1
|
Ponganis PJ, Williams CL, Kendall-Bar JM. Blood oxygen transport and depletion in diving emperor penguins. J Exp Biol 2024; 227:jeb246832. [PMID: 38390686 PMCID: PMC11006389 DOI: 10.1242/jeb.246832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Oxygen store management underlies dive performance and is dependent on the slow heart rate and peripheral vasoconstriction of the dive response to control tissue blood flow and oxygen uptake. Prior research has revealed two major patterns of muscle myoglobin saturation profiles during dives of emperor penguins. In Type A profiles, myoglobin desaturated rapidly, consistent with minimal muscle blood flow and low tissue oxygen uptake. Type B profiles, with fluctuating and slower declines in myoglobin saturation, were consistent with variable tissue blood flow patterns and tissue oxygen uptake during dives. We examined arterial and venous blood oxygen profiles to evaluate blood oxygen extraction and found two primary patterns of venous hemoglobin desaturation that complemented corresponding myoglobin saturation profiles. Type A venous profiles had a hemoglobin saturation that (a) increased/plateaued for most of a dive's duration, (b) only declined during the latter stages of ascent, and (c) often became arterialized [arterio-venous (a-v) shunting]. In Type B venous profiles, variable but progressive hemoglobin desaturation profiles were interrupted by inflections in the profile that were consistent with fluctuating tissue blood flow and oxygen uptake. End-of-dive saturation of arterial and Type A venous hemoglobin saturation profiles were not significantly different, but did differ from those of Type B venous profiles. These findings provide further support that the dive response of emperor penguins is a spectrum of cardiac and vascular components (including a-v shunting) that are dependent on the nature and demands of a given dive and even of a given segment of a dive.
Collapse
Affiliation(s)
- Paul J. Ponganis
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| | - Cassondra L. Williams
- National Marine Mammal Foundation, 2240 Shelter Island Drive, San Diego, CA 92106, USA
| | - Jessica M. Kendall-Bar
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
2
|
Williams CL, Ponganis PJ. Diving physiology of marine mammals and birds: the development of biologging techniques. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200211. [PMID: 34121464 PMCID: PMC8200650 DOI: 10.1098/rstb.2020.0211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 11/12/2022] Open
Abstract
In the 1940s, Scholander and Irving revealed fundamental physiological responses to forced diving of marine mammals and birds, setting the stage for the study of diving physiology. Since then, diving physiology research has moved from the laboratory to the field. Modern biologging, with the development of microprocessor technology, recorder memory capacity and battery life, has advanced and expanded investigations of the diving physiology of marine mammals and birds. This review describes a brief history of the start of field diving physiology investigations, including the invention of the time depth recorder, and then tracks the use of biologging studies in four key diving physiology topics: heart rate, blood flow, body temperature and oxygen store management. Investigations of diving heart rates in cetaceans and O2 store management in diving emperor penguins are highlighted to emphasize the value of diving physiology biologging research. The review concludes with current challenges, remaining diving physiology questions and what technologies are needed to advance the field. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.
Collapse
Affiliation(s)
- Cassondra L. Williams
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, CA 92106, USA
| | - Paul J. Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
3
|
Sutton GJ, Botha JA, Speakman JR, Arnould JPY. Validating accelerometry-derived proxies of energy expenditure using the doubly labelled water method in the smallest penguin species. Biol Open 2021; 10:bio.055475. [PMID: 33722801 PMCID: PMC8034874 DOI: 10.1242/bio.055475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Understanding energy use is central to understanding an animal's physiological and behavioural ecology. However, directly measuring energy expenditure in free-ranging animals is inherently difficult. The doubly labelled water (DLW) method is widely used to investigate energy expenditure in a range of taxa. Although reliable, DLW data collection and analysis is both financially costly and time consuming. Dynamic body acceleration (e.g. VeDBA) calculated from animal-borne accelerometers has been used to determine behavioural patterns, and is increasingly being used as a proxy for energy expenditure. Still its performance as a proxy for energy expenditure in free-ranging animals is not well established and requires validation against established methods. In the present study, the relationship between VeDBA and the at-sea metabolic rate calculated from DLW was investigated in little penguins (Eudyptula minor) using three approaches. Both in a simple correlation and activity-specific approaches were shown to be good predictors of at-sea metabolic rate. The third approach using activity-specific energy expenditure values obtained from literature did not accurately calculate the energy expended by individuals. However, all three approaches were significantly strengthened by the addition of mean horizontal travel speed. These results provide validation for the use of accelerometry as a proxy for energy expenditure and show how energy expenditure may be influenced by both individual behaviour and environmental conditions.
Collapse
Affiliation(s)
- G J Sutton
- School of Life and Environmental Sciences, Faculty of Science & Technology, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - J A Botha
- Marine Apex Predator Research Unit (MAPRU), Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - J R Speakman
- Institute of Environmental and Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.,Center for Metabolism, Reproduction and Aging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - J P Y Arnould
- School of Life and Environmental Sciences, Faculty of Science & Technology, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia
| |
Collapse
|
4
|
Williams CL, Czapanskiy MF, John JS, St Leger J, Scadeng M, Ponganis PJ. Cervical air sac oxygen profiles in diving emperor penguins: parabronchial ventilation and the respiratory oxygen store. J Exp Biol 2021; 224:jeb230219. [PMID: 33257430 DOI: 10.1242/jeb.230219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022]
Abstract
Some marine birds and mammals can perform dives of extraordinary duration and depth. Such dive performance is dependent on many factors, including total body oxygen (O2) stores. For diving penguins, the respiratory system (air sacs and lungs) constitutes 30-50% of the total body O2 store. To better understand the role and mechanism of parabronchial ventilation and O2 utilization in penguins both on the surface and during the dive, we examined air sac partial pressures of O2 (PO2 ) in emperor penguins (Aptenodytes forsteri) equipped with backpack PO2 recorders. Cervical air sac PO2 values at rest were lower than in other birds, while the cervical air sac to posterior thoracic air sac PO2 difference was larger. Pre-dive cervical air sac PO2 values were often greater than those at rest, but had a wide range and were not significantly different from those at rest. The maximum respiratory O2 store and total body O2 stores calculated with representative anterior and posterior air sac PO2 data did not differ from prior estimates. The mean calculated anterior air sac O2 depletion rate for dives up to 11 min was approximately one-tenth that of the posterior air sacs. Low cervical air sac PO2 values at rest may be secondary to a low ratio of parabronchial ventilation to parabronchial blood O2 extraction. During dives, overlap of simultaneously recorded cervical and posterior thoracic air sac PO2 profiles supported the concept of maintenance of parabronchial ventilation during a dive by air movement through the lungs.
Collapse
Affiliation(s)
- Cassondra L Williams
- National Marine Mammal Foundation, 2240 Shelter Island Dr. #200, San Diego, CA 92106, USA
| | - Max F Czapanskiy
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93950, USA
| | - Jason S John
- Center for Ocean Health, Long Marine Laboratory, University of California, Santa Cruz, 115 McAlister Way, Santa Cruz, CA 95060, USA
| | - Judy St Leger
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| | - Miriam Scadeng
- Department of Anatomy and Medical Imaging, Faculty of Health and Medical Sciences, University of Auckland, Auckland 1142, New Zealand
- Center for Functional Magnetic Resonance Imaging, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul J Ponganis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
5
|
Williams HJ, Taylor LA, Benhamou S, Bijleveld AI, Clay TA, de Grissac S, Demšar U, English HM, Franconi N, Gómez-Laich A, Griffiths RC, Kay WP, Morales JM, Potts JR, Rogerson KF, Rutz C, Spelt A, Trevail AM, Wilson RP, Börger L. Optimizing the use of biologgers for movement ecology research. J Anim Ecol 2019; 89:186-206. [PMID: 31424571 DOI: 10.1111/1365-2656.13094] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
The paradigm-changing opportunities of biologging sensors for ecological research, especially movement ecology, are vast, but the crucial questions of how best to match the most appropriate sensors and sensor combinations to specific biological questions and how to analyse complex biologging data, are mostly ignored. Here, we fill this gap by reviewing how to optimize the use of biologging techniques to answer questions in movement ecology and synthesize this into an Integrated Biologging Framework (IBF). We highlight that multisensor approaches are a new frontier in biologging, while identifying current limitations and avenues for future development in sensor technology. We focus on the importance of efficient data exploration, and more advanced multidimensional visualization methods, combined with appropriate archiving and sharing approaches, to tackle the big data issues presented by biologging. We also discuss the challenges and opportunities in matching the peculiarities of specific sensor data to the statistical models used, highlighting at the same time the large advances which will be required in the latter to properly analyse biologging data. Taking advantage of the biologging revolution will require a large improvement in the theoretical and mathematical foundations of movement ecology, to include the rich set of high-frequency multivariate data, which greatly expand the fundamentally limited and coarse data that could be collected using location-only technology such as GPS. Equally important will be the establishment of multidisciplinary collaborations to catalyse the opportunities offered by current and future biologging technology. If this is achieved, clear potential exists for developing a vastly improved mechanistic understanding of animal movements and their roles in ecological processes and for building realistic predictive models.
Collapse
Affiliation(s)
- Hannah J Williams
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Lucy A Taylor
- Save the Elephants, Nairobi, Kenya.,Department of Zoology, University of Oxford, Oxford, UK
| | - Simon Benhamou
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS Montpellier, Montpellier, France
| | - Allert I Bijleveld
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, Den Burg, The Netherlands
| | - Thomas A Clay
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Sophie de Grissac
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Urška Demšar
- School of Geography & Sustainable Development, University of St Andrews, St Andrews, UK
| | - Holly M English
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Novella Franconi
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Agustina Gómez-Laich
- Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET, Puerto Madryn, Chubut, Argentina
| | - Rachael C Griffiths
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - William P Kay
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Juan Manuel Morales
- Grupo de Ecología Cuantitativa, INIBIOMA-Universidad Nacional del Comahue, CONICET, Bariloche, Argentina
| | - Jonathan R Potts
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | | | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Anouk Spelt
- Department of Aerospace Engineering, University of Bristol, University Walk, UK
| | - Alice M Trevail
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Rory P Wilson
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Luca Börger
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
6
|
Ladds MA, Rosen DAS, Slip DJ, Harcourt RG. Proxies of energy expenditure for marine mammals: an experimental test of "the time trap". Sci Rep 2017; 7:11815. [PMID: 28924150 PMCID: PMC5603582 DOI: 10.1038/s41598-017-11576-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022] Open
Abstract
Direct measures of energy expenditure are difficult to obtain in marine mammals, and accelerometry may be a useful proxy. Recently its utility has been questioned as some analyses derived their measure of activity level by calculating the sum of accelerometry-based values and then comparing this summation to summed (total) energy expenditure (the so-called “time trap”). To test this hypothesis, we measured oxygen consumption of captive fur seals and sea lions wearing accelerometers during submerged swimming and calculated total and rate of energy expenditure. We compared these values with two potential proxies of energy expenditure derived from accelerometry data: flipper strokes and dynamic body acceleration (DBA). Total number of strokes, total DBA, and submergence time all predicted total oxygen consumption \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$({\boldsymbol{sV}}{{\boldsymbol{O}}}_{{\boldsymbol{2}}}$$\end{document}(sVO2 ml kg−1). However, both total DBA and total number of strokes were correlated with submergence time. Neither stroke rate nor mean DBA could predict the rate of oxygen consumption (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s\mathop{{\boldsymbol{V}}}\limits^{{\boldsymbol{.}}}{{\boldsymbol{O}}}_{{\boldsymbol{2}}}$$\end{document}sV.O2 ml min−1 kg−1). The relationship of total DBA and total strokes with total oxygen consumption is apparently a result of introducing a constant (time) into both sides of the relationship. This experimental evidence supports the conclusion that proxies derived from accelerometers cannot estimate the energy expenditure of marine mammals.
Collapse
Affiliation(s)
- Monique A Ladds
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington, 6012, New Zealand. .,Marine Predator Research Group, Department of Biological Sciences, Macquarie University, North Ryde, 2113, NSW, Australia.
| | - David A S Rosen
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - David J Slip
- Marine Predator Research Group, Department of Biological Sciences, Macquarie University, North Ryde, 2113, NSW, Australia.,Taronga Conservation Society Australia, Bradley's Head Road, Mosman, 2088, NSW, Australia
| | - Robert G Harcourt
- Marine Predator Research Group, Department of Biological Sciences, Macquarie University, North Ryde, 2113, NSW, Australia
| |
Collapse
|
7
|
Rey B, Dégletagne C, Bodennec J, Monternier PA, Mortz M, Roussel D, Romestaing C, Rouanet JL, Tornos J, Duchamp C. Hormetic response triggers multifaceted anti-oxidant strategies in immature king penguins (Aptenodytes patagonicus). Free Radic Biol Med 2016; 97:577-587. [PMID: 27449544 DOI: 10.1016/j.freeradbiomed.2016.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/10/2016] [Accepted: 07/18/2016] [Indexed: 12/11/2022]
Abstract
Repeated deep dives are highly pro-oxidative events for air-breathing aquatic foragers such as penguins. At fledging, the transition from a strictly terrestrial to a marine lifestyle may therefore trigger a complex set of anti-oxidant responses to prevent chronic oxidative stress in immature penguins but these processes are still undefined. By combining in vivo and in vitro approaches with transcriptome analysis, we investigated the adaptive responses of sea-acclimatized (SA) immature king penguins (Aptenodytes patagonicus) compared with pre-fledging never-immersed (NI) birds. In vivo, experimental immersion into cold water stimulated a higher thermogenic response in SA penguins than in NI birds, but both groups exhibited hypothermia, a condition favouring oxidative stress. In vitro, the pectoralis muscles of SA birds displayed increased oxidative capacity and mitochondrial protein abundance but unchanged reactive oxygen species (ROS) generation per g tissue because ROS production per mitochondria was reduced. The genes encoding oxidant-generating proteins were down-regulated in SA birds while mRNA abundance and activity of the main antioxidant enzymes were up-regulated. Genes encoding proteins involved in repair mechanisms of oxidized DNA or proteins and in degradation processes were also up-regulated in SA birds. Sea life also increased the degree of fatty acid unsaturation in muscle mitochondrial membranes resulting in higher intrinsic susceptibility to ROS. Oxidative damages to protein or DNA were reduced in SA birds. Repeated experimental immersions of NI penguins in cold-water partially mimicked the effects of acclimatization to marine life, modified the expression of fewer genes related to oxidative stress but in a similar way as in SA birds and increased oxidative damages to DNA. It is concluded that the multifaceted plasticity observed after marine life may be crucial to maintain redox homeostasis in active tissues subjected to high pro-oxidative pressure in diving birds. Initial immersions in cold-water may initiate an hormetic response triggering essential changes in the adaptive antioxidant response to marine life.
Collapse
Affiliation(s)
- Benjamin Rey
- Université de Lyon, Université Lyon 1, CNRS - Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France; Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Cyril Dégletagne
- Université de Lyon; Université Lyon 1, CNRS - Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne Cedex, France.
| | - Jacques Bodennec
- Université de Lyon, Université Lyon 1, CNRS - Neuroscience Research Centre, Villeurbanne, France.
| | - Pierre-Axel Monternier
- Université de Lyon; Université Lyon 1, CNRS - Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne Cedex, France.
| | - Mathieu Mortz
- Université de Lyon; Université Lyon 1, CNRS - Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne Cedex, France.
| | - Damien Roussel
- Université de Lyon; Université Lyon 1, CNRS - Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne Cedex, France.
| | - Caroline Romestaing
- Université de Lyon; Université Lyon 1, CNRS - Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne Cedex, France.
| | - Jean-Louis Rouanet
- Université de Lyon; Université Lyon 1, CNRS - Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne Cedex, France.
| | - Jeremy Tornos
- Université de Lyon; Université Lyon 1, CNRS - Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne Cedex, France.
| | - Claude Duchamp
- Université de Lyon; Université Lyon 1, CNRS - Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne Cedex, France.
| |
Collapse
|
8
|
Diving physiology of seabirds and marine mammals: Relevance, challenges and some solutions for field studies. Comp Biochem Physiol A Mol Integr Physiol 2016; 202:38-52. [PMID: 27421239 DOI: 10.1016/j.cbpa.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 11/20/2022]
Abstract
To fully understand how diving seabirds and marine mammals balance the potentially conflicting demands of holding their breath while living their lives underwater (and maintaining physiological homeostasis during exercise, feeding, growth, and reproduction), physiological studies must be conducted with animals in their natural environments. The purpose of this article is to review the importance of making physiological measurements on diving animals in field settings, while acknowledging the challenges and highlighting some solutions. The most extreme divers are great candidates for study, especially in a comparative and mechanistic context. However, physiological data are also required of a wide range of species for problems relating to other disciplines, in particular ecology and conservation biology. Physiological data help with understanding and predicting the outcomes of environmental change, and the direct impacts of anthropogenic activities. Methodological approaches that have facilitated the development of field-based diving physiology include the isolated diving hole protocol and the translocation paradigm, and while there are many techniques for remote observation, animal-borne biotelemetry, or "biologging", has been critical. We discuss issues related to the attachment of instruments, the retrieval of data and sensing of physiological variables, while also considering negative impacts of tagging. This is illustrated with examples from a variety of species, and an in-depth look at one of the best studied and most extreme divers, the emperor penguin (Aptenodytes forsteri). With a variety of approaches and high demand for data on the physiology of diving seabirds and marine mammals, the future of field studies is bright.
Collapse
|
9
|
Adachi T, Maresh JL, Robinson PW, Peterson SH, Costa DP, Naito Y, Watanabe YY, Takahashi A. The foraging benefits of being fat in a highly migratory marine mammal. Proc Biol Sci 2015; 281:rspb.2014.2120. [PMID: 25377461 DOI: 10.1098/rspb.2014.2120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Foraging theory predicts that breath-hold divers adjust the time spent foraging at depth relative to the energetic cost of swimming, which varies with buoyancy (body density). However, the buoyancy of diving animals varies as a function of their body condition, and the effects of these changes on swimming costs and foraging behaviour have been poorly examined. A novel animal-borne accelerometer was developed that recorded the number of flipper strokes, which allowed us to monitor the number of strokes per metre swam (hereafter, referred to as strokes-per-metre) by female northern elephant seals over their months-long, oceanic foraging migrations. As negatively buoyant seals increased their fat stores and buoyancy, the strokes-per-metre increased slightly in the buoyancy-aided direction (descending), but decreased significantly in the buoyancy-hindered direction (ascending), with associated changes in swim speed and gliding duration. Overall, the round-trip strokes-per-metre decreased and reached a minimum value when seals achieved neutral buoyancy. Consistent with foraging theory, seals stayed longer at foraging depths when their round-trip strokes-per-metre was less. Therefore, neutrally buoyant divers gained an energetic advantage via reduced swimming costs, which resulted in an increase in time spent foraging at depth, suggesting a foraging benefit of being fat.
Collapse
Affiliation(s)
- Taiki Adachi
- Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Tachikawa, Tokyo, Japan
| | - Jennifer L Maresh
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Patrick W Robinson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Sarah H Peterson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Yasuhiko Naito
- National Institute of Polar Research, Tachikawa, Tokyo, Japan
| | - Yuuki Y Watanabe
- Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Tachikawa, Tokyo, Japan National Institute of Polar Research, Tachikawa, Tokyo, Japan
| | - Akinori Takahashi
- Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Tachikawa, Tokyo, Japan National Institute of Polar Research, Tachikawa, Tokyo, Japan
| |
Collapse
|
10
|
Shiomi K, Sato K, Ponganis PJ. Point of no return in diving emperor penguins: is the timing of the decision to return limited by the number of strokes? ACTA ACUST UNITED AC 2012; 215:135-40. [PMID: 22162861 DOI: 10.1242/jeb.064568] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At some point in a dive, breath-hold divers must decide to return to the surface to breathe. The issue of when to end a dive has been discussed intensively in terms of foraging ecology and behavioral physiology, using dive duration as a temporal parameter. Inevitably, however, a time lag exists between the decision of animals to start returning to the surface and the end of the dive, especially in deep dives. In the present study, we examined the decision time in emperor penguins under two different conditions: during foraging trips at sea and during dives at an artificial isolated dive hole. It was found that there was an upper limit for the decision-to-return time irrespective of dive depth in birds diving at sea. However, in a large proportion of dives at the isolated dive hole, the decision-to-return time exceeded the upper limit at sea. This difference between the decision times in dives at sea versus the isolated dive hole was accounted for by a difference in stroke rate. The stroke rates were much lower in dives at the isolated hole and were inversely correlated with the upper limit of decision times in individual birds. Unlike the decision time to start returning, the cumulative number of strokes at the decision time fell within a similar range in the two experiments. This finding suggests that the number of strokes, but not elapsed time, constrained the decision of emperor penguins to return to the surface. While the decision to return and to end a dive may be determined by a variety of ecological, behavioral and physiological factors, the upper limit to that decision time may be related to cumulative muscle workload.
Collapse
Affiliation(s)
- Kozue Shiomi
- International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 2-106-1 Akahama, Otsuchi, Iwate 028-1102, Japan.
| | | | | |
Collapse
|
11
|
Williams CL, Sato K, Shiomi K, Ponganis PJ. Muscle energy stores and stroke rates of emperor penguins: implications for muscle metabolism and dive performance. Physiol Biochem Zool 2012; 85:120-33. [PMID: 22418705 DOI: 10.1086/664698] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In diving birds and mammals, bradycardia and peripheral vasoconstriction potentially isolate muscle from the circulation. During complete ischemia, ATP production is dependent on the size of the myoglobin oxygen (O(2)) store and the concentrations of phosphocreatine (PCr) and glycogen (Gly). Therefore, we measured PCr and Gly concentrations in the primary underwater locomotory muscle of emperor penguin and modeled the depletion of muscle O(2) and those energy stores under conditions of complete ischemia and a previously determined muscle metabolic rate. We also analyzed stroke rate to assess muscle workload variation during dives and evaluate potential limitations on the model. Measured PCr and Gly concentrations, 20.8 and 54.6 mmol kg(-1), respectively, were similar to published values for nondiving animals. The model demonstrated that PCr and Gly provide a large anaerobic energy store, even for dives longer than 20 min. Stroke rate varied throughout the dive profile, indicating muscle workload was not constant during dives as was assumed in the model. The stroke rate during the first 30 s of dives increased with increased dive depth. In extremely long dives, lower overall stroke rates were observed. Although O(2) consumption and energy store depletion may vary during dives, the model demonstrated that PCr and Gly, even at concentrations typical of terrestrial birds and mammals, are a significant anaerobic energy store and can play an important role in the emperor penguin's ability to perform long dives.
Collapse
Affiliation(s)
- Cassondra L Williams
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California 92093-0204, USA.
| | | | | | | |
Collapse
|
12
|
Sato K, Shiomi K, Marshall G, Kooyman GL, Ponganis PJ. Stroke rates and diving air volumes of emperor penguins: implications for dive performance. ACTA ACUST UNITED AC 2011; 214:2854-63. [PMID: 21832128 DOI: 10.1242/jeb.055723] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Emperor penguins (Aptenodytes forsteri), both at sea and at an experimental dive hole, often have minimal surface periods even after performance of dives far beyond their measured 5.6 min aerobic dive limit (ADL: dive duration associated with the onset of post-dive blood lactate accumulation). Accelerometer-based data loggers were attached to emperor penguins diving in these two different situations to further evaluate the capacity of these birds to perform such dives without any apparent prolonged recovery periods. Minimum surface intervals for dives as long as 10 min were less than 1 min at both sites. Stroke rates for dives at sea were significantly greater than those for dives at the isolated dive hole. Calculated diving air volumes at sea were variable, increased with maximum depth of dive to a depth of 250 m, and decreased for deeper dives. It is hypothesized that lower air volumes for the deepest dives are the result of exhalation of air underwater. Mean maximal air volumes for deep dives at sea were approximately 83% greater than those during shallow (<50 m) dives. We conclude that (a) dives beyond the 5.6 min ADL do not always require prolongation of surface intervals in emperor penguins, (b) stroke rate at sea is greater than at the isolated dive hole and, therefore, a reduction in muscle stroke rate does not extend the duration of aerobic metabolism during dives at sea, and (c) a larger diving air volume facilitates performance of deep dives by increasing the total body O(2) store to 68 ml O(2) kg(-1). Although increased O(2) storage and cardiovascular adjustments presumably optimize aerobic metabolism during dives, enhanced anaerobic capacity and hypoxemic tolerance are also essential for longer dives. This was exemplified by a 27.6 min dive, after which the bird required 6 min before it stood up from a prone position, another 20 min before it began to walk, and 8.4 h before it dived again.
Collapse
Affiliation(s)
- Katsufumi Sato
- International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 2-106-1, Akahama, Otsuchi, Iwate, 028-1102, Japan
| | | | | | | | | |
Collapse
|
13
|
Ponganis PJ, Meir JU, Williams CL. In pursuit of Irving and Scholander: a review of oxygen store management in seals and penguins. J Exp Biol 2011; 214:3325-39. [DOI: 10.1242/jeb.031252] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Since the introduction of the aerobic dive limit (ADL) 30 years ago, the concept that most dives of marine mammals and sea birds are aerobic in nature has dominated the interpretation of their diving behavior and foraging ecology. Although there have been many measurements of body oxygen stores, there have been few investigations of the actual depletion of those stores during dives. Yet, it is the pattern, rate and magnitude of depletion of O2 stores that underlie the ADL. Therefore, in order to assess strategies of O2 store management, we review (a) the magnitude of O2 stores, (b) past studies of O2 store depletion and (c) our recent investigations of O2 store utilization during sleep apnea and dives of elephant seals (Mirounga angustirostris) and during dives of emperor penguins (Aptenodytes forsteri). We conclude with the implications of these findings for (a) the physiological responses underlying O2 store utilization, (b) the physiological basis of the ADL and (c) the value of extreme hypoxemic tolerance and the significance of the avoidance of re-perfusion injury in these animals.
Collapse
Affiliation(s)
- Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| | - Jessica U. Meir
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cassondra L. Williams
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
14
|
Williams CL, Meir JU, Ponganis PJ. What triggers the aerobic dive limit? Patterns of muscle oxygen depletion during dives of emperor penguins. J Exp Biol 2011; 214:1802-12. [PMID: 21562166 PMCID: PMC3092726 DOI: 10.1242/jeb.052233] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2011] [Indexed: 11/20/2022]
Abstract
The physiological basis of the aerobic dive limit (ADL), the dive duration associated with the onset of post-dive blood lactate elevation, is hypothesized to be depletion of the muscle oxygen (O(2)) store. A dual wavelength near-infrared spectrophotometer was developed and used to measure myoglobin (Mb) O(2) saturation levels in the locomotory muscle during dives of emperor penguins (Aptenodytes forsteri). Two distinct patterns of muscle O(2) depletion were observed. Type A dives had a monotonic decline, and, in dives near the ADL, the muscle O(2) store was almost completely depleted. This pattern of Mb desaturation was consistent with lack of muscle blood flow and supports the hypothesis that the onset of post-dive blood lactate accumulation is secondary to muscle O(2) depletion during dives. The mean type A Mb desaturation rate allowed for calculation of a mean muscle O(2) consumption of 12.4 ml O(2) kg(-1) muscle min(-1), based on a Mb concentration of 6.4 g 100 g(-1) muscle. Type B desaturation patterns demonstrated a more gradual decline, often reaching a mid-dive plateau in Mb desaturation. This mid-dive plateau suggests maintenance of some muscle perfusion during these dives. At the end of type B dives, Mb desaturation rate increased and, in dives beyond the ADL, Mb saturation often reached near 0%. Thus, although different physiological strategies may be used during emperor penguin diving, both Mb desaturation patterns support the hypothesis that the onset of post-dive lactate accumulation is secondary to muscle O(2) store depletion.
Collapse
Affiliation(s)
- Cassondra L Williams
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA.
| | | | | |
Collapse
|
15
|
Aguilar Soto N, Johnson MP, Madsen PT, Díaz F, Domínguez I, Brito A, Tyack P. Cheetahs of the deep sea: deep foraging sprints in short-finned pilot whales off Tenerife (Canary Islands). J Anim Ecol 2008; 77:936-47. [PMID: 18444999 DOI: 10.1111/j.1365-2656.2008.01393.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Natacha Aguilar Soto
- BIOECOMAC Department of Animal Biology, La Laguna University, Tenerife, Canary Islands, Spain.
| | | | | | | | | | | | | |
Collapse
|
16
|
Seifert L, Boulesteix L, Chollet D, Vilas-Boas J. Differences in spatial-temporal parameters and arm–leg coordination in butterfly stroke as a function of race pace, skill and gender. Hum Mov Sci 2008; 27:96-111. [DOI: 10.1016/j.humov.2007.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 07/31/2007] [Accepted: 08/14/2007] [Indexed: 11/25/2022]
|
17
|
Hays GC, Forman DW, Harrington LA, Harrington AL, MacDonald DW, Righton D. Recording the free-living behaviour of small-bodied, shallow-diving animals with data loggers. J Anim Ecol 2007; 76:183-90. [PMID: 17184367 DOI: 10.1111/j.1365-2656.2006.01181.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Time-depth data recorders (TDRs) have been widely used to explore the behaviour of relatively large, deep divers. However, little is known about the dive behaviour of small, shallow divers such as semi-aquatic mammals. 2. We used high-resolution TDRs to record the diving behaviour of American mink Mustela vison (weight of individuals 580-1275 g) in rivers in Oxfordshire (UK) between December 2005 and March 2006. 3. Dives to > 0.2 m were measured in all individuals (n = 6). Modal dive depth and duration were 0.3 m and 10 s, respectively, although dives up to 3 m and 60 s in duration were recorded. Dive duration increased with dive depth. 4. Temperature data recorded by TDRs covaried with diving behaviour: they were relatively cold (modal temperature 4-6 degrees C across individuals) when mink were diving and relatively warm (modal temperature 24-36 degrees C across individuals) when mink were not diving. 5. Individuals differed hugely in their use of rivers, reflecting foraging plasticity across both terrestrial and aquatic environments. For some individuals there was < 1 dive per day while for others there was > 100 dives per day. 6. We have shown it is now possible to record the diving behaviour of small free-living animals that only dive a few tens of centimetres, opening up the way for a new range of TDR studies on shallow diving species.
Collapse
Affiliation(s)
- Graeme C Hays
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Tubney House, Abingdon Road, Tubney, OXON OX13 5QL, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Schmidt A, Alard F, Handrich Y. Changes in body temperature in king penguins at sea: the result of fine adjustments in peripheral heat loss? Am J Physiol Regul Integr Comp Physiol 2006; 291:R608-18. [PMID: 16627689 DOI: 10.1152/ajpregu.00826.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate thermoregulatory adjustments at sea, body temperatures (the pectoral muscle and the brood patch) and diving behavior were monitored during a foraging trip of several days at sea in six breeding king penguins Aptenodytes patagonicus. During inactive phases at sea (water temperature: 4-7 degrees C), all tissues measured were maintained at normothermic temperatures. The brood patch temperature was maintained at the same values as those measured when brooding on shore (38 degrees C). This high temperature difference causes a significant loss of heat. We hypothesize that high-energy expenditure associated with elevated peripheral temperature when resting at sea is the thermoregulatory cost that a postabsorptive penguin has to face for the restoration of its subcutaneous body fat. During diving, mean pectoral temperature was 37.6 +/- 1.6 degrees C. While being almost normothermic on average, the temperature of the pectoral muscle was still significantly lower than during inactivity in five out of the six birds and underwent temperature drops of up to 5.5 degrees C. Mean brood patch temperature was 29.6 +/- 2.5 degrees C during diving, and temperature decreases of up to 21.6 degrees C were recorded. Interestingly, we observed episodes of brood patch warming during the descent to depth, suggesting that, in some cases, king penguins may perform active thermolysis using the brood patch. It is hypothesized that functional pectoral temperature may be regulated through peripheral adjustments in blood perfusion. These two paradoxical features, i.e., lower temperature of deep tissues during activity and normothermic peripheral tissues while inactive, may highlight the key to the energetics of this diving endotherm while foraging at sea.
Collapse
Affiliation(s)
- Alexander Schmidt
- Institut Pluridisciplinaire Hubert Curien, Unité Mixte de Recherche 7178, Departement d'Ecologie, Physiologie, et Ethologie, Université Henri Poincaré, Strasbourg, France.
| | | | | |
Collapse
|
19
|
Ribak G, Klein N, Weihs D, Arad Z. Adjustment of submerged swimming to changes in buoyancy in cormorants. CAN J ZOOL 2006. [DOI: 10.1139/z06-008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Waterbirds are buoyant because of volumes of air in their plumage and respiratory tract. When they are submerged, their buoyancy is reduced, owing to compression of these volumes of air with depth. We tested how the horizontal submerged swimming of cormorants (Phalacrocorax carbo sinensis (Blumelbach, 1798)) changed when their buoyancy was artificially reduced. Birds were filmed swimming under water once with lead weights (density 11 000 kg·m–3) and again with "dummy" weights (density 1100 kg·m–3) attached to their body. The dummy weights had negligible weight under water and served as control for the increased drag in the experiment. Cormorants swimming with weights tilted their bodies at an angle of 3°–7° below the swimming direction, whereas the body of birds in the control groups was tilted at 14°–16°. The tilt of the body affected the orientation and trajectory of the tail and feet during swimming. A hydrodynamic analysis showed that the lesser tilt of the body (while swimming with weights equivalent to 26% of body weight) resulted in a 55%–57% reduction of the vertical hydrodynamic forces (lift, drag, and thrust) generated by the birds to overcome buoyancy. When more weights were added and the birds became negatively buoyant, these vertical forces changed direction to prevent sinking. Thus, by adjusting the tilt of the body, the birds may dynamically control their buoyancy to maintain straight horizontal swimming despite changes in buoyancy.
Collapse
|