1
|
Medler S. Mixing it up: the biological significance of hybrid skeletal muscle fibers. ACTA ACUST UNITED AC 2019; 222:222/23/jeb200832. [PMID: 31784473 DOI: 10.1242/jeb.200832] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibers are classified according to the myosin heavy chain (MHC) isoforms and other myofibrillar proteins expressed within these cells. In addition to 'pure' fibers expressing single MHC isoforms, many fibers are 'hybrids' that co-express two or more different isoforms of MHC or other myofibrillar proteins. Although hybrid fibers have been recognized by muscle biologists for more than three decades, uncertainty persists about their prevalence in normal muscles, their role in fiber-type transitions, and what they might tell us about fiber-type regulation at the cellular and molecular levels. This Review summarizes current knowledge on the relative abundance of hybrid fibers in a variety of muscles from different species. Data from more than 150 muscles from 39 species demonstrate that hybrid fibers are common, frequently representing 25% or more of the fibers in normal muscles. Hybrid fibers appear to have two main roles: (1) they function as intermediates during the fiber-type transitions associated with skeletal muscle development, adaptation to exercise and aging; and (2) they provide a functional continuum of fiber phenotypes, as they possess physiological properties that are intermediate to those of pure fiber types. One aspect of hybrid fibers that is not widely recognized is that fiber-type asymmetries - such as dramatic differences in the MHC composition along the length of single fibers - appear to be a common aspect of many fibers. The final section of this Review examines the possible role of differential activities of nuclei in different myonuclear domains in establishing fiber-type asymmetries.
Collapse
Affiliation(s)
- Scott Medler
- Biology Department, State University of New York at Fredonia, Fredonia, NY 14063, USA
| |
Collapse
|
2
|
Zhang MY, Zhang WJ, Medler S. The continuum of hybrid IIX/IIB fibers in normal mouse muscles: MHC isoform proportions and spatial distribution within single fibers. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1582-91. [PMID: 20861278 DOI: 10.1152/ajpregu.00402.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although skeletal muscle fiber types are often defined as belonging to discrete categories, many muscles possess fibers with intermediate phenotypes. These hybrid fiber types can be identified by their expression of two or more myosin heavy chain (MHC) isoforms within the same single fiber. In mouse muscles, the most common hybrid fibers are those coexpressing the IIX and IIB MHC isoforms. In the present study, we focused on these IIX/IIB fibers from normal mouse muscles to determine the relative proportions of MHC isoforms at both the protein and mRNA levels and to examine the longitudinal distribution of isoforms within single fibers. We found that IIX/IIB hybrids represent ∼25 and 50% of the fibers in the mouse tibialis anterior and brachioradialis, respectively. The relative proportion of the IIX and IIB isoforms in these fibers spans a continuum, from predominantly IIB-like hybrids to IIX-like hybrids. Quantitative assessment of mRNA levels using real-time PCR from single fibers indicated that IIB expression dominated over IIX expression in most fibers and that a general correlation existed between mRNA isoform levels and MHC protein content. However, the match between mRNA levels and protein content was not precise. Finally, we measured MHC isoform proportions in adjacent fiber segments and discovered that ∼30% of hybrids possessed significant differences in isoform content along their length. In some instances, the muscle fiber type as defined by MHC content changed completely along the length of a fiber. This pattern of asymmetrical MHC isoform content along the length of single fibers suggests that the multiple myonuclei of a muscle fiber may express distinct myofibrillar isoforms in an uncoordinated fashion.
Collapse
Affiliation(s)
- Min Yi Zhang
- Dept. of Biological Sciences, Univ. at Buffalo, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
3
|
Chandra M, Mamidi R, Ford S, Hidalgo C, Witt C, Ottenheijm C, Labeit S, Granzier H. Nebulin alters cross-bridge cycling kinetics and increases thin filament activation: a novel mechanism for increasing tension and reducing tension cost. J Biol Chem 2009; 284:30889-96. [PMID: 19736309 PMCID: PMC2781488 DOI: 10.1074/jbc.m109.049718] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/01/2009] [Indexed: 11/06/2022] Open
Abstract
Nebulin is a giant filamentous F-actin-binding protein ( approximately 800 kDa) that binds along the thin filament of the skeletal muscle sarcomere. Nebulin is one of the least well understood major muscle proteins. Although nebulin is usually viewed as a structural protein, here we investigated whether nebulin plays a role in muscle contraction by using skinned muscle fiber bundles from a nebulin knock-out (NEB KO) mouse model. We measured force-pCa (-log[Ca(2+)]) and force-ATPase relations, as well as the rate of tension re-development (k(tr)) in tibialis cranialis muscle fibers. To rule out any alterations in troponin (Tn) isoform expression and/or status of Tn phosphorylation, we studied fiber bundles that had been reconstituted with bacterially expressed fast skeletal muscle recombinant Tn. We also performed a detailed analysis of myosin heavy chain, myosin light chain, and myosin light chain 2 phosphorylation, which showed no significant differences between wild type and NEB KO. Our mechanical studies revealed that NEB KO fibers had increased tension cost (5.9 versus 4.4 pmol millinewtons(-1) mm(-1) s(-1)) and reductions in k(tr) (4.7 versus 7.3 s(-1)), calcium sensitivity (pCa(50) 5.74 versus 5.90), and cooperativity of activation (n(H) 3.64 versus 4.38). Our findings indicate the following: 1) in skeletal muscle nebulin increases thin filament activation, and 2) through altering cross-bridge cycling kinetics, nebulin increases force and efficiency of contraction. These novel properties of nebulin add a new level of understanding of skeletal muscle function and provide a mechanism for the severe muscle weakness in patients with nebulin-based nemaline myopathy.
Collapse
Affiliation(s)
- Murali Chandra
- the Department of VCAPP, Washington State University, Pullman, Washington 99163, and
| | - Ranganath Mamidi
- the Department of VCAPP, Washington State University, Pullman, Washington 99163, and
| | - Steven Ford
- the Department of VCAPP, Washington State University, Pullman, Washington 99163, and
| | - Carlos Hidalgo
- From the Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona 85724-5217
| | - Christian Witt
- Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Coen Ottenheijm
- From the Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona 85724-5217
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Henk Granzier
- From the Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona 85724-5217
| |
Collapse
|
4
|
Glaser BW, You G, Zhang M, Medler S. Relative proportions of hybrid fibres are unaffected by 6 weeks of running exercise in mouse skeletal muscles. Exp Physiol 2009; 95:211-21. [DOI: 10.1113/expphysiol.2009.049023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Donato ME, Schiavi J, Ulerich AD, Weaver FE, Coughlin DJ. Myosin regulatory light chain expression in trout muscle. ACTA ACUST UNITED AC 2008; 309:64-72. [DOI: 10.1002/jez.433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Interspecific differences in molecular weights of skeletal myosin, actin, troponin C and tropomyosin in the frogs Hyla japonica and Xenopus tropicalis. Biologia (Bratisl) 2007. [DOI: 10.2478/s11756-007-0136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Volz LM, Mann LB, Russell JA, Jackson MA, Leverson GE, Connor NP. Biochemistry of anterior, medial, and posterior genioglossus muscle in the rat. Dysphagia 2007; 22:210-4. [PMID: 17458585 DOI: 10.1007/s00455-006-9075-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 11/27/2006] [Indexed: 12/01/2022]
Abstract
The tongue plays a vital role in swallowing actions. However, tongue muscles have been understudied, and it is unclear if tongue muscles are homogeneous with respect to muscle fiber-type distribution. We examined myosin heavy chain (MHC) composition of anterior, medial, and posterior sections of the genioglossus muscle (GG) using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in ten adult (9 months old) male Fischer 344/Brown Norway hybrid rats. We found that Type IIx MHC predominated in the anterior, medial, and posterior regions of the GG muscle (p=0.002), followed by IIa, then IIb. The anterior GG contained a significantly greater (p=0.004) proportion of Type IIa than did the medial or posterior regions, while the posterior GG contained a significantly greater (p=0.002) proportion of Type IIb MHC than did the medial or anterior GG. Accordingly, we found variable expression of MHC isoforms across anterior, medial, and posterior portions of the GG muscle, with more fast-contracting isoforms found posteriorly. Because motor control of the tongue requires precise and rapid movements for bolus manipulation and airway protection, variable expression of MHC isoforms along the anteroposterior axis of the GG muscle may be required to efficiently achieve deglutition and maintenance of airway patency.
Collapse
Affiliation(s)
- Lana M Volz
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792-7375, USA
| | | | | | | | | | | |
Collapse
|
8
|
Andruchova O, Stephenson GMM, Andruchov O, Stephenson DG, Galler S. Myosin heavy chain isoform composition and stretch activation kinetics in single fibres of Xenopus laevis iliofibularis muscle. J Physiol 2006; 574:307-17. [PMID: 16644798 PMCID: PMC1817808 DOI: 10.1113/jphysiol.2006.109926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Skeletal muscle is composed of specialized fibre types that enable it to fulfil complex and variable functional needs. Muscle fibres of Xenopus laevis, a frog formerly classified as a toad, were the first to be typed based on a combination of physiological, morphological, histochemical and biochemical characteristics. Currently the most widely accepted criterion for muscle fibre typing is the myosin heavy chain (MHC) isoform composition because it is assumed that variations of this protein are the most important contributors to functional diversity. Yet this criterion has not been used for classification of Xenopus fibres due to the lack of an effective protocol for MHC isoform analysis. In the present study we aimed to resolve and visualize electrophoretically the MHC isoforms expressed in the iliofibularis muscle of Xenopus laevis, to define their functional identity and to classify the fibres based on their MHC isoform composition. Using a SDS-PAGE protocol that proved successful with mammalian muscle MHC isoforms, we were able to detect five MHC isoforms in Xenopus iliofibularis muscle. The kinetics of stretch-induced force transients (stretch activation) produced by a fibre was strongly correlated with its MHC isoform content indicating that the five MHC isoforms confer different kinetics characteristics. Hybrid fibre types containing two MHC isoforms exhibited stretch activation kinetics parameters that were intermediate between those of the corresponding pure fibre types. These results clearly show that the MHC isoforms expressed in Xenopus muscle are functionally different thereby validating the idea that MHC isoform composition is the most reliable criterion for vertebrate skeletal muscle fibre type classification. Thus, our results lay the foundation for the unequivocal classification of the muscle fibres in the Xenopus iliofibularis muscle and for gaining further insights into skeletal muscle fibre diversity.
Collapse
Affiliation(s)
- Olena Andruchova
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | | | | | | | |
Collapse
|
9
|
Hamade A, Deries M, Begemann G, Bally-Cuif L, Genêt C, Sabatier F, Bonnieu A, Cousin X. Retinoic acid activates myogenesis in vivo through Fgf8 signalling. Dev Biol 2006; 289:127-40. [PMID: 16316642 DOI: 10.1016/j.ydbio.2005.10.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 09/13/2005] [Accepted: 10/21/2005] [Indexed: 11/21/2022]
Abstract
Retinoic acid (RA) has been shown to regulate muscle differentiation in vitro. Here, we have investigated the role of RA signalling during embryonic myogenesis in zebrafish. We have altered RA signalling from gastrulation stages onwards by either inhibiting endogenous RA synthesis using an inhibitor of retinaldehyde dehydrogenases (DEAB) or by addition of exogenous RA. DEAB reduces expression of the myogenic markers myoD and myogenin in somites, whereas RA induces increased expression of these genes and strongly induces premature myoD expression in the presomitic mesoderm (psm). The expression dynamics of myf5 in presomitic and somitic mesoderm suggest that RA promotes muscle differentiation, a role supported by the fact that RA activates expression of fast myosin, while DEAB represses it. We identify Fgf8 as a major relay factor in RA-mediated activation of myogenesis. We show that fgf8 expression in somites and anterior psm is regulated by RA, and find that in the absence of Fgf8 signalling in the acerebellar mutant RA fails to promote myoD expression. We propose that, in the developing embryo, localised synthesis of RA by Raldh2 in the anterior psm and in somites activates fgf8 expression which in turn induces the expression of myogenic genes and fast muscle differentiation.
Collapse
Affiliation(s)
- Aline Hamade
- UMR866 Différenciation Cellulaire et Croissance, INRA, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Medler S, Brown KJ, Chang ES, Mykles DL. Eyestalk ablation has little effect on actin and myosin heavy chain gene expression in adult lobster skeletal muscles. THE BIOLOGICAL BULLETIN 2005; 208:127-137. [PMID: 15837962 DOI: 10.2307/3593121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The organization of skeletal muscles in decapod crustaceans is significantly altered during molting and development. Prior to molting, the claw muscles atrophy dramatically, facilitating their removal from the base of the claw. During development, lobster claw muscles exhibit fiber switching over several molt cycles. Such processes may be influenced by the secretion of steroid molting hormones, known collectively as ecdysteroids. To assay the effects of these hormones, we used eyestalk ablation to trigger an elevation of circulating ecdysteroids and then quantified myofibrillar mRNA levels with real-time PCR and myofibrillar protein levels by SDS-PAGE. Levels of myosin heavy chain (MHC) and actin proteins and the mRNA encoding them were largely unaffected by eyestalk ablation, but in muscles from intact animals, myofibrillar gene expression was modestly elevated in premolt and postmolt animals. In contrast, polyubiquitin mRNA was significantly elevated (about 2-fold) in claw muscles from eyestalk-ablated animals with elevated circulating ecdysteroids. Moreover, patterns of MHC and actin gene expression are significantly different among slow and fast claw muscles. Consistent with these patterns, the three muscle types differed in the relative amounts of myosin heavy chain and actin proteins. All three muscles also co-expressed fast and slow myosin isoforms, even in fibers that are generally regarded as exclusively fast or slow. These results are consistent with other recent data demonstrating co-expression of myosin isoforms in lobster muscles.
Collapse
Affiliation(s)
- Scott Medler
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
11
|
Robinson DA, Bremner SN, Sethi K, Shah SB, Sirsi SR, Lutz GJ. In vivo expression of myosin essential light chain using plasmid expression vectors in regenerating frog skeletal muscle. Gene Ther 2004; 12:347-57. [PMID: 15538392 DOI: 10.1038/sj.gt.3302411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well established that mutations in specific structural elements of the motor protein myosin are directly linked to debilitating diseases involving malfunctioning striated muscle cells. A potential way to study the relationship between myosin structure and function is to express exogenous myosin in vivo and determine contractile properties of the transgenic muscle cells. However, in vivo expression of functional levels of contractile proteins using transient transgenesis in skeletal muscle has not been demonstrated. Presently, we used in vivo gene transfer to express high levels of full-length myosin light chain (MLC) in skeletal muscle fibers of Rana pipiens. Anterior tibialis (AT) muscles were injected with cardiotoxin to cause degeneration and then injected at various stages of regeneration with plasmid expression vectors encoding full-length MLC1(f). In fibers from the most robustly transfected muscles 3 weeks after plasmid injections, trans-MLC1(f) expression averaged 22-43% of the endogenous MLC1(f). Trans-MLC1(f) expression was the same whether a small epitope tag was placed on the C- or N-terminus and was highly variable along individual fibers. Confocal microscopy of skinned fibers showed correct sarcomeric incorporation of trans-MLC1(f). The expression profile of myosin heavy chain isoforms 21 days after transfection was similar to normal AT muscle. These data demonstrate the feasibility of using in vivo gene transfer to probe the structural basis of contractile protein function in skeletal muscle. Based on these promising results, we discuss how further improvements in the level and consistency of myosin transgene expression may be achieved in future studies, and the therapeutic potential of plasmid gene transfer in regenerating muscle.
Collapse
Affiliation(s)
- D A Robinson
- University of California San Diego and Veterans Affairs Medical Center, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
12
|
Medler S, Lilley T, Mykles DL. Fiber polymorphism in skeletal muscles of the American lobster, Homarus americanus: continuum between slow-twitch (S1) and slow-tonic (S2) fibers. ACTA ACUST UNITED AC 2004; 207:2755-67. [PMID: 15235004 DOI: 10.1242/jeb.01094] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In recent years, an increasing number of studies has reported the existence of single fibers expressing more than one myosin heavy chain (MHC) isoform at the level of fiber proteins and/or mRNA. These mixed phenotype fibers, often termed hybrid fibers, are currently being recognized as the predominant fiber type in many muscles, and the implications of these findings are currently a topic of great interest. In a recent study, we reported single fibers from the cutter claw closer muscle of lobsters that demonstrated a gradation between the slow-twitch (S1) and slow-tonic (S2) muscle phenotype. In the present study, we focused on S1 and S2 fibers from the superficial abdominal muscles of the lobster as a model to study the continuum among muscle fiber types. Complementary DNAs (cDNA) encoding an S2 isoform of myosin heavy chain (MHC) and an S2 isoform of tropomyosin (Tm) were isolated from the superficial abdominal flexor muscles of adult lobsters. These identified sequences were used to design PCR primers used in conjunction with RT-PCR and real-time PCR to measure expression levels of these genes in small muscle samples and single fibers. The relative expression of the corresponding S1 MHC and S1 Tm isoforms was measured in the same samples with PCR primers designed according to previously identified sequences. In addition, we measured the relative proportions of MHC, troponin (Tn) T and I protein isoforms present in the same samples to examine the correlation of these proteins with one another and with the MHC and Tm mRNAs. These analyses revealed significant correlations among the different myofibrillar proteins, with the S1 and S2 fibers being characterized by a whole assemblage of myofibrillar isoforms. However, they also showed that small muscle samples, and more importantly single fibers, existed as a continuum from one phenotype to another. Most fibers possessed mixtures of mRNA for MHC isoforms that were unexpected based on protein analysis. These findings illustrate that muscle fibers in general may possess a phenotype that is intermediate between the extremes of 'pure' fiber types, not only at the MHC level but also in terms of whole myofibrillar assemblages. This study supports and extends our recent observations of mixed phenotype fibers in lobster claw and leg muscles. The existence of single fiber polymorphism in an invertebrate species underscores the generality of the phenomenon in skeletal muscles and emphasizes the need for an understanding of the proximal causes and physiological consequences of these intermediate fiber types.
Collapse
Affiliation(s)
- Scott Medler
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
13
|
Patel TJ, Das R, Fridén J, Lutz GJ, Lieber RL. Sarcomere strain and heterogeneity correlate with injury to frog skeletal muscle fiber bundles. J Appl Physiol (1985) 2004; 97:1803-13. [PMID: 15208284 DOI: 10.1152/japplphysiol.00505.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sarcomere length and first-order diffraction line width were measured by laser diffraction during elongation of activated frog tibialis anterior muscle fiber bundles (i.e., eccentric contraction) at nominal fiber strains of 10, 25, or 35% (n = 18) for 10 successive contractions. Tetanic tension, measured just before each eccentric contraction, differed significantly among strain groups and changed dramatically during the 10-contraction treatment (P < 0.01). Average maximum tetanic tension for the three groups measured before any treatment was 203.7 +/- 6.8 kN/m2, but after the 10-eccentric contraction sequence decreased to 180.3 +/- 3.8, 125.1 +/- 7.8, and 78.3 +/- 5.1 kN/m2 for the 10, 25, and 35% strain groups, respectively (P < 0.0001). Addition of 10 mM caffeine to the bathing medium decreased the loss of tetanic tension in the 10% strain group but had only a minimal effect on either the 25 or 35% strain groups. Diffraction pattern line width, a measure of sarcomere length heterogeneity, increased significantly with muscle activation and then continued to increase with successive stretches of the activated muscle. Line width increase after each stretch was significantly correlated with the lower yield tension of the successive contractile record. These data demonstrate a direct association and, perhaps, a causal relationship between sarcomere strain and fiber bundle injury. They also demonstrate that muscle injury is accompanied by a progressive increase in sarcomere length heterogeneity, yielding lower yield tension as injury progresses.
Collapse
Affiliation(s)
- Tina J Patel
- Department of Orthopaedics & Bioengineering, University of California and Veterans Affairs Medical Centers, San Diego, California 92161, USA
| | | | | | | | | |
Collapse
|
14
|
Medler S, Mykles DL. Analysis of myofibrillar proteins and transcripts in adult skeletal muscles of the American lobster Homarus americanus: variable expression of myosins, actin and troponins in fast, slow-twitch and slow-tonic fibres. J Exp Biol 2003; 206:3557-67. [PMID: 12966047 DOI: 10.1242/jeb.00587] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skeletal muscles are diverse in their contractile properties, with many of these differences being directly related to the assemblages of myofibrillar isoforms characteristic of different fibers. Crustacean muscles are similar to other muscles in this respect, although the majority of information about differences in muscle organization comes from vertebrate species. In the present study, we examined the correlation between myofibrillar protein isoforms and the patterns of myofibrillar gene expression in fast, slow-phasic (S(1)) and slow-tonic (S(2)) fibers of the American lobster Homarus americanus. SDS-PAGE and western blotting were used to identify isoform assemblages of myosin heavy chain (MHC), P75, troponin T (TnT) and troponin I (TnI). RT-PCR was used to monitor expression of fast and slow (S(1)) MHC, P75 and actin in different fiber types, and the MHC and actin levels were quantified by real-time PCR. Fast and slow fibers from the claw closers predominantly expressed fast and S(1) MHC, respectively, but also lower levels of the alternate MHC. By contrast, fast fibers from the deep abdominal muscle expressed fast MHC exclusively. In addition, slow muscles expressed significantly higher levels of actin than fast fibers. A distal bundle of fibers in the cutter claw closer muscle was found to be composed of a mixture of S(1) and S(2) fibers, many of which possessed a mixture of S(1) and S(2) MHC isoforms. This pattern supports the idea that S(1) and S(2) fibers represent extremes in a continuum of slow muscle phenotype. Overall, these patterns demonstrate that crustacean skeletal muscles cannot be strictly categorized into discrete fiber types, but a muscle's properties probably represent a point on a continuum of fiber types. This trend may result from differences in innervation pattern, as each muscle is controlled by a unique combination of phasic, tonic or both phasic and tonic motor nerves. In this respect, future studies examining how muscle phenotype correlates with innervation pattern may help account for variation in crustacean fiber types.
Collapse
Affiliation(s)
- Scott Medler
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
15
|
Abstract
Myosin, the motor protein in skeletal muscle, is composed of two subunits, myosin heavy chain and myosin light chain. All vertebrates express a family of myosin heavy chain and myosin light chain isoforms that together are primary determinants of force, velocity, and power in muscle fibers. Therefore, appropriate expression of myosin isoforms in skeletal muscle is critical to proper motor function. Myosin isoform expression is highly plastic and undergoes significant changes in response to muscular injury, muscle disuse, and disease. Therefore, myosin isoform function and plasticity are highly relevant to clinical orthopaedic research, musculoskeletal surgery, and sports medicine. Muscle from frogs offers a special opportunity to study the structural basis of contractile protein function because single intact fibers can be isolated that maintain excellent mechanical stability, allowing for high-resolution studies of contractile performance in intact cells. The current authors summarize recent studies defining the myosin isoforms in muscle from frogs and the relationship between myosin isoforms and mechanical performance of intact single muscle cells. Preliminary studies also are described that show the potential for simple plasmid-based in vivo gene transfer approaches as a model system to elucidate the structural basis of muscle protein function in intact cells.
Collapse
Affiliation(s)
- Gordon J Lutz
- Department of Orthopaedics, Biomedical Sciences Graduate Group, University of California, San Diego, CA, USA
| | | |
Collapse
|
16
|
Lutz GJ, Sirsi SR, Shapard-Palmer SA, Bremner SN, Lieber RL. Influence of myosin isoforms on contractile properties of intact muscle fibers from Rana pipiens. Am J Physiol Cell Physiol 2002; 282:C835-44. [PMID: 11880272 DOI: 10.1152/ajpcell.00482.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The myosin heavy chain (MHC) and myosin light chain (MLC) isoforms in skeletal muscle of Rana pipiens have been well characterized. We measured the force-velocity (F-V) properties of single intact fast-twitch fibers from R. pipiens that contained MHC types 1 or 2 (MHC1 or MHC2) or coexpressed MHC1 and MHC2 isoforms. Velocities were measured between two surface markers that spanned most of the fiber length. MHC and MLC isoform content was quantified after mechanics analysis by SDS-PAGE. Maximal shortening velocity (V(max)) and velocity at half-maximal tension (V(P 50)) increased with percentage of MHC1 (%MHC1). Maximal specific tension (P(o)/CSA, where P(o) is isometric tension and CSA is fiber cross-sectional area) and maximal mechanical power (W(max)) also increased with %MHC1. MHC concentration was not significantly correlated with %MHC1, indicating that the influence of %MHC1 on P(o)/CSA and W(max) was due to intrinsic differences between MHC isoforms and not to concentration. The MLC3-to-MLC1 ratio was not significantly correlated with V(max), V(P 50), P(o)/CSA, or W(max). These data demonstrate the powerful relationship between MHC isoforms and F-V properties of the two most common R. pipiens fiber types.
Collapse
Affiliation(s)
- Gordon J Lutz
- Biomedical Sciences Graduate Group, Department of Orthopaedics, University of California, Veterans Affairs Medical Center, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| | | | | | | | | |
Collapse
|