1
|
Martin TG, Leinwand LA. Molecular regulation of reversible cardiac remodeling: lessons from species with extreme physiological adaptations. J Exp Biol 2024; 227:jeb247445. [PMID: 39344503 PMCID: PMC11463965 DOI: 10.1242/jeb.247445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Some vertebrates evolved to have a remarkable capacity for anatomical and physiological plasticity in response to environmental challenges. One example of such plasticity can be found in the ambush-hunting snakes of the genus Python, which exhibit reversible cardiac growth with feeding. The predation strategy employed by pythons is associated with months-long fasts that are arrested by ingestion of large prey. Consequently, digestion compels a dramatic increase in metabolic rate and hypertrophy of multiple organs, including the heart. In this Review, we summarize the post-prandial cardiac adaptations in pythons at the whole-heart, cellular and molecular scales. We highlight circulating factors and cellular signaling pathways that are altered during digestion to affect cardiac form and function and propose possible mechanisms that may drive the post-digestion regression of cardiac mass. Adaptive physiological cardiac hypertrophy has also been observed in other vertebrates, including in fish acclimated to cold water, birds flying at high altitudes and exercising mammals. To reveal potential evolutionarily conserved features, we summarize the molecular signatures of reversible cardiac remodeling identified in these species and compare them with those of pythons. Finally, we offer a perspective on the potential of biomimetics targeting the natural biology of pythons as therapeutics for human heart disease.
Collapse
Affiliation(s)
- Thomas G. Martin
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Leslie A. Leinwand
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
2
|
Starck JM, Wyneken J. Comparative and Functional Anatomy of the Ectothermic Sauropsid Heart. Vet Clin North Am Exot Anim Pract 2022; 25:337-366. [PMID: 35422257 DOI: 10.1016/j.cvex.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The heart development, form, and functional specializations of chelonians, squamates, crocodilians, and birds characterize how diverse structure and specializations arise from similar foundations. This review aims to summarize the morphologic diversity of sauropsid hearts and present it in an integrative functional and phylogenetic context. Besides the detailed morphologic descriptions, the integrative view of function, evolution, and development will aid understanding of the surprising diversity of sauropsid hearts. This integrated perspective is a foundation that strengthens appreciation that the sauropsid hearts are the outcome of biological evolution; disease often is linked to arising mismatch between adaptations and modern environments.
Collapse
Affiliation(s)
- J Matthias Starck
- Department of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried D82152, Germany.
| | - Jeanette Wyneken
- Florida Atlantic University, FAU Marine Lab at Gumbo Limbo Environmental Complex, Boca Raton, FL 33431-0991, USA
| |
Collapse
|
3
|
Knaus PL, van Heteren AH, Lungmus JK, Sander PM. High Blood Flow Into the Femur Indicates Elevated Aerobic Capacity in Synapsids Since the Synapsida-Sauropsida Split. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.751238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Varanids are the only non-avian sauropsids that are known to approach the warm-blooded mammals in stamina. Furthermore, a much higher maximum metabolic rate (MMR) gives endotherms (including birds) higher stamina than crocodiles, turtles, and non-varanid lepidosaurs. This has led researchers to hypothesize that mammalian endothermy evolved as a second step after the acquisition of elevated MMR in non-mammalian therapsids from a plesiomorphic state of low metabolic rates. In recent amniotes, MMR correlates with the index of blood flow into the femur (Qi), which is calculated from femoral length and the cross-sectional area of the nutrient foramen. Thus, Qi may serve as an indicator of MMR range in extinct animals. Using the Qi proxy and phylogenetic eigenvector maps, here we show that elevated MMRs evolved near the base of Synapsida. Non-mammalian synapsids, including caseids, edaphosaurids, sphenacodontids, dicynodonts, gorgonopsids, and non-mammalian cynodonts, show Qi values in the range of recent endotherms and varanids, suggesting that raised MMRs either evolved in synapsids shortly after the Synapsida-Sauropsida split in the Mississippian or that the low MMR of lepidosaurs and turtles is apomorphic, as has been postulated for crocodiles.
Collapse
|
4
|
Castro SA, Taylor ET, Tavares D, Filogonio R, Rodriges GJ, Leite CAC. Role of nitric oxide in the cardiovascular system of South American rattlesnakes (Crotalus durissus). Physiol Biochem Zool 2021; 95:168-182. [DOI: 10.1086/718292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Bagardi M, Bardi E, Manfredi M, Segala A, Belfatto A, Cusaro S, Romussi S, Brambilla PG. Two-dimensional and doppler echocardiographic evaluation in twenty-one healthy Python regius. Vet Med Sci 2021; 7:1006-1014. [PMID: 33621445 PMCID: PMC8136947 DOI: 10.1002/vms3.426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/10/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
Echocardiographic evaluation is a diagnostic tool for the in vivo diagnosis of heart diseases. Specific and unique anatomical characteristics of the ophidian heart such as the single ventricular cavity, a tubular sinus venosus opening into the right atrium, the presence of three arterial trunks and extreme mobility in the coelomic cavity during the cardiac cycle directly affect echocardiographic examination. Twenty‐one awake, healthy ball pythons (Python regius) were analysed based on guidelines for performing echocardiographic examinations. Imaging in the sagittal plane demonstrated the caudal vena cava, sinus venosus valve (SVV) and right atrium and the various portions of the ventricle, horizontal septum, left aortic arch and pulmonary artery. Transverse imaging depicted the spatial relationship of the left and right aortic arches, the pulmonary artery and the horizontal septum. Basic knowledge of cardiac blood flow in reptiles is necessary to understand the echocardiographic anatomy. The flow of the arterial trunks and SVV was analysed using pulsed‐wave Doppler based on the approach used for humans and companion mammals. The walls and diameters of the cavum arteriosum, cavum venosum and cavum pulmonale were also evaluated. This study should improve the veterinarian's knowledge of ophidian heart basal physiology and contribute to the development of cardiology in reptiles.
Collapse
Affiliation(s)
- Mara Bagardi
- Department of Veterinary Medicine, University of Milan, Milano, Italy
| | - Edoardo Bardi
- Department of Veterinary Medicine, University of Milan, Milano, Italy
| | - Martina Manfredi
- Department of Veterinary Medicine, University of Milan, Milano, Italy
| | - Arianna Segala
- Department of Veterinary Medicine, University of Milan, Milano, Italy
| | - Antonella Belfatto
- Department of Electronic, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Stefano Cusaro
- Ambulatorio Veterinario Associato Cusaro, Merlo, Porati, Pozzoli, Novara, Italy
| | - Stefano Romussi
- Department of Veterinary Medicine, University of Milan, Milano, Italy
| | | |
Collapse
|
6
|
The vasopressor action of angiotensin II (ANG II) in ball pythons (Python regius). Comp Biochem Physiol A Mol Integr Physiol 2020; 252:110839. [PMID: 33166686 DOI: 10.1016/j.cbpa.2020.110839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 11/20/2022]
Abstract
Angiotensin II (ANG II) is part of the renin-angiotensin system (RAS) in vertebrates and exert vasoconstriction in all species studied. The present study examines the vasopressor effect of ANG II in the ball python (Python regius), and examines whether ANG II exert its effect through direct angiotensin receptors or through an activation of α-adrenergic receptors. The studies were conducted in snakes with chronic arterial catheters that had recovered from anesthesia. In addition to demonstrating a clear and pronounced dose-dependent rise in arterial blood pressure upon repeated injections of boluses with ANG II (0.001-1 μg/kg), we demonstrate that the pressor response persisted following α-adrenergic blockade using the α-adrenergic antagonist phentolamine (2.5 mg/kg). Unfortunately, it proved impossible to block the ANG receptors using losartan (1, 3 or even 10 mg/kg). The pressor response to ANG II was associated with a significant rise in heart rate at the higher dosages, pointing to a resetting of the barostatic mechanism for heart rate regulation. The responses were similar in fasting and digesting pythons despite the expected rise in baseline values for blood pressure and heart rate of the digesting snakes.
Collapse
|
7
|
Jensen B, Joyce W, Gregorovicova M, Sedmera D, Wang T, Christoffels VM. Low incidence of atrial septal defects in nonmammalian vertebrates. Evol Dev 2020; 22:241-256. [PMID: 31597012 PMCID: PMC9285691 DOI: 10.1111/ede.12322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The atrial septum enables efficient oxygen transport by separating the systemic and pulmonary venous blood returning to the heart. Only in placental mammals will the atrial septum form by the coming-together of the septum primum and the septum secundum. In up to one of four placental mammals, this complex morphogenesis is incomplete and yields patent foramen ovale. The incidence of incomplete atrial septum is unknown for groups with the septum primum only, such as birds and reptiles. We found a low incidence of incomplete atrial septum in 11 species of bird (0% of specimens) and 13 species of reptiles (3% of specimens). In reptiles, there was a trabecular interface between the atrial septum and the atrial epicardium which was without a clear boundary between left and right atrial cavities. In developing reptiles (four squamates and one crocodylian), the septum primum initiated as a sheet that acquired perforations and the trabecular interface developed late. We conclude that atrial septation from the septum primum only results in a low incidence of incompleteness. In reptiles, the atrial septum and atrial wall develop a trabecular interface, but previous studies on atrial hemodynamics suggest this interface has a very limited capacity for shunting.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - William Joyce
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Bioscience, ZoophysiologyAarhus UniversityAarhusDenmark
| | - Martina Gregorovicova
- Institute of Anatomy, First Medical Faculty, Czech Academy of SciencesCharles University and Institute of PhysiologyPragueCzech Republic
| | - David Sedmera
- Institute of Anatomy, First Medical Faculty, Czech Academy of SciencesCharles University and Institute of PhysiologyPragueCzech Republic
| | - Tobias Wang
- Department of Bioscience, ZoophysiologyAarhus UniversityAarhusDenmark
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
8
|
Burggren W, Filogonio R, Wang T. Cardiovascular shunting in vertebrates: a practical integration of competing hypotheses. Biol Rev Camb Philos Soc 2019; 95:449-471. [PMID: 31859458 DOI: 10.1111/brv.12572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
This review explores the long-standing question: 'Why do cardiovascular shunts occur?' An historical perspective is provided on previous research into cardiac shunts in vertebrates that continues to shape current views. Cardiac shunts and when they occur is then described for vertebrates. Nearly 20 different functional reasons have been proposed as specific causes of shunts, ranging from energy conservation to improved gas exchange, and including a plethora of functions related to thermoregulation, digestion and haemodynamics. It has even been suggested that shunts are merely an evolutionary or developmental relic. Having considered the various hypotheses involving cardiovascular shunting in vertebrates, this review then takes a non-traditional approach. Rather than attempting to identify the single 'correct' reason for the occurrence of shunts, we advance a more holistic, integrative approach that embraces multiple, non-exclusive suites of proposed causes for shunts, and indicates how these varied functions might at least co-exist, if not actually support each other as shunts serve multiple, concurrent physiological functions. It is argued that deposing the 'monolithic' view of shunting leads to a more nuanced view of vertebrate cardiovascular systems. This review concludes by suggesting new paradigms for testing the function(s) of shunts, including experimentally placing organ systems into conflict in terms of their perfusion needs, reducing sources of variation in physiological experiments, measuring possible compensatory responses to shunt ablation, moving experiments from the laboratory to the field, and using cladistics-related approaches in the choice of experimental animals.
Collapse
Affiliation(s)
- Warren Burggren
- Department of Biological Sciences, Developmental Integrative Biology Cluster, University of North Texas, Denton, TX, 76203-5220, U.S.A
| | - Renato Filogonio
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus C, 8000, Denmark.,Aarhus Institute of Advanced Sciences (AIAS), Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
9
|
Troiano NM, Armelin VA, Braga VHDS, Abe AS, Rantin FT, Florindo LH. The autonomic control of upright posture tachycardia in the arboreal lizard Iguana iguana. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2018; 329:130-139. [PMID: 29992754 DOI: 10.1002/jez.2213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/11/2022]
Abstract
In terrestrial environments, upright spatial orientation can dramatically influence animals' hemodynamics. Generally, large and elongated species are particularly sensitive to such influence due to the greater extent of their vascular beds being verticalized, favoring the establishment of blood columns in their bodies along with caudal blood pooling, and thus jeopardizing blood circulation through a cascade effect of reductions in venous return, cardiac filling, stroke volume, cardiac output, and arterial blood pressure. This hypotension triggers an orthostatic-(baroreflex)-tachycardia to normalize arterial pressure, and despite the extensive observation of this heart rate (fH ) adjustment in experiments on orthostasis, little is known about its mediation and importance in ectothermic vertebrates. In addition, most of the knowledge on this subject comes from studies on snakes. Thus, our objective was to expand the knowledge on this issue by investigating it in an arboreal lizard (Iguana iguana). To do so, we analyzed fH , cardiac autonomic tones, and fH variability in horizontalized and tilted iguanas (0°, 30°. and 60°) before and after muscarinic blockade with atropine and double autonomic blockade with atropine and propranolol. The results revealed that I. Iguana exhibits significant orthostatic-tachycardia only at 60o inclinations-a condition that is primarily elicited by a withdrawal of vagal drive. Also, as in humans, increases in low-frequency fH oscillations and decreases in high-frequency fH oscillations were observed along with orthostatic-tachycardia, suggesting that the mediation of this fH adjustment may be evolutionarily conserved in vertebrates.
Collapse
Affiliation(s)
- Natalia Miriã Troiano
- Department of Zoology and Botany, São Paulo State University (UNESP), São José do Rio Preto, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, Brazil
| | - Vinicius Araújo Armelin
- Department of Zoology and Botany, São Paulo State University (UNESP), São José do Rio Preto, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, Brazil
| | - Victor Hugo da Silva Braga
- Department of Zoology and Botany, São Paulo State University (UNESP), São José do Rio Preto, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, Brazil
| | - Augusto Shinya Abe
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, Brazil
- Department of Zoology, São Paulo State University (UNESP), Rio Claro, Brazil
- Aquaculture Center (CAUNESP), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Francisco Tadeu Rantin
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, Brazil
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Luiz Henrique Florindo
- Department of Zoology and Botany, São Paulo State University (UNESP), São José do Rio Preto, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, Brazil
- Aquaculture Center (CAUNESP), São Paulo State University (UNESP), Jaboticabal, Brazil
| |
Collapse
|
10
|
The influence of midazolam on heart rate arises from cardiac autonomic tones alterations in Burmese pythons, Python molurus. Auton Neurosci 2017; 208:103-112. [PMID: 29104018 DOI: 10.1016/j.autneu.2017.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 11/22/2022]
Abstract
The GABAA receptor agonist midazolam is a compound widely used as a tranquilizer and sedative in mammals and reptiles. It is already known that this benzodiazepine produces small to intermediate heart rate (HR) alterations in mammals, however, its influence on reptiles' HR remains unexplored. Thus, the present study sought to verify the effects of midazolam on HR and cardiac modulation in the snake Python molurus. To do so, the snakes' HR, cardiac autonomic tones, and HR variability were evaluated during four different experimental stages. The first stage consisted on the data acquisition of animals under untreated conditions, in which were then administered atropine (2.5mgkg-1; intraperitoneal), followed later by propranolol (3.5mgkg-1; intraperitoneal) (cardiac double autonomic blockade). The second stage focused on the data acquisition of animals under midazolam effect (1.0mgkg-1; intramuscular), which passed through the same autonomic blockade protocol of the first stage. The third and fourth stages consisted of the same protocol of stages one and two, respectively, with the exception that atropine and propranolol injections were reversed. By comparing the HR of animals that received midazolam (second and fourth stages) with those that did not (first and third stages), it could be observed that this benzodiazepine reduced the snakes' HR by ~60%. The calculated autonomic tones showed that such cardiac depression was elicited by an ~80% decrease in cardiac adrenergic tone and an ~620% increase in cardiac cholinergic tone - a finding that was further supported by the results of HR variability analysis.
Collapse
|
11
|
The influence of mechanical ventilation on physiological parameters in ball pythons (Python regius). Comp Biochem Physiol A Mol Integr Physiol 2017; 207:30-35. [DOI: 10.1016/j.cbpa.2017.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/22/2022]
|
12
|
Affiliation(s)
- James E. Bogan
- The Critter Fixer of Central Florida, LLC, 83 Geneva Drive, 621679, Oviedo, FL 32765, USA
| |
Collapse
|
13
|
Kolomeyets NL, Roshchevskaya IM. The electrical resistivity of a segment of the tail, lungs, liver, and intercostal muscles of the grass snake during in vivo cooling. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916050110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Joyce W, Axelsson M, Wang T. Autoregulation of cardiac output is overcome by adrenergic stimulation in the anaconda heart. J Exp Biol 2016; 220:336-340. [DOI: 10.1242/jeb.149237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/03/2016] [Indexed: 11/20/2022]
Abstract
Most vertebrates increase cardiac output during activity by elevating heart rate with relatively stable stroke volume. However, several studies have demonstrated ‘intrinsic autoregulation’ of cardiac output where artificially increased heart rate is associated with decreased stroke volume, leaving cardiac output unchanged. We explored the capacity of noradrenaline to overcome autoregulation in the anaconda heart. Electrically pacing in situ perfused hearts from the intrinsic heart rate to the maximum attainable resulted in a proportional decrease in stroke volume. However, noradrenaline, which increased heart rate to the same frequency as pacing, maintained stroke volume and thus increased cardiac output. In atrial and ventricular preparations noradrenaline significantly increased the force of contraction and contraction kinetics. Thus, the increased contractility associated with adrenergic stimulation ameliorates filling limitations at high heart rates. Although heart rate appears the primary regulated variable during activity, this may only be achieved with compensatory amendments in myocardial contractility provided by adrenergic stimulation.
Collapse
Affiliation(s)
- William Joyce
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Tobias Wang
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
15
|
Joyce W, Axelsson M, Altimiras J, Wang T. In situ cardiac perfusion reveals interspecific variation of intraventricular flow separation in reptiles. J Exp Biol 2016; 219:2220-7. [DOI: 10.1242/jeb.139543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022]
Abstract
The ventricles of non-crocodilian reptiles are incompletely divided and provide an opportunity for mixing of oxygen-poor blood and oxygen-rich blood (intracardiac shunting). However, both cardiac morphology and in vivo shunting patterns exhibit considerable interspecific variation within reptiles. In the present study, we develop an in situ double-perfused heart approach to characterise the propensity and capacity for shunting in five reptile species (turtle: Trachemys scripta, rock python: Python sebae, yellow anaconda: Eunectes notaeus, varanid lizard: Varanus exanthematicus, and bearded dragon: Pogona vitticeps). To simulate changes in vascular bed resistance, pulmonary and systemic afterloads were independently manipulated and changes in blood flow distribution amongst the central outflow tracts were monitored. As previously demonstrated in Burmese pythons, rock pythons and varanid lizards exhibited pronounced intraventricular flow separation. As pulmonary or systemic afterload was raised, flow in the respective circulation decreased. However, flow in the other circulation, where afterload was constant, remained stable. This correlates with the convergent evolution of intraventricular pressure separation and the large intraventricular muscular ridge, which compartmentalises the ventricle, in these species. Conversely, in the three other species, the pulmonary and systemic flows were strongly mutually dependent, such that the decrease in pulmonary flow in response to elevated pulmonary afterload resulted in redistribution of perfusate to the systemic circuit (and vice versa). Thus, in these species, the muscular ridge appeared labile and blood could readily transverse the intraventricular cava. We conclude that relatively minor structural differences between non-crocodilian reptiles result in the fundamental changes in cardiac function. Further, our study emphasises that functionally similar intracardiac flow separation evolved independently in lizards (varanids) and snakes (pythons) from an ancestor endowed with the capacity for large intracardiac shunts.
Collapse
Affiliation(s)
- William Joyce
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jordi Altimiras
- AVIAN Behavioural Genomics and Physiology Group, IFM, Linköping University, 581 83 Linköping, Sweden
| | - Tobias Wang
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
16
|
van Soldt BJ, Danielsen CC, Wang T. The mechanical properties of the systemic and pulmonary arteries of Python regius correlate with blood pressures. J Morphol 2015; 276:1412-21. [PMID: 26780263 DOI: 10.1002/jmor.20429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 11/07/2022]
Abstract
Pythons are unique amongst snakes in having different pressures in the aortas and pulmonary arteries because of intraventricular pressure separation. In this study, we investigate whether this correlates with different blood vessel strength in the ball python Python regius. We excised segments from the left, right, and dorsal aortas, and from the two pulmonary arteries. These were subjected to tensile testing. We show that the aortic vessel wall is significantly stronger than the pulmonary artery wall in P. regius. Gross morphological characteristics (vessel wall thickness and correlated absolute amount of collagen content) are likely the most influential factors. Collagen fiber thickness and orientation are likely to have an effect, though the effect of collagen fiber type and cross-links between fibers will need further study.
Collapse
Affiliation(s)
- Benjamin J van Soldt
- Department of Bioscience, Zoophysiology, University of Aarhus, C.F. Møllers Allé 3, Aarhus C, 8000, Denmark
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | | | - Tobias Wang
- Department of Bioscience, Zoophysiology, University of Aarhus, C.F. Møllers Allé 3, Aarhus C, 8000, Denmark
| |
Collapse
|
17
|
Autonomic control of heart rate during orthostasis and the importance of orthostatic-tachycardia in the snake Python molurus. J Comp Physiol B 2014; 184:903-12. [DOI: 10.1007/s00360-014-0841-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/10/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
|
18
|
Jensen B, Moorman AFM, Wang T. Structure and function of the hearts of lizards and snakes. Biol Rev Camb Philos Soc 2013; 89:302-36. [DOI: 10.1111/brv.12056] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 06/26/2013] [Accepted: 07/30/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Bjarke Jensen
- Department of Bioscience, Zoophysiology; Aarhus University; Aarhus C 8000 Denmark
- Department of Anatomy, Embryology & Physiology, Academic Medical Center; University of Amsterdam; Amsterdam 1105 The Netherlands
| | - Antoon F. M. Moorman
- Department of Anatomy, Embryology & Physiology, Academic Medical Center; University of Amsterdam; Amsterdam 1105 The Netherlands
| | - Tobias Wang
- Department of Bioscience, Zoophysiology; Aarhus University; Aarhus C 8000 Denmark
| |
Collapse
|
19
|
Taubenschmid J, Weitzer G. Mechanisms of cardiogenesis in cardiovascular progenitor cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:195-267. [PMID: 22251563 PMCID: PMC7615846 DOI: 10.1016/b978-0-12-394304-0.00012-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Self-renewing cells of the vertebrate heart have become a major subject of interest in the past decade. However, many researchers had a hard time to argue against the orthodox textbook view that defines the heart as a postmitotic organ. Once the scientific community agreed on the existence of self-renewing cells in the vertebrate heart, their origin was again put on trial when transdifferentiation, dedifferentiation, and reprogramming could no longer be excluded as potential sources of self-renewal in the adult organ. Additionally, the presence of self-renewing pluripotent cells in the peripheral blood challenges the concept of tissue-specific stem and progenitor cells. Leaving these unsolved problems aside, it seems very desirable to learn about the basic biology of this unique cell type. Thus, we shall here paint a picture of cardiovascular progenitor cells including the current knowledge about their origin, basic nature, and the molecular mechanisms guiding proliferation and differentiation into somatic cells of the heart.
Collapse
Affiliation(s)
- Jasmin Taubenschmid
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
20
|
Jensen B, Larsen CK, Nielsen JM, Simonsen LS, Wang T. Change of cardiac function, but not form, in postprandial pythons. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:35-42. [PMID: 21605694 DOI: 10.1016/j.cbpa.2011.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 11/28/2022]
Abstract
Pythons are renowned for a rapid and pronounced postprandial growth of the heart that coincides with a several-fold elevation of cardiac output that lasts for several days. Here we investigate whether ventricular morphology is affected by digestive state in two species of pythons (Python regius and Python molurus) and we determine the cardiac right-to-left shunt during the postprandial period in P. regius. Both species experienced several-fold increases in metabolism and mass of the digestive organs by 24 and 48 h after ingestion of meals equivalent to 25% of body mass. Surprisingly there were no changes in ventricular mass or dimensions as we used a meal size and husbandry conditions similar to studies finding rapid and significant growth. Based on these data and literature we therefore suggest that postprandial cardiac growth should be regarded as a facultative rather than obligatory component of the renowned postprandial response. The cardiac right-to-left shunt, calculated on the basis of oxygen concentrations in the left and right atria and the dorsal aorta, was negligible in fasting P. regius, but increased to 10-15% during digestion. Such shunt levels are very low compared to other reptiles and does not support a recent proposal that shunts may facilitate digestion in reptiles.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Biological Sciences, Zoophysiology, Aarhus University, Denmark.
| | | | | | | | | |
Collapse
|
21
|
Jensen B, Abe AS, Andrade DV, Nyengaard JR, Wang T. The heart of the South American rattlesnake, Crotalus durissus. J Morphol 2010; 271:1066-77. [DOI: 10.1002/jmor.10854] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Jensen B, Nielsen JM, Axelsson M, Pedersen M, Löfman C, Wang T. How the python heart separates pulmonary and systemic blood pressures and blood flows. J Exp Biol 2010; 213:1611-7. [DOI: 10.1242/jeb.030999] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The multiple convergent evolution of high systemic blood pressure among terrestrial vertebrates has always been accompanied by lowered pulmonary pressure. In mammals, birds and crocodilians, this cardiac separation of pressures relies on the complete division of the right and left ventricles by a complete ventricular septum. However, the anatomy of the ventricle of most reptiles does not allow for complete anatomical division, but the hearts of pythons and varanid lizards can produce high systemic blood pressure while keeping the pulmonary blood pressure low. It is also known that these two groups of reptiles are characterised by low magnitudes of cardiac shunts. Little, however, is known about the mechanisms that allow for this pressure separation. Here we provide a description of cardiac structures and intracardiac events that have been revealed by ultrasonic measurements and angioscopy. Echocardiography revealed that the atrioventricular valves descend deep into the ventricle during ventricular filling and thereby greatly reduce the communication between the systemic (cavum arteriosum) and pulmonary (cavum pulmonale) ventricular chambers during diastole. Angioscopy and echocardiography showed how the two incomplete septa, the muscular ridge and the bulbuslamelle – ventricular structures common to all squamates – contract against each other in systole and provide functional division of the anatomically subdivided ventricle. Washout shunts are inevitable in the subdivided snake ventricle, but we show that the site of shunting, the cavum venosum, is very small throughout the cardiac cycle. It is concluded that the python ventricle is incapable of the pronounced and variable shunts of other snakes, because of its architecture and valvular mechanics.
Collapse
Affiliation(s)
- Bjarke Jensen
- Zoophysiology, Department of Biological Sciences, Aarhus University, Building 1131, Universitetsparken 8000, Aarhus, Denmark
| | - Jan M. Nielsen
- Department of Cardiology B, Aarhus University Hospital, Skejby Sygehus, Denmark
| | - Michael Axelsson
- Department of Zoology, University of Gothenburg, Gothenburg, Sweden
| | | | - Carl Löfman
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Sahlgrenska University Hospital, Sweden
| | - Tobias Wang
- Zoophysiology, Department of Biological Sciences, Aarhus University, Building 1131, Universitetsparken 8000, Aarhus, Denmark
| |
Collapse
|
23
|
Jensen B, Nyengaard JR, Pedersen M, Wang T. Anatomy of the python heart. Anat Sci Int 2010; 85:194-203. [PMID: 20376590 DOI: 10.1007/s12565-010-0079-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/09/2010] [Indexed: 10/19/2022]
Abstract
The hearts of all snakes and lizards consist of two atria and a single incompletely divided ventricle. In general, the squamate ventricle is subdivided into three chambers: cavum arteriosum (left), cavum venosum (medial) and cavum pulmonale (right). Although a similar division also applies to the heart of pythons, this family of snakes is unique amongst snakes in having intracardiac pressure separation. Here we provide a detailed anatomical description of the cardiac structures that confer this functional division. We measured the masses and volumes of the ventricular chambers, and we describe the gross morphology based on dissections of the heart from 13 ball pythons (Python regius) and one Burmese python (P. molurus). The cavum venosum is much reduced in pythons and constitutes approximately 10% of the cavum arteriosum. We suggest that shunts will always be less than 20%, while other studies conclude up to 50%. The high-pressure cavum arteriosum accounted for approximately 75% of the total ventricular mass, and was twice as dense as the low-pressure cavum pulmonale. The reptile ventricle has a core of spongious myocardium, but the three ventricular septa that separate the pulmonary and systemic chambers--the muscular ridge, the bulbuslamelle and the vertical septum--all had layers of compact myocardium. Pythons, however, have unique pads of connective tissue on the site of pressure separation. Because the hearts of varanid lizards, which also are endowed with pressure separation, share many of these morphological specializations, we propose that intraventricular compact myocardium is an indicator of high-pressure systems and possibly pressure separation.
Collapse
Affiliation(s)
- Bjarke Jensen
- Zoophysiology, Department of Biological Sciences, Aarhus University, Building 1131, 130, Universitetsparken, 8000 Århus C, Denmark.
| | | | | | | |
Collapse
|
24
|
Hemodynamic Consequences of Cardiac Malformations in Two Juvenile Ball Pythons (Python regius). J Zoo Wildl Med 2009; 40:752-6. [DOI: 10.1638/2008-0209.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Galli GLJ, Warren DE, Shiels HA. Ca2+ cycling in cardiomyocytes from a high-performance reptile, the varanid lizard (Varanus exanthematicus). Am J Physiol Regul Integr Comp Physiol 2009; 297:R1636-44. [PMID: 19812356 PMCID: PMC2803631 DOI: 10.1152/ajpregu.00381.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The varanid lizard possesses one of the largest aerobic capacities among reptiles with maximum rates of oxygen consumption that are twice that of other lizards of comparable sizes at the same temperature. To support this aerobic capacity, the varanid heart possesses morphological adaptations that allow the generation of high heart rates and blood pressures. Specializations in excitation-contraction coupling may also contribute to the varanids superior cardiovascular performance. Therefore, we investigated the electrophysiological properties of the l-type Ca(2+) channel and the Na(+)/Ca(2+) exchanger (NCX) and the contribution of the sarcoplasmic reticulum to the intracellular Ca(2+) transient (Delta[Ca(2+)](i)) in varanid lizard ventricular myocytes. Additionally, we used confocal microscopy to visualize myocytes and make morphological measurements. Lizard ventricular myocytes were found to be spindle-shaped, lack T-tubules, and were approximately 190 microm in length and 5-7 microm in width and depth. Cardiomyocytes had a small cell volume ( approximately 2 pL), leading to a large surface area-to-volume ratio (18.5), typical of ectothermic vertebrates. The voltage sensitivity of the l-type Ca(2+) channel current (I(Ca)), steady-state activation and inactivation curves, and the time taken for recovery from inactivation were also similar to those measured in other reptiles and teleosts. However, transsarcolemmal Ca(2+) influx via reverse mode Na(+)/Ca(2+) exchange current was fourfold higher than most other ectotherms. Moreover, pharmacological inhibition of the sarcoplasmic reticulum led to a 40% reduction in the Delta[Ca(2+)](i) amplitude, and slowed the time course of decay. In aggregate, our results suggest varanids have an enhanced capacity to transport Ca(2+) through the Na(+)/Ca(2+) exchanger, and sarcoplasmic reticulum suggesting specializations in excitation-contraction coupling may provide a means to support high cardiovascular performance.
Collapse
Affiliation(s)
- Gina L J Galli
- Faculty of Life Sciences, The University of Manchester, Core Technology Facility, Manchester, United Kingdom.
| | | | | |
Collapse
|
26
|
Starck JM. Functional morphology and patterns of blood flow in the heart of Python regius. J Morphol 2009; 270:673-87. [PMID: 19097161 DOI: 10.1002/jmor.10706] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brightness-modulated ultrasonography, continuous-wave Doppler, and pulsed-wave Doppler-echocardiography were used to analyze the functional morphology of the undisturbed heart of ball pythons. In particular, the action of the muscular ridge and the atrio-ventricular valves are key features to understand how patterns of blood flow emerge from structures directing blood into the various chambers of the heart. A step-by-step image analysis of echocardiographs shows that during ventricular diastole, the atrio-ventricular valves block the interventricular canals so that blood from the right atrium first fills the cavum venosum, and blood from the left atrium fills the cavum arteriosum. During diastole, blood from the cavum venosum crosses the muscular ridge into the cavum pulmonale. During middle to late systole the muscular ridge closes, thus prohibiting further blood flow into the cavum pulmonale. At the same time, the atrio-ventricular valves open the interventricular canal and allow blood from the cavum arteriosum to flow into the cavum venosum. In the late phase of ventricular systole, all blood from the cavum pulmonale is pressed into the pulmonary trunk; all blood from the cavum venosum is pressed into both aortas. Quantitative measures of blood flow volume showed that resting snakes bypass the pulmonary circulation and shunt about twice the blood volume into the systemic circulation as into the pulmonary circulation. When digesting, the oxygen demand of snakes increased tremendously. This is associated with shunting more blood into the pulmonary circulation. The results of this study allow the presentation of a detailed functional model of the python heart. They are also the basis for a functional hypothesis of how shunting is achieved. Further, it was shown that shunting is an active regulation process in response to changing demands of the organism (here, oxygen demand). Finally, the results of this study support earlier reports about a dual pressure circulation in Python regius.
Collapse
Affiliation(s)
- J Matthias Starck
- Department of Biology II, Biocenter Martinsried, University of Munich (LMU), Planegg-Martinsried, Germany.
| |
Collapse
|
27
|
Abstract
Major differences among reptile taxa include the shape of the heart, degree of separation of the ventricular compartments, degree of development of the intraventricular muscular ridge, and in crocodilians, the interventricular septum. In many cases, the structural-functional features of the reptilian heart provide adaptive plasticity, allowing for the ecological and behavioral diversity seen. As a result, variation may surface in clinical measures of cardiac performance. This article updates clinical context, provides an understanding of the variation in reptilian cardiovascular systems, and their functional implications for the assessment and treatment of reptile patients.
Collapse
Affiliation(s)
- Jeanette Wyneken
- Department of Biological Sciences, 266 Building 01, Sanson Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA.
| |
Collapse
|
28
|
Abstract
SUMMARY
The Frank–Starling law of the heart applies to all classes of vertebrates. It describes how stretch of cardiac muscle, up to an optimum length, increases contractility thereby linking cardiac ejection to cardiac filling. The cellular mechanisms underlying the Frank–Starling response include an increase in myofilament sensitivity for Ca2+, decreased myofilament lattice spacing and increased thin filament cooperativity. Stretching of mammalian, amphibian and fish cardiac myocytes reveal that the functional peak of the sarcomere length (SL)–tension relationship occurs at longer SL in the non-mammalian classes. These findings correlate with in vivo cardiac function as non-mammalian vertebrates, such as fish,vary stroke volume to a relatively larger extent than mammals. Thus, it seems the length-dependent properties of individual myocytes are modified to accommodate differences in organ function, and the high extensibility of certain hearts is matched by the extensibility of their myocytes. Reasons for the differences between classes are still to be elucidated, however, the structure of mammalian ventricular myocytes, with larger widths and higher levels of passive stiffness than those from other vertebrate classes may be implicated.
Collapse
Affiliation(s)
- Holly A. Shiels
- Faculty of Life Sciences, Core Technology Facility, 46 Grafton Street,University of Manchester, Manchester M13 9NT, UK
| | - Ed White
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT,UK
| |
Collapse
|
29
|
Zaar M, Overgaard J, Gesser H, Wang T. Contractile properties of the functionally divided python heart: Two sides of the same matter. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:163-73. [PMID: 17137816 DOI: 10.1016/j.cbpa.2006.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 10/05/2006] [Accepted: 10/05/2006] [Indexed: 11/17/2022]
Abstract
The heart of Python regius is functionally divided so that systemic blood pressure is much higher than pulmonary pressure (6.6+/-1.0 and 0.7+/-0.1 kPa, respectively). The present study shows that force production of cardiac strips from the cavum arteriosum and cavum pulmonale exhibits similar force production when stimulated in vitro. The high systemic blood pressure is caused, therefore, by a thicker ventricular wall surrounding the cavum arteriosum rather than differences in the intrinsic properties of the cardiac tissues. Similarly, there were no differences between the contractile properties of right and left atria. Force production was similar in atria and ventricle but the atria contracted and relaxed much faster than the ventricle. Graded hypoxia markedly reduced twitch force of all four cardiac tissues, and this was most pronounced when PO(2) was below 40 kPa. In contrast, the four cardiac tissues were insensitive to acidosis during normoxia although acidosis increased the sensitivity to hypoxia. Adrenergic stimulation increased twitch force of all cardiac tissues, while cholinergic stimulation only affected the atria and reduced twitch force markedly. In spite of the different oxygen availability of the two sides of the heart, the biochemical and functional properties are alike and the differences may instead be overcome by the coronary blood supply.
Collapse
Affiliation(s)
- Morten Zaar
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
30
|
Abstract
This review provides an overview of the evolutionary path to the mammalian heart from the beginnings of life (about four billion years ago ) to the present. Essential tools for cellular homeostasis and for extracting and burning energy are still in use and essentially unchanged since the appearance of the eukaryotes. The primitive coelom, characteristic of early multicellular organisms ( approximately 800 million years ago), is lined by endoderm and is a passive receptacle for gas exchange, feeding, and sexual reproduction. The cells around this structure express genes homologous to NKX2.5/tinman, and gradual specialization of this "gastroderm" results in the appearance of mesoderm in the phylum Bilateria, which will produce the first primitive cardiac myocytes. Investment of the coelom by these mesodermal cells forms a "gastrovascular" structure. Further evolution of this structure in the bilaterian branches Ecdysoa (Drosophila) and Deuterostoma (amphioxus) culminate in a peristaltic tubular heart, without valves, without blood vessels or blood, but featuring a single layer of contracting mesoderm. The appearance of Chordata and subsequently the vertebrates is accompanied by a rapid structural diversification of this primitive linear heart: looping, unidirectional circulation, an enclosed vasculature, and the conduction system. A later innovation is the parallel circulation to the lungs, followed by the appearance of septa and the four-chambered heart in reptiles, birds, and mammals. With differentiation of the cardiac chambers, regional specialization of the proteins in the cardiac myocyte can be detected in the teleost fish and amphibians. In mammals, growth constraints are placed on the heart, presumably to accommodate the constraints of the body plan and the thoracic cavity, and adult cardiac myocytes lose the ability to re-enter the cell cycle on demand. Mammalian cardiac myocyte innervation betrays the ancient link between the heart, the gut, and reproduction: the vagus nerve controlling heart rate emanates from centers in the central nervous system regulating feeding and affective behavior.
Collapse
Affiliation(s)
- Nanette H Bishopric
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida 33101, USA.
| |
Collapse
|
31
|
Hillenius WJ, Ruben JA. Getting warmer, getting colder: reconstructing crocodylomorph physiology. Physiol Biochem Zool 2005; 77:1068-72; discussion 1073-5. [PMID: 15674776 DOI: 10.1086/427253] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2004] [Indexed: 11/03/2022]
Affiliation(s)
- Willem J Hillenius
- Department of Biology, College of Charleston, 66 George Street, Charleston, South Carolina 29424, USA.
| | | |
Collapse
|
32
|
Skovgaard N, Galli G, Taylor EW, Conlon JM, Wang T. Hemodynamic effects of python neuropeptide γ in the anesthetized python, Python regius. ACTA ACUST UNITED AC 2005; 128:15-26. [PMID: 15721483 DOI: 10.1016/j.regpep.2004.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 12/10/2004] [Indexed: 11/29/2022]
Abstract
The effects of python neuropeptide gamma (NPgamma) on hemodynamic parameters have been investigated in the anesthetized ball python (Python regius). Bolus intra-arterial injections of synthetic python NPgamma (1-300 pmol kg-1) produced a dose-dependent decrease in systemic arterial blood pressure (Psys) concomitant with increases in systemic vascular conductance (Gsys), total cardiac output and stroke volume, but only minor effects on heart rate. The peptide had no significant effect on pulmonary arterial blood pressure (Ppul) and caused only a small increase in pulmonary conductance (Gpul) at the highest dose. In the systemic circulation, the potency of the NK1 receptor-selective agonist [Sar9,Met(0(2))11] substance P was >100-fold greater than the NK2 receptor-selective agonist [betaAla8] neurokinin A-(4-10)-peptide suggesting that the python cardiovascular system is associated with a receptor that resembles the mammalian NK1 receptor more closely than the NK2 receptor. Administration of the inhibitor of nitric oxide synthesis, L-nitro-arginine-methylester (L-NAME; 150 mg kg-1), resulted in a significant (P<0.05) increase in Psys as well as a decrease in Gsys, but no effect on Ppul and Gpul. Conversely, the nitric oxide donor, sodium nitroprusside (SNP; 60 microg kg-1) produced a significant (P<0.05) decrease in Psys along with an increase in Gsys and pulmonary blood flow. However, neither L-NAME nor indomethacin (10 mg kg-1) reduced the cardiovascular responses to NPgamma. Thus, nitric oxide is involved in regulation of basal vascular tone in the python, but neither nitric oxide nor prostaglandins mediate the vasodilatory action of NPgamma.
Collapse
Affiliation(s)
- Nini Skovgaard
- Department of Zoophysiology, Aarhus University, Building 131, 8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
33
|
Hicks JW, Wang T. Hypometabolism in reptiles: behavioural and physiological mechanisms that reduce aerobic demands. Respir Physiol Neurobiol 2004; 141:261-71. [PMID: 15288598 DOI: 10.1016/j.resp.2004.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2004] [Indexed: 10/26/2022]
Abstract
During exposure to hypoxia all vertebrates utilize a suite of cardiovascular and ventilatory responses that, in combination, strive to maintain adequate delivery of oxygen to the metabolizing tissues. In addition to maintaining oxygen delivery through cardio-respiratory responses, oxygen demands in the tissues can also be reduced. Reptiles use this alternative strategy during periods of moderate to severe hypoxia by behavioural reductions in preferred body temperature and by active down-regulation of aerobic metabolism. Below we review these two different strategies and discuss their possible mechanisms and physiological significance.
Collapse
Affiliation(s)
- James W Hicks
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
34
|
Wang T, Altimiras J, Klein W, Axelsson M. Ventricular haemodynamics in Python molurus: separation of pulmonary and systemic pressures. ACTA ACUST UNITED AC 2004; 206:4241-5. [PMID: 14581594 DOI: 10.1242/jeb.00681] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vascular pressure separation by virtue of a two-chambered ventricle evolved independently in mammals and birds from a reptilian ancestor with a single ventricle, and allowed for high systemic perfusion pressure while protecting the lungs from oedema. Within non-crocodilian reptiles, ventricular pressure separation has only been observed in varanid lizards and has been regarded as a unique adaptation to an active predatory life style and high metabolic rate. The systemic and pulmonary sides of the ventricle in Python molurus are well separated by the muscular ridge, and a previous study using in situ perfusion of the heart revealed a remarkable flow separation and showed that the systemic side can sustain higher output pressures than the pulmonary side. Here we extend these observations by showing that systemic blood pressure P(sys) exceeded pulmonary pressure P(pul) almost seven times (75.7+/-4.2 versus 11.6+/-1.1 cm H(2)O). The large pressure difference between the systemic and pulmonary circulation persisted when P(sys) was altered by infusion of sodium nitroprusside or phenylephrine. Intraventricular pressures, measured in anaesthetised snakes, showed an overlap in the pressure profile between the pulmonary side of the ventricle (cavum pulmonale) and the pulmonary artery, while the higher pressure in the systemic side of the ventricle (cavum arteriosum) overlapped with the pressure in the right aortic arch. This verifies that the pressure differences originate within the ventricle, indicating that the large muscular ridge separates the ventricle during cardiac contraction.
Collapse
Affiliation(s)
- Tobias Wang
- Department of Zoophysiology, University of Aarhus, 8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|