphylococci and did not induce resistance when it was used at the MIC. Furthermore, flufenamic acid acted synergistically with the beta-lactam antibiotic oxacillin and did not show significant toxicity toward mammalian cells. The biofilm inhibition assay revealed that flufenamic acid could prevent biofilm formation on medical implants and destroy the ultrastructure of the bacterial cell wall. RNA sequencing and quantitative RT-PCR indicated that flufenamic acid inhibited the expression of genes associated with peptidoglycan biosynthesis, beta-lactam resistance, quorum sensing, and biofilm formation. Furthermore, flufenamic acid efficiently ameliorated a local infection caused by MRSA in mice. In conclusion, flufenamic acid may be a potent therapeutic compound against MRSA infections and a promising candidate for antimicrobial coating of implants and surgical devices.
Collapse
Affiliation(s)
- Shutao Zhang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - You Wang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin'en Nie
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongtao Yang
- Department of Plastic & Reconstructive Surgery, The Ohio State University, Columbus, OH 43210, United States
| | - Weien Yuan
- Ministry of Education Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
Song Q, Meng B, Xu H, Mao Z. The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases. Transl Neurodegener 2020; 9:17. [PMID: 32393395 PMCID: PMC7212675 DOI: 10.1186/s40035-020-00196-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lysosomes digest extracellular material from the endocytic pathway and intracellular material from the autophagic pathway. This process is performed by the resident hydrolytic enzymes activated by the highly acidic pH within the lysosomal lumen. Lysosome pH gradients are mainly maintained by the vacuolar (H+) ATPase (or V-ATPase), which pumps protons into lysosomal lumen by consuming ATP. Dysfunction of V-ATPase affects lysosomal acidification, which disrupts the clearance of substrates and leads to many disorders, including neurodegenerative diseases. Main body As a large multi-subunit complex, the V-ATPase is composed of an integral membrane V0 domain involved in proton translocation and a peripheral V1 domain catalyzing ATP hydrolysis. The canonical functions of V-ATPase rely on its H+-pumping ability in multiple vesicle organelles to regulate endocytic traffic, protein processing and degradation, synaptic vesicle loading, and coupled transport. The other non-canonical effects of the V-ATPase that are not readily attributable to its proton-pumping activity include membrane fusion, pH sensing, amino-acid-induced activation of mTORC1, and scaffolding for protein-protein interaction. In response to various stimuli, V-ATPase complex can reversibly dissociate into V1 and V0 domains and thus close ATP-dependent proton transport. Dysregulation of pH and lysosomal dysfunction have been linked to many human diseases, including neurodegenerative disorders such as Alzheimer disease, Parkinson’s disease, amyotrophic lateral sclerosis as well as neurodegenerative lysosomal storage disorders. Conclusion V-ATPase complex is a universal proton pump and plays an important role in lysosome acidification in all types of cells. Since V-ATPase dysfunction contributes to the pathogenesis of multiple neurodegenerative diseases, further understanding the mechanisms that regulate the canonical and non-canonical functions of V-ATPase will reveal molecular details of disease process and help assess V-ATPase or molecules related to its regulation as therapeutic targets.
Collapse
Affiliation(s)
- Qiaoyun Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, Hebei Province, 050051, People's Republic of China.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bo Meng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haidong Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
15
|
Sielaff H, Yanagisawa S, Frasch WD, Junge W, Börsch M. Structural Asymmetry and Kinetic Limping of Single Rotary F-ATP Synthases. Molecules 2019; 24:E504. [PMID: 30704145 PMCID: PMC6384691 DOI: 10.3390/molecules24030504] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
F-ATP synthases use proton flow through the FO domain to synthesize ATP in the F₁ domain. In Escherichia coli, the enzyme consists of rotor subunits γεc10 and stator subunits (αβ)₃δab₂. Subunits c10 or (αβ)₃ alone are rotationally symmetric. However, symmetry is broken by the b₂ homodimer, which together with subunit δa, forms a single eccentric stalk connecting the membrane embedded FO domain with the soluble F₁ domain, and the central rotating and curved stalk composed of subunit γε. Although each of the three catalytic binding sites in (αβ)₃ catalyzes the same set of partial reactions in the time average, they might not be fully equivalent at any moment, because the structural symmetry is broken by contact with b₂δ in F₁ and with b₂a in FO. We monitored the enzyme's rotary progression during ATP hydrolysis by three single-molecule techniques: fluorescence video-microscopy with attached actin filaments, Förster resonance energy transfer between pairs of fluorescence probes, and a polarization assay using gold nanorods. We found that one dwell in the three-stepped rotary progression lasting longer than the other two by a factor of up to 1.6. This effect of the structural asymmetry is small due to the internal elastic coupling.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| | - Seiga Yanagisawa
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wayne D Frasch
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wolfgang Junge
- Department of Biology & Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
16
|
Niu Y, Moghimyfiroozabad S, Safaie S, Yang Y, Jonas EA, Alavian KN. Phylogenetic Profiling of Mitochondrial Proteins and Integration Analysis of Bacterial Transcription Units Suggest Evolution of F1Fo ATP Synthase from Multiple Modules. J Mol Evol 2017; 85:219-233. [PMID: 29177973 PMCID: PMC5709465 DOI: 10.1007/s00239-017-9819-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/11/2017] [Indexed: 11/26/2022]
Abstract
ATP synthase is a complex universal enzyme responsible for ATP synthesis across all kingdoms of life. The F-type ATP synthase has been suggested to have evolved from two functionally independent, catalytic (F1) and membrane bound (Fo), ancestral modules. While the modular evolution of the synthase is supported by studies indicating independent assembly of the two subunits, the presence of intermediate assembly products suggests a more complex evolutionary process. We analyzed the phylogenetic profiles of the human mitochondrial proteins and bacterial transcription units to gain additional insight into the evolution of the F-type ATP synthase complex. In this study, we report the presence of intermediary modules based on the phylogenetic profiles of the human mitochondrial proteins. The two main intermediary modules comprise the α3β3 hexamer in the F1 and the c-subunit ring in the Fo. A comprehensive analysis of bacterial transcription units of F1Fo ATP synthase revealed that while a long and constant order of F1Fo ATP synthase genes exists in a majority of bacterial genomes, highly conserved combinations of separate transcription units are present among certain bacterial classes and phyla. Based on our findings, we propose a model that includes the involvement of multiple modules in the evolution of F1Fo ATP synthase. The central and peripheral stalk subunits provide a link for the integration of the F1/Fo modules.
Collapse
Affiliation(s)
- Yulong Niu
- Division of Brain Sciences, Department of Medicine, Imperial College London, E508, Burlington Danes Hammersmith Hospital, DuCane Road, London, W12 0NN, UK
- Key Lab of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
- Department of Internal Medicine, Endocrinology, Yale University, New Haven, CT, USA
| | | | - Sepehr Safaie
- Department of Mathematics and Computer Science, The Bahá'í Institute for Higher Education (BIHE), Tehran, Iran
| | - Yi Yang
- Key Lab of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Elizabeth A Jonas
- Department of Internal Medicine, Endocrinology, Yale University, New Haven, CT, USA
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London, E508, Burlington Danes Hammersmith Hospital, DuCane Road, London, W12 0NN, UK.
- Department of Biology, The Bahá'í Institute for Higher Education (BIHE), Tehran, Iran.
- Department of Internal Medicine, Endocrinology, Yale University, New Haven, CT, USA.
| |
Collapse
|
17
|
Abstract
Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi.
Collapse
|
18
|
Müller B, Manzoor S, Niazi A, Bongcam-Rudloff E, Schnürer A. Genome-guided analysis of physiological capacities of Tepidanaerobacter acetatoxydans provides insights into environmental adaptations and syntrophic acetate oxidation. PLoS One 2015; 10:e0121237. [PMID: 25811859 PMCID: PMC4374699 DOI: 10.1371/journal.pone.0121237] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/30/2015] [Indexed: 11/21/2022] Open
Abstract
This paper describes the genome-based analysis of Tepidanaerobacter acetatoxydans strain Re1, a syntrophic acetate-oxidising bacterium (SAOB). Principal issues such as environmental adaptations, metabolic capacities, and energy conserving systems have been investigated and the potential consequences for syntrophic acetate oxidation discussed. Briefly, in pure culture, T. acetatoxydans grows with different organic compounds and produces acetate as the main product. In a syntrophic consortium with a hydrogenotrophic methanogen, it can also reverse its metabolism and instead convert acetate to formate/H2 and CO2. It can only proceed if the product formed is continuously removed. This process generates a very small amount of energy that is scarcely enough for growth, which makes this particular syntrophy of special interest. As a crucial member of the biogas-producing community in ammonium-rich engineered AD processes, genomic features conferring ammonium resistance, bacterial defense, oxygen and temperature tolerance were found, as well as attributes related to biofilm formation and flocculation. It is likely that T. acetatoxydans can form an electrochemical gradient by putative electron-bifurcating Rnf complex and [Fe-Fe] hydrogenases, as observed in other acetogens. However, genomic deficiencies related to acetogenic metabolism and anaerobic respiration were discovered, such as the lack of formate dehydrogenase and F1F0 ATP synthase. This has potential consequences for the metabolic pathways used under SAO and non-SAO conditions. The two complete sets of bacteriophage genomes, which were found to be encoded in the genome, are also worthy of mention.
Collapse
Affiliation(s)
- Bettina Müller
- Department of Microbiology, Swedish University of Agricultural Sciences, BioCenter, Uppsala, Sweden
- * E-mail:
| | - Shahid Manzoor
- Department of Animal Breeding and Genetics Science, Swedish University of Agricultural Science, SLU-Global Bioinformatics Centre, Uppsala, Sweden
- University of the Punjab, Lahore, Pakistan
| | - Adnan Niazi
- Department of Animal Breeding and Genetics Science, Swedish University of Agricultural Science, SLU-Global Bioinformatics Centre, Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics Science, Swedish University of Agricultural Science, SLU-Global Bioinformatics Centre, Uppsala, Sweden
| | - Anna Schnürer
- Department of Microbiology, Swedish University of Agricultural Sciences, BioCenter, Uppsala, Sweden
| |
Collapse
|
19
|
Aung HL, Dey D, Janssen PH, Ronimus RS, Cook GM. A high-throughput screening assay for identification of inhibitors of the A1AO-ATP synthase of the rumen methanogen Methanobrevibacter ruminantium M1. J Microbiol Methods 2015; 110:15-7. [PMID: 25575416 DOI: 10.1016/j.mimet.2014.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/19/2014] [Accepted: 12/27/2014] [Indexed: 01/11/2023]
Abstract
We report the development of a high-throughput screening platform to identify inhibitors of the membrane-bound A1Ao-ATP synthase from the rumen methanogen Methanobrevibacter ruminantium M1. Inhibitors identified in the screen were tested against growing cultures of M. ruminantium, validating the approach to identify new inhibitors of methanogens.
Collapse
Affiliation(s)
- Htin Lin Aung
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Debjit Dey
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Peter H Janssen
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Ron S Ronimus
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
20
|
Alves MG, Oliveira PF. 2,4-Dichlorophenoxyacetic acid alters intracellular pH and ion transport in the outer mantle epithelium of the bivalve Anodonta cygnea. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:12-18. [PMID: 24854203 DOI: 10.1016/j.aquatox.2014.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/15/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Bivalve molluscs, due to their sedentary mode of life and filter-feeding behavior, are very susceptible to pollutant bioaccumulation and used as sentinel organisms in the assessment of environment pollution. Herein we aimed to determine the in vivo, ex vivo and in vitro effects of 2,4-dichlorophenoxyacetic acid (2,4-D), a widely used herbicide, in Anodonta cygnea shell growth mechanisms. For that, we evaluated the effect of 2,4-D (100 μM) exposure on the transepithelial short-circuit current (Isc), potential (Vt) and conductance (Gt), as well as on OME ion transport systems and intracellular pH (pHi). In vivo exposure to 2,4-D caused an increase of 50% on the Isc generated by OME and ex vivo addition of that compound to the apical side of OME also induced an Isc increase. Furthermore, 2,4-D was able to cause a pHi increase in isolated cells of OME. Noteworthy, when 2,4-D was added following the exposure to specific inhibitors of several membrane transporters identified as responsible for pHi maintenance in these cells, no significant effect was observed on pHi except when the V-type ATPase inhibitor was used, indicating an overlap with the effect of 2,4-D. Thus, we concluded that 2,4-D is able of enhancing the activity of the V-ATPases present on the OME of A. cygnea and that this effect seems to be due to a direct stimulation of those H(+) transporters present on the apical portion of the membrane of OME cells, which are vital for shell maintenance and growth. This study allows us to better understand the molecular mechanisms behind 2,4-D toxicity and its deleterious effect in aquatic ecosystems, with particular emphasis on those involved in shell formation of bivalves.
Collapse
Affiliation(s)
- Marco G Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Pedro F Oliveira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal.
| |
Collapse
|
21
|
General Characteristics and Important Model Organisms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014. [DOI: 10.1128/9781555815516.ch2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Grüber G, Manimekalai MSS, Mayer F, Müller V. ATP synthases from archaea: the beauty of a molecular motor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:940-52. [PMID: 24650628 DOI: 10.1016/j.bbabio.2014.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 11/18/2022]
Abstract
Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H(+), Na(+) or even H(+) and Na(+) using enzymes. The evolution of the H(+) binding site to a Na(+) binding site and its implications for the energy metabolism and physiology of the cell are discussed.
Collapse
Affiliation(s)
- Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| | | | - Florian Mayer
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
23
|
Alves MG, Oliveira PF. Effects of non-steroidal estrogen diethylstilbestrol on pH and ion transport in the mantle epithelium of a bivalve Anodonta cygnea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 97:230-235. [PMID: 23953926 DOI: 10.1016/j.ecoenv.2013.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/20/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
Freshwater bivalves are used as sentinel organisms to detect pollutants effects in the aquatic environment due to their sedentary nature, filter-feeding behaviour. We aimed to determine the in vivo, ex vivo and in vitro influence of Diethylstilbestrol (DES), a widely used synthetic non-steroidal estrogen and endocrine disruptor, in Anodonta cygnea shell growth mechanisms. For that, in vivo exposure to DES (0.75μM) during 15 days, in vitro and ex vivo exposure of outer mantle epithelium (OME) cells to DES (0.75μM), were performed followed by study of short-circuit current (Isc), transepithelial potential (Vt) and transepithelial conductance (Gt) as well as identification of membrane transport systems and intracellular pH (pHi). Our results show that in vivo exposure to DES decreases in 30% the OME Isc and ex vivo addition of DES to the basolateral side of OME also induced Isc decrease. Several membrane transporters such as V-type ATPases, Na(+)/H(+) exchangers, Na(+)-K(+) pump, Na(+)-driven and Na(+)-independent HCO3(-)/Cl(-) transporters and Na(+)/HCO3(-) co-transporter were identified as responsible for pHi maintenance in OME and noteworthy, DES caused a pHi decrease in OME cells similar to the effect observed when OME cells were exposed to 4,4'-diisothiocyanostilbene disulfonic acid (DIDS), an inhibitor of several bicarbonate membrane transporters. The addition of DIDS after OME cells exposure to DES did not cause any alteration. We concluded that DES is able to modulate membrane ion transport and pHi in the OME of A. cygnea and that this effect seems to be due to inhibition of HCO3(-)/Cl(-) co-transporters present on the basolateral membrane.
Collapse
Affiliation(s)
- Marco G Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | | |
Collapse
|
24
|
Zhang C, Marcia M, Langer JD, Peng G, Michel H. Role of the N-terminal signal peptide in the membrane insertion ofAquifex aeolicusF1F0ATP synthase c-subunit. FEBS J 2013; 280:3425-35. [DOI: 10.1111/febs.12336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Chunli Zhang
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
| | - Marco Marcia
- Department of Molecular, Cellular and Developmental Biology; Yale University; New Haven CT USA
| | - Julian D. Langer
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
| | - Guohong Peng
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
- Institute of Oceanology; Chinese Academy of Sciences; Qingdao China
| | - Hartmut Michel
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
| |
Collapse
|
25
|
Han Z, Sun J, Zhang Y, He F, Xu Y, Matsumura K, He LS, Qiu JW, Qi SH, Qian PY. iTRAQ-Based Proteomic Profiling of the Barnacle Balanus amphitrite in Response to the Antifouling Compound Meleagrin. J Proteome Res 2013; 12:2090-100. [PMID: 23540395 DOI: 10.1021/pr301083e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhuang Han
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Sun
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yu Zhang
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
- Shenzhen Key
Laboratory of Marine Bioresource and Eco-environmental Science, College
of Life Science, Shenzhen University, Shenzhen,
China
| | - Fei He
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Ying Xu
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
| | - Kiyotaka Matsumura
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
| | - Li-Sheng He
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Shu-Hua Qi
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South
China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Pei-Yuan Qian
- Division of Life Sciences, The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong, China
| |
Collapse
|
26
|
Sielaff H, Börsch M. Twisting and subunit rotation in single F(O)(F1)-ATP synthase. Philos Trans R Soc Lond B Biol Sci 2012; 368:20120024. [PMID: 23267178 DOI: 10.1098/rstb.2012.0024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
F(O)F(1)-ATP synthases are ubiquitous proton- or ion-powered membrane enzymes providing ATP for all kinds of cellular processes. The mechanochemistry of catalysis is driven by two rotary nanomotors coupled within the enzyme. Their different step sizes have been observed by single-molecule microscopy including videomicroscopy of fluctuating nanobeads attached to single enzymes and single-molecule Förster resonance energy transfer. Here we review recent developments of approaches to monitor the step size of subunit rotation and the transient elastic energy storage mechanism in single F(O)F(1)-ATP synthases.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Nonnenplan 2-4, 07743 Jena, Germany
| | | |
Collapse
|
27
|
Shishova MF, Tankelyun OV, Rudashevskaya EL, Emel’yanov VV, Shakhova NV, Kirpichnikova AA. Alteration of transport activity of proton pumps in coleoptile cells during early development stages of maize seedlings. Russ J Dev Biol 2012. [DOI: 10.1134/s1062360412060070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Mayer F, Leone V, Langer JD, Faraldo-Gómez JD, Müller V. A c subunit with four transmembrane helices and one ion (Na+)-binding site in an archaeal ATP synthase: implications for c ring function and structure. J Biol Chem 2012; 287:39327-37. [PMID: 23007388 DOI: 10.1074/jbc.m112.411223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ion-driven membrane rotors of ATP synthases consist of multiple copies of subunit c, forming a closed ring. Subunit c typically comprises two transmembrane helices, and the c ring features an ion-binding site in between each pair of adjacent subunits. Here, we use experimental and computational methods to study the structure and specificity of an archaeal c subunit more akin to those of V-type ATPases, namely that from Pyrococcus furiosus. The c subunit was purified by chloroform/methanol extraction and determined to be 15.8 kDa with four predicted transmembrane helices. However, labeling with DCCD as well as Na(+)-DCCD competition experiments revealed only one binding site for DCCD and Na(+), indicating that the mature c subunit of this A(1)A(O) ATP synthase is indeed of the V-type. A structural model generated computationally revealed one Na(+)-binding site within each of the c subunits, mediated by a conserved glutamate side chain alongside other coordinating groups. An intriguing second glutamate located in-between adjacent c subunits was ruled out as a functional Na(+)-binding site. Molecular dynamics simulations indicate that the c ring of P. furiosus is highly Na(+)-specific under in vivo conditions, comparable with the Na(+)-dependent V(1)V(O) ATPase from Enterococcus hirae. Interestingly, the same holds true for the c ring from the methanogenic archaeon Methanobrevibacter ruminantium, whose c subunits also feature a V-type architecture but carry two Na(+)-binding sites instead. These findings are discussed in light of their physiological relevance and with respect to the mode of ion coupling in A(1)A(O) ATP synthases.
Collapse
Affiliation(s)
- Florian Mayer
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
29
|
Balakrishna AM, Hunke C, Grüber G. The Structure of Subunit E of the Pyrococcus horikoshii OT3 A-ATP Synthase Gives Insight into the Elasticity of the Peripheral Stalk. J Mol Biol 2012; 420:155-63. [DOI: 10.1016/j.jmb.2012.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
|
30
|
Dip PV, Saw WG, Roessle M, Marshansky V, Grüber G. Solution structure of subunit a, a 104-363, of the Saccharomyces cerevisiae V-ATPase and the importance of its C-terminus in structure formation. J Bioenerg Biomembr 2012; 44:341-50. [DOI: 10.1007/s10863-012-9442-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/19/2012] [Indexed: 11/30/2022]
|
31
|
Stewart AG, Lee LK, Donohoe M, Chaston JJ, Stock D. The dynamic stator stalk of rotary ATPases. Nat Commun 2012; 3:687. [PMID: 22353718 PMCID: PMC3293630 DOI: 10.1038/ncomms1693] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/19/2012] [Indexed: 11/09/2022] Open
Abstract
Rotary ATPases couple ATP hydrolysis/synthesis with proton translocation across biological membranes and so are central components of the biological energy conversion machinery. Their peripheral stalks are essential components that counteract torque generated by rotation of the central stalk during ATP synthesis or hydrolysis. Here we present a 2.25-Å resolution crystal structure of the peripheral stalk from Thermus thermophilus A-type ATPase/synthase. We identify bending and twisting motions inherent within the structure that accommodate and complement a radial wobbling of the ATPase headgroup as it progresses through its catalytic cycles, while still retaining azimuthal stiffness necessary to counteract rotation of the central stalk. The conformational freedom of the peripheral stalk is dictated by its unusual right-handed coiled-coil architecture, which is in principle conserved across all rotary ATPases. In context of the intact enzyme, the dynamics of the peripheral stalks provides a potential mechanism for cooperativity between distant parts of rotary ATPases. The peripheral stalks of rotary ATPases counteract torque generated by rotation of the central stalk during ATP synthesis or hydrolysis. Stewart et al. report the crystal structure of an A-type ATPase/synthase peripheral stalk and identify bending and twisting motions that permit the radial wobbling of the headgroup.
Collapse
Affiliation(s)
- Alastair G Stewart
- Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | | | | | | |
Collapse
|
32
|
Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation. Proc Natl Acad Sci U S A 2012; 109:947-52. [PMID: 22219361 DOI: 10.1073/pnas.1115796109] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP synthases are the primary source of ATP in all living cells. To catalyze ATP synthesis, these membrane-associated complexes use a rotary mechanism powered by the transmembrane diffusion of ions down a concentration gradient. ATP synthases are assumed to be driven either by H(+) or Na(+), reflecting distinct structural motifs in their membrane domains, and distinct metabolisms of the host organisms. Here, we study the methanogenic archaeon Methanosarcina acetivorans using assays of ATP hydrolysis and ion transport in inverted membrane vesicles, and experimentally demonstrate that the rotary mechanism of its ATP synthase is coupled to the concurrent translocation of both H(+) and Na(+) across the membrane under physiological conditions. Using free-energy molecular simulations, we explain this unprecedented observation in terms of the ion selectivity of the binding sites in the membrane rotor, which appears to have been tuned via amino acid substitutions so that ATP synthesis in M. acetivorans can be driven by the H(+) and Na(+) gradients resulting from methanogenesis. We propose that this promiscuity is a molecular mechanism of adaptation to life at the thermodynamic limit.
Collapse
|
33
|
Furuike S, Nakano M, Adachi K, Noji H, Kinosita K, Yokoyama K. Resolving stepping rotation in Thermus thermophilus H(+)-ATPase/synthase with an essentially drag-free probe. Nat Commun 2011; 2:233. [PMID: 21407199 PMCID: PMC3072102 DOI: 10.1038/ncomms1215] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 01/26/2011] [Indexed: 11/09/2022] Open
Abstract
Vacuole-type ATPases (VoV1) and FoF1 ATP synthases couple ATP hydrolysis/synthesis in the soluble V1 or F1 portion with proton (or Na+) flow in the membrane-embedded Vo or Fo portion through rotation of one common shaft. Here we show at submillisecond resolutions the ATP-driven rotation of isolated V1 and the whole VoV1 from Thermus thermophilus, by attaching a 40-nm gold bead for which viscous drag is almost negligible. V1 made 120° steps, commensurate with the presence of three catalytic sites. Dwells between the steps involved at least two events other than ATP binding, one likely to be ATP hydrolysis. VoV1 exhibited 12 dwell positions per revolution, consistent with the 12-fold symmetry of the Vo rotor in T. thermophilus. Unlike F1 that undergoes 80°–40° substepping, chemo-mechanical checkpoints in isolated V1 are all at the ATP-waiting position, and Vo adds further bumps through stator–rotor interactions outside and remote from V1. Rotary ATPases FoF1 and VoV1 couple ATP hydrolysis with proton flow. Furuike et al. observe ATP-driven rotation in V1 and VoV1, at submillisecond resolution, and find that rate-limiting reactions in V1 all occur at the same angle, and stator–rotor interactions in Vo introduce additional checkpoints.
Collapse
Affiliation(s)
- Shou Furuike
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Vma8p-GFP fusions can be functionally incorporated into V-ATPase, suggesting structural flexibility at the top of V1. Int J Mol Sci 2011; 12:4693-704. [PMID: 21845105 PMCID: PMC3155378 DOI: 10.3390/ijms12074693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/04/2011] [Accepted: 07/13/2011] [Indexed: 12/25/2022] Open
Abstract
The vacuolar ATPase (V-ATPase) complex of yeast (Saccharomyces cerevisiae) is comprised of two sectors, V(1) (catalytic) and V(O) (proton transfer). The hexameric (A(3)B(3)) cylinder of V(1) has a central cavity that must accommodate at least part of the rotary stalk of V-ATPase, a key component of which is subunit D (Vma8p). Recent electron microscopy (EM) data for the prokaryote V-ATPase complex (Thermus thermophilus) suggest that subunit D penetrates deeply into the central cavity. The functional counterpart of subunit D in mitochondrial F(1)F(O)-ATP synthase, subunit γ, occupies almost the entire length of the central cavity. To test whether the structure of yeast Vma8p mirrors that of subunit γ, we probed the location of the C-terminus of Vma8p by attachment of a large protein adduct, green fluorescent protein (GFP). We found that truncated Vma8p proteins lacking up to 40 C-terminal residues fused to GFP can be incorporated into functional V-ATPase complexes, and are able to support cell growth under alkaline conditions. We conclude that large protein adducts can be accommodated at the top of the central cavity of V(1) without compromising V-ATPase function, arguing for structural flexibility of the V(1) sector.
Collapse
|
35
|
Abstract
AbstractThe rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F1Fo-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H+-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A1Ao-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.
Collapse
|
36
|
Börsch M, Wrachtrup J. Improving FRET‐Based Monitoring of Single Chemomechanical Rotary Motors at Work. Chemphyschem 2011; 12:542-53. [DOI: 10.1002/cphc.201000702] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/12/2010] [Indexed: 11/07/2022]
Affiliation(s)
- Michael Börsch
- 3rd Institute of Physics and Stuttgart Research Center SCOPE, University of Stuttgart, Pfaffenwaldring 57, Fax: (+49) 711‐685‐65281
| | - Jörg Wrachtrup
- 3rd Institute of Physics and Stuttgart Research Center SCOPE, University of Stuttgart, Pfaffenwaldring 57, Fax: (+49) 711‐685‐65281
| |
Collapse
|
37
|
Kartner N, Yao Y, Li K, Crasto GJ, Datti A, Manolson MF. Inhibition of osteoclast bone resorption by disrupting vacuolar H+-ATPase a3-B2 subunit interaction. J Biol Chem 2010; 285:37476-90. [PMID: 20837476 DOI: 10.1074/jbc.m110.123281] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar H(+)-ATPases (V-ATPases) are highly expressed in ruffled borders of bone-resorbing osteoclasts, where they play a crucial role in skeletal remodeling. To discover protein-protein interactions with the a subunit in mammalian V-ATPases, a GAL4 activation domain fusion library was constructed from an in vitro osteoclast model, receptor activator of NF-κB ligand-differentiated RAW 264.7 cells. This library was screened with a bait construct consisting of a GAL4 binding domain fused to the N-terminal domain of V-ATPase a3 subunit (NTa3), the a subunit isoform that is highly expressed in osteoclasts (a1 and a2 are also expressed, to a lesser degree, whereas a4 is kidney-specific). One of the prey proteins identified was the V-ATPase B2 subunit, which is also highly expressed in osteoclasts (B1 is not expressed). Further characterization, using pulldown and solid-phase binding assays, revealed an interaction between NTa3 and the C-terminal domains of both B1 and B2 subunits. Dual B binding domains of equal affinity were observed in NTa, suggesting a possible model for interaction between these subunits in the V-ATPase complex. Furthermore, the a3-B2 interaction appeared to be moderately favored over a1, a2, and a4 interactions with B2, suggesting a mechanism for the specific subunit assembly of plasma membrane V-ATPase in osteoclasts. Solid-phase binding assays were subsequently used to screen a chemical library for inhibitors of the a3-B2 interaction. A small molecule benzohydrazide derivative was found to inhibit osteoclast resorption with an IC(50) of ∼1.2 μm on both synthetic hydroxyapatite surfaces and dentin slices, without significantly affecting RAW 264.7 cell viability or receptor activator of NF-κB ligand-mediated osteoclast differentiation. Further understanding of these interactions and inhibitors may contribute to the design of novel therapeutics for bone loss disorders, such as osteoporosis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Norbert Kartner
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6 Canada
| | | | | | | | | | | |
Collapse
|
38
|
van Niftrik L, van Helden M, Kirchen S, van Donselaar EG, Harhangi HR, Webb RI, Fuerst JA, Op den Camp HJM, Jetten MSM, Strous M. Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium 'Candidatus Kuenenia stuttgartiensis'. Mol Microbiol 2010; 77:701-15. [PMID: 20545867 PMCID: PMC2936114 DOI: 10.1111/j.1365-2958.2010.07242.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2010] [Indexed: 11/28/2022]
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria are divided into three compartments by bilayer membranes (from out- to inside): paryphoplasm, riboplasm and anammoxosome. It is proposed that the anammox reaction is performed by proteins located in the anammoxosome and on its membrane giving rise to a proton-motive-force and subsequent ATP synthesis by membrane-bound ATPases. To test this hypothesis, we investigated the location of membrane-bound ATPases in the anammox bacterium 'Candidatus Kuenenia stuttgartiensis'. Four ATPase gene clusters were identified in the K. stuttgartiensis genome: one typical F-ATPase, two atypical F-ATPases and a prokaryotic V-ATPase. K. stuttgartiensis transcriptomic and proteomic analysis and immunoblotting using antisera directed at catalytic subunits of the ATPase gene clusters indicated that only the typical F-ATPase gene cluster most likely encoded a functional ATPase under these cultivation conditions. Immunogold localization showed that the typical F-ATPase was predominantly located on both the outermost and anammoxosome membrane and to a lesser extent on the middle membrane. This is consistent with the anammox physiology model, and confirms the status of the outermost cell membrane as cytoplasmic membrane. The occurrence of ATPase in the anammoxosome membrane suggests that anammox bacteria have evolved a prokaryotic organelle; a membrane-bounded compartment with a specific cellular function: energy metabolism.
Collapse
Affiliation(s)
- Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
D'Amici GM, Rinalducci S, Murgiano L, Italiano F, Zolla L. Oligomeric characterization of the photosynthetic apparatus of Rhodobacter sphaeroides R26.1 by nondenaturing electrophoresis methods. J Proteome Res 2010; 9:192-203. [PMID: 19899738 DOI: 10.1021/pr9005052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blue and colorless native gel electrophoresis in combination with LC-ESI-MS/MS are powerful tools in the analysis of protein networks in biological membranes. We used these techniques in the present study to generate a comprehensive overview on a proteome-wide scale of intracytoplasmic membrane (ICM) associated proteins in order to investigate the native supramolecular organization of Rhodobacter sphaeroides R26.1 photosynthetic apparatus. The results obtained were compared with past proteomic data, as well as with models for the topology of photosynthetic membranes as derived from previously published atomic force microscopy studies. We identified 52 proteins organized in 10 different multiprotein complexes. We were able to demonstrate the existence of different oligomeric states for the integral membrane pigment-protein complexes dedicated to bacterial photosynthesis. Specifically, we found dimers and trimers, as well as supercomplexes of light-harvesting (LH) 2 at very high molecular weights (around 10,000 kDa). We recovered the monomeric form of the photochemical reaction center (RC), as well as the monomer and dimer of the reaction center-light harvesting 1-PufX (RC-LH1-PufX) complex. Curiously, no type of LH1 complex was detected. Lastly, ATP synthase and cytochrome bc(1) complexes were only recovered in their monomeric states. Purified ICM vesicles were shown to be rich in newly discovered gene products, including three proteins with unknown functions (RSP_2125, RSP_3238, RSP_6207), a possible alkane hydroxylase and a spheroidene monooxygenase. Other multiprotein complexes were found to be localized in the ICM, including succinate dehydrogenase in trimeric form and sarcosine oxidase in two different aggregation states. These findings contribute to the growing body of evidence that the bacterial ICM is a specialized bioenergetic membrane hosting, not only photosynthesis, but many other critical activities.
Collapse
|
40
|
Lee LK, Stewart AG, Donohoe M, Bernal RA, Stock D. The structure of the peripheral stalk of Thermus thermophilus H+-ATPase/synthase. Nat Struct Mol Biol 2010; 17:373-8. [PMID: 20173764 DOI: 10.1038/nsmb.1761] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/07/2009] [Indexed: 11/09/2022]
Abstract
Proton-translocating ATPases are ubiquitous protein complexes that couple ATP catalysis with proton translocation via a rotary catalytic mechanism. The peripheral stalks are essential components that counteract torque generated from proton translocation during ATP synthesis or from ATP hydrolysis during proton pumping. Despite their essential role, the peripheral stalks are the least conserved component of the complexes, differing substantially between subtypes in composition and stoichiometry. We have determined the crystal structure of the peripheral stalk of the A-type ATPase/synthase from Thermus thermophilus consisting of subunits E and G. The structure contains a heterodimeric right-handed coiled coil, a protein fold never observed before. We have fitted this structure into the 23 A resolution EM density of the intact A-ATPase complex, revealing the precise location of the peripheral stalk and new implications for the function and assembly of proton-translocating ATPases.
Collapse
Affiliation(s)
- Lawrence K Lee
- Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | | | | | | | | |
Collapse
|
41
|
Sun H, Luo X, Montalbano J, Jin W, Shi J, Sheikh MS, Huang Y. DOC45, a novel DNA damage-regulated nucleocytoplasmic ATPase that is overexpressed in multiple human malignancies. Mol Cancer Res 2010; 8:57-66. [PMID: 20053727 DOI: 10.1158/1541-7786.mcr-09-0278] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this article, we report the characterization of a novel DNA damage-regulated gene, named DNA damage-regulated overexpressed in cancer 45 (DOC45). Our results indicate that DNA damage-inducing agents, including doxorubicin (adriamycin), etoposide, and ionizing and UV radiation, strongly downregulate DOC45 expression, whereas endoplasmic reticulum stress-inducing agents do not. Our results also indicate that DOC45 is overexpressed in several human malignancies, including cancers of the colon, rectum, ovary, lung, stomach, and uterus. DOC45 harbors conserved nucleotide triphosphate-binding motifs and is capable of ATP hydrolysis, findings that highlight its function as a novel ATPase. Although predominantly cytoplasmic, DOC45 exhibits a characteristic nucleocytoplasmic distribution and, on inhibition of nuclear export, predominantly accumulates in the nucleoli. These results suggest that DOC45 may shuttle between nucleus and cytoplasm to carry out its function. Our results also indicate that DOC45 expression is enhanced during oncogenic Ras-mediated transformation and that its expression is linked to phosphoinositide 3-kinase signaling pathway. Furthermore, short hairpin RNA-mediated knockdown of DOC45 in human colon cancer cells inhibits their proliferation and enhances cellular sensitivity to doxorubicin-induced cell death, suggesting that DOC45 plays an important role in cell proliferation and survival. Collectively, our results indicate that DOC45 is a novel ATPase that is linked to cellular stress response and tumorigenesis, and may also serve as a valuable tumor marker.
Collapse
Affiliation(s)
- Hong Sun
- Department of Pharmacology, State University of New York, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Menche D, Hassfeld J, Li J, Mayer K, Rudolph S. Modular Total Synthesis of Archazolid A and B. J Org Chem 2009; 74:7220-9. [DOI: 10.1021/jo901565n] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dirk Menche
- Institut für Organische Chemie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg
- Helmholtz-Zentrum für Infektionsforschung, Medizinische Chemie, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Jorma Hassfeld
- Helmholtz-Zentrum für Infektionsforschung, Medizinische Chemie, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Jun Li
- Helmholtz-Zentrum für Infektionsforschung, Medizinische Chemie, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Kerstin Mayer
- Institut für Organische Chemie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg
| | - Sven Rudolph
- Helmholtz-Zentrum für Infektionsforschung, Medizinische Chemie, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| |
Collapse
|
43
|
Woodberry MW, Aguilera-Aguirre L, Bacsi A, Chopra AK, Kurosky A, Peterson JW, Boldogh I. ATP Depletion Via Mitochondrial F1F0 Complex by Lethal Factor is an Early Event in B. Anthracis-Induced Sudden Cell Death. J Cell Death 2009; 2:25-39. [PMID: 26124678 PMCID: PMC4474334 DOI: 10.4137/jcd.s2811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacillus anthracis’ primary virulence factor is a tripartite anthrax toxin consisting of edema factor (EF), lethal factor (LF) and protective antigen (PA). In complex with PA, EF and LF are internalized via receptor-mediated endocytosis. EF is a calmodulin-dependent adenylate cyclase that induces tissue edema. LF is a zinc-metalloprotease that cleaves members of mitogen-activated protein kinase kinases. Lethal toxin (LT: PA plus LF)-induced death of macrophages is primarily attributed to expression of the sensitive Nalp1b allele, inflammasome formation and activation of caspase-1, but early events that initiate these processes are unknown. Here we provide evidence that an early essential event in pyroptosis of alveolar macrophages is LF-mediated depletion of cellular ATP. The underlying mechanism involves interaction of LF with F1F0-complex gamma and beta subunits leading to increased ATPase activity in mitochondria. In support, mitochondrial DNA-depleted MH-S cells have decreased F1F0 ATPase activity due to the lack of F06 and F08 polypeptides and show increased resistance to LT. We conclude that ATP depletion is an important early event in LT-induced sudden cell death and its prevention increases survival of toxin-sensitive cells.
Collapse
Affiliation(s)
- Mitchell W Woodberry
- Medical Service Corps, Diagnostic System Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702
| | - Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Attila Bacsi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Alexander Kurosky
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Johnny W Peterson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 77555
| |
Collapse
|
44
|
Vonck J, Pisa KY, Morgner N, Brutschy B, Müller V. Three-dimensional structure of A1A0 ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus by electron microscopy. J Biol Chem 2009; 284:10110-9. [PMID: 19203996 PMCID: PMC2665065 DOI: 10.1074/jbc.m808498200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/09/2009] [Indexed: 11/06/2022] Open
Abstract
The archaeal ATP synthase is a multisubunit complex that consists of a catalytic A(1) part and a transmembrane, ion translocation domain A(0). The A(1)A(0) complex from the hyperthermophile Pyrococcus furiosus was isolated. Mass analysis of the complex by laser-induced liquid bead ion desorption (LILBID) indicated a size of 730 +/- 10 kDa. A three-dimensional map was generated by electron microscopy from negatively stained images. The map at a resolution of 2.3 nm shows the A(1) and A(0) domain, connected by a central stalk and two peripheral stalks, one of which is connected to A(0), and both connected to A(1) via prominent knobs. X-ray structures of subunits from related proteins were fitted to the map. On the basis of the fitting and the LILBID analysis, a structural model is presented with the stoichiometry A(3)B(3)CDE(2)FH(2)ac(10).
Collapse
Affiliation(s)
- Janet Vonck
- Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
45
|
Seidel T, Schnitzer D, Golldack D, Sauer M, Dietz KJ. Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis. BMC Cell Biol 2008; 9:28. [PMID: 18507826 PMCID: PMC2424043 DOI: 10.1186/1471-2121-9-28] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 05/28/2008] [Indexed: 11/10/2022] Open
Abstract
Background The V-ATPase (VHA) is a protein complex of 13 different VHA-subunits. It functions as an ATP driven rotary-motor that electrogenically translocates H+ into endomembrane compartments. In Arabidopsis thaliana V-ATPase is encoded by 23 genes posing the question of specific versus redundant function of multigene encoded isoforms. Results The transmembrane topology and stoichiometry of the proteolipid VHA-c" as well as the stoichiometry of the membrane integral subunit VHA-e within the V-ATPase complex were investigated by in vivo fluorescence resonance energy transfer (FRET). VHA-c", VHA-e1 and VHA-e2, VHA-a, VHA-c3, truncated variants of VHA-c3 and a chimeric VHA-c/VHA-c" hybrid were fused to cyan (CFP) and yellow fluorescent protein (YFP), respectively. The constructs were employed for transfection experiments with Arabidopsis thaliana mesophyll protoplasts. Subcellular localization and FRET analysis by confocal laser scanning microscopy (CLSM) demonstrated that (i.) the N- and C-termini of VHA-c" are localised in the vacuolar lumen, (ii.) one copy of VHA-c" is present within the VHA-complex, and (iii.) VHA-c" is localised at the ER and associated Golgi bodies. (iv.) A similar localisation was observed for VHA-e2, whereas (v.) the subcellular localisation of VHA-e1 indicated the trans Golgi network (TGN)-specifity of this subunit. Conclusion The plant proteolipid ring is a highly flexible protein subcomplex, tolerating the incorporation of truncated and hybrid proteolipid subunits, respectively. Whereas the membrane integral subunit VHA-e is present in two copies within the complex, the proteolipid subunit VHA-c" takes part in complex formation with only one copy. However, neither VHA-c" isoform 1 nor any of the two VHA-e isoforms were identified at the tonoplast. This suggest a function in endomembrane specific VHA-assembly or targeting rather than proton transport.
Collapse
Affiliation(s)
- Thorsten Seidel
- Department of Biochemistry and Physiology of Plants, W5, University of Bielefeld, 33501 Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
46
|
Fritz M, Klyszejko AL, Morgner N, Vonck J, Brutschy B, Muller DJ, Meier T, Müller V. An intermediate step in the evolution of ATPases - a hybrid F0-V0 rotor in a bacterial Na+ F1F0 ATP synthase. FEBS J 2008; 275:1999-2007. [DOI: 10.1111/j.1742-4658.2008.06354.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Esteban O, Bernal RA, Donohoe M, Videler H, Sharon M, Robinson CV, Stock D. Stoichiometry and localization of the stator subunits E and G in Thermus thermophilus H+-ATPase/synthase. J Biol Chem 2007; 283:2595-603. [PMID: 18055467 DOI: 10.1074/jbc.m704941200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proton-translocating ATPases are central to biological energy conversion. Although eukaryotes contain specialized F-ATPases for ATP synthesis and V-ATPases for proton pumping, eubacteria and archaea typically contain only one enzyme for both tasks. Although many eubacteria contain ATPases of the F-type, some eubacteria and all known archaea contain ATPases of the A-type. A-ATPases are closely related to V-ATPases but simpler in design. Although the nucleotide-binding and transmembrane rotor subunits share sequence homology between A-, V-, and F-ATPases, the peripheral stalk is strikingly different in sequence, composition, and stoichiometry. We have analyzed the peripheral stalk of Thermus thermophilus A-ATPase by using phage display-derived single-domain antibody fragments in combination with electron microscopy and tandem mass spectrometry. Our data provide the first direct evidence for the existence of two peripheral stalks in the A-ATPase, each one composed of heterodimers of subunits E and G arranged symmetrically around the soluble A(1) domain. To our knowledge, this is the first description of phage display-derived antibody selection against a multi-subunit membrane protein used for purification and single particle analysis by electron microscopy. It is also the first instance of the derivation of subunit stoichiometry by tandem mass spectrometry to an intact membrane protein complex. Both approaches could be applicable to the structural analysis of other membrane protein complexes.
Collapse
Affiliation(s)
- Olga Esteban
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
48
|
Paunescu TG, Russo LM, Da Silva N, Kovacikova J, Mohebbi N, Van Hoek AN, McKee M, Wagner CA, Breton S, Brown D. Compensatory membrane expression of the V-ATPase B2 subunit isoform in renal medullary intercalated cells of B1-deficient mice. Am J Physiol Renal Physiol 2007; 293:F1915-26. [PMID: 17898041 DOI: 10.1152/ajprenal.00160.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mice deficient in the ATP6V1B1 ("B1") subunit of the vacuolar proton-pumping ATPase (V-ATPase) maintain body acid-base homeostasis under normal conditions, but not when exposed to an acid load. Here, compensatory mechanisms involving the alternate ATP6V1B2 ("B2") isoform were examined to explain the persistence of baseline pH regulation in these animals. By immunocytochemistry, the mean pixel intensity of apical B2 immunostaining in medullary A intercalated cells (A-ICs) was twofold greater in B1-/- mice than in B1+/+ animals, and B2 was colocalized with other V-ATPase subunits. No significant upregulation of B2 mRNA or protein expression was detected in B1-/- mice compared with wild-type controls. We conclude that increased apical B2 staining is due to relocalization of B2-containing V-ATPase complexes from the cytosol to the plasma membrane. Recycling of B2-containing holoenzymes between these domains was confirmed by the intracellular accumulation of B1-deficient V-ATPases in response to the microtubule-disrupting drug colchicine. V-ATPase membrane expression is further supported by the presence of "rod-shaped" intramembranous particles seen by freeze fracture microscopy in apical membranes of normal and B1-deficient A-ICs. Intracellular pH recovery assays show that significant (28-40% of normal) V-ATPase function is preserved in medullary ICs from B1-/- mice. We conclude that the activity of apical B2-containing V-ATPase holoenzymes in A-ICs is sufficient to maintain baseline acid-base homeostasis in B1-deficient mice. However, our results show no increase in cell surface V-ATPase activity in response to metabolic acidosis in ICs from these animals, consistent with their inability to appropriately acidify their urine under these conditions.
Collapse
Affiliation(s)
- Teodor G Paunescu
- Div. of Nephrology, Massachusetts General Hospital, 185 Cambridge St., CPZN 8150, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rizzo JM, Tarsio M, Martínez-Muñoz GA, Kane PM. Diploids heterozygous for a vma13Delta mutation in Saccharomyces cerevisiae highlight the importance of V-ATPase subunit balance in supporting vacuolar acidification and silencing cytosolic V1-ATPase activity. J Biol Chem 2007; 282:8521-32. [PMID: 17234635 DOI: 10.1074/jbc.m607092200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The V-ATPase H subunit (encoded by the VMA13 gene) activates ATP-driven proton pumping in intact V-ATPase complexes and inhibits MgATPase activity in cytosolic V1 sectors (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767). Yeast diploids heterozygous for a vma13Delta mutation show the pH- and calcium-dependent conditional lethality characteristic of mutants lacking V-ATPase activity, although they still contain one wild-type copy of VMA13. Vacuolar vesicles from this strain have approximately 50% of the ATPase activity of those from a wild-type diploid but do not support formation of a proton gradient. Compound heterozygotes with a second heterozygous deletion in another V1 subunit gene exhibit improved growth, vacuolar acidification, and ATP-driven proton transport in vacuolar vesicles. In contrast, compound heterozygotes with a second deletion in a Vo subunit grow even more poorly than the vma13Delta heterozygote, have very little vacuolar acidification, and have very low levels of V-ATPase subunits in isolated vacuoles. In addition, cytosolic V1 sectors from this strain and from the strain containing only the heterozygous vma13Delta mutation have elevated MgATPase activity. The results suggest that balancing levels of subunit H with those of other V-ATPase subunits is critical, both for allowing organelle acidification and for preventing unproductive hydrolysis of cytosolic ATP.
Collapse
Affiliation(s)
- Jason M Rizzo
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
50
|
Burghardt T, Näther DJ, Junglas B, Huber H, Rachel R. The dominating outer membrane protein of the hyperthermophilic Archaeum Ignicoccus hospitalis: a novel pore-forming complex. Mol Microbiol 2006; 63:166-76. [PMID: 17163971 DOI: 10.1111/j.1365-2958.2006.05509.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The membrane protein Imp1227 (Ignicoccus outer membrane protein; Imp1227) is the main protein constituent of the unique outer sheath of the hyperthermophilic, chemolithoautotrophic Archaeum Ignicoccus hospitalis. This outer sheath is the so far only known example for an asymmetric bilayer among the Archaea and is named 'outer membrane'. With its molecular mass of only 6.23 kDa, Imp1227 is found to be incorporated into the outer membrane in form of large, stable complexes. When separated by SDS-PAGE, they exhibit apparent masses of about 150, 50, 45 and 35 kDa. Dissociation into the monomeric form is achieved by treatment with SDS-containing solutions at temperatures at or above 113 degrees C. Electron micrographs of negatively stained samples confirm that isolated membranes are tightly packed with round complexes, about 7 nm in diameter, with a central, stain-filled 2 nm pore; a local two-dimensional crystalline arrangement in form of small patches can be detected by tomographic reconstruction. The comparison of the nucleotide and amino acid sequence of Imp1227 with public databases showed no reliable similarities with known proteins. Using secondary structure prediction and molecular modelling, an alpha-helical transmembrane domain is proposed; for the oligomer, a ring-shaped nonamer with a central 2 nm pore is a likely arrangement.
Collapse
Affiliation(s)
- Tillmann Burghardt
- Department of Microbiology and Centre for Electron Microscopy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|