1
|
Ospina-Rozo L, Medina I, Hugall A, Rankin KJ, Roberts NW, Roberts A, Mitchell A, Reid CAM, Moussalli A, Stuart-Fox D. Polarization and reflectance are linked to climate, size and mechanistic constraints in a group of scarab beetles. Sci Rep 2024; 14:29349. [PMID: 39592655 PMCID: PMC11599573 DOI: 10.1038/s41598-024-80325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Beetles exhibit an extraordinary diversity of brilliant and colourful appearances and optical effects invisible to humans. Their underlying mechanisms have received some attention, but we know little about the ecological variables driving their evolution. Here we investigated environmental correlates of reflectivity and circular polarization in a group of optically diverse beetles (Scarabaeidae-Rutelinae). We quantified the optical properties of 261 specimens representing 46 species using spectrophotometry and calibrated photographs. Then, we examined associations between these properties and environmental variables such as temperature, humidity and vegetation cover, controlling for body size and phylogenetic relatedness. Our results showed larger beetles have higher visible reflectivity in drier environments. Unexpectedly, near-infrared (NIR) reflectivity was not correlated with ecological variables. However, we found a correlation between humidity and polarization (chiral nanostructures). We identified trade-offs between optical properties: beetles without polarization-associated nanostructures had higher NIR reflectivity. By contrast, visible reflectivity was negatively correlated with the accumulation of pigments such as melanin. Our study highlights the value of a macroecological approach for testing alternative hypotheses to explain the diversity of optical effects in beetles and to understand the link between structure and function.
Collapse
Affiliation(s)
- Laura Ospina-Rozo
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Iliana Medina
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew Hugall
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- Sciences Department, Museum Victoria, GPO Box 666E, Melbourne, VIC, 3001, Australia
| | - Katrina J Rankin
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Ann Roberts
- ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew Mitchell
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Chris A M Reid
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Adnan Moussalli
- Sciences Department, Museum Victoria, GPO Box 666E, Melbourne, VIC, 3001, Australia
| | - Devi Stuart-Fox
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
2
|
McCoy DE, Shultz AJ, Dall JE, Dionne JA, Johnsen S. The carotenoid redshift: Physical basis and implications for visual signaling. Ecol Evol 2023; 13:e10408. [PMID: 37693937 PMCID: PMC10485323 DOI: 10.1002/ece3.10408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023] Open
Abstract
Carotenoid pigments are the basis for much red, orange, and yellow coloration in nature and central to visual signaling. However, as pigment concentration increases, carotenoid signals not only darken and become more saturated but they also redshift; for example, orange pigments can look red at higher concentration. This occurs because light experiences exponential attenuation, and carotenoid-based signals have spectrally asymmetric reflectance in the visible range. Adding pigment disproportionately affects the high-absorbance regions of the reflectance spectra, which redshifts the perceived hue. This carotenoid redshift is substantial and perceivable by animal observers. In addition, beyond pigment concentration, anything that increases the path length of light through pigment causes this redshift (including optical nano- and microstructures). For example, male Ramphocelus tanagers appear redder than females, despite the same population and concentration of carotenoids, due to microstructures that enhance light-pigment interaction. This mechanism of carotenoid redshift has sensory and evolutionary consequences for honest signaling in that structures that redshift carotenoid ornaments may decrease signal honesty. More generally, nearly all colorful signals vary in hue, saturation, and brightness as light-pigment interactions change, due to spectrally asymmetrical reflectance within the visible range of the relevant species. Therefore, the three attributes of color need to be considered together in studies of honest visual signaling.
Collapse
Affiliation(s)
- Dakota E. McCoy
- Department of Materials Science and EngineeringStanford UniversityStanfordCaliforniaUSA
- Hopkins Marine StationStanford UniversityPacific GroveCaliforniaUSA
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Allison J. Shultz
- Ornithology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCaliforniaUSA
| | - Jacqueline E. Dall
- Ornithology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCaliforniaUSA
| | - Jennifer A. Dionne
- Department of Materials Science and EngineeringStanford UniversityStanfordCaliforniaUSA
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Sönke Johnsen
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
3
|
Terrill RS, Shultz AJ. Feather function and the evolution of birds. Biol Rev Camb Philos Soc 2023; 98:540-566. [PMID: 36424880 DOI: 10.1111/brv.12918] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
The ability of feathers to perform many functions either simultaneously or at different times throughout the year or life of a bird is integral to the evolutionary history of birds. Many studies focus on single functions of feathers, but any given feather performs many functions over its lifetime. These functions necessarily interact with each other throughout the evolution and development of birds, so our knowledge of avian evolution is incomplete without understanding the multifunctionality of feathers, and how different functions may act synergistically or antagonistically during natural selection. Here, we review how feather functions interact with avian evolution, with a focus on recent technological and discovery-based advances. By synthesising research into feather functions over hierarchical scales (pattern, arrangement, macrostructure, microstructure, nanostructure, molecules), we aim to provide a broad context for how the adaptability and multifunctionality of feathers have allowed birds to diversify into an astounding array of environments and life-history strategies. We suggest that future research into avian evolution involving feather function should consider multiple aspects of a feather, including multiple functions, seasonal wear and renewal, and ecological or mechanical interactions. With this more holistic view, processes such as the evolution of avian coloration and flight can be understood in a broader and more nuanced context.
Collapse
Affiliation(s)
- Ryan S Terrill
- Moore Laboratory of Zoology, Occidental College, 1600 Campus rd., Los Angeles, CA, 90042, USA
- Department of Biological Sciences, California State University, Stanislaus, Turlock, CA, 95382, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA, 90007, USA
| |
Collapse
|
4
|
Ng EYX, Li S, Zhang D, Garg KM, Song G, Martinez J, Hung LM, Tu VT, Fuchs J, Dong L, Olsson U, Huang Y, Alström P, Rheindt FE, Lei F. Genome‐wide
SNPs
confirm plumage polymorphism and hybridisation within a
Cyornis
flycatcher species complex. ZOOL SCR 2022. [DOI: 10.1111/zsc.12568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Elize Y. X. Ng
- Department of Biological Sciences National University of Singapore Singapore Singapore
- Discipline of Biological Science, School of Natural Sciences University of Tasmania Hobart Tasmania Australia
| | - Siqi Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Sciences Shaanxi Normal University Xi'an China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Kritika M. Garg
- Department of Biological Sciences National University of Singapore Singapore Singapore
- Centre for Interdisciplinary Archaeological Research Ashoka University Sonipat India
- Department of Biology Ashoka University Sonipat India
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
| | | | - Le Manh Hung
- Institute of Ecology and Biological Resources, Graduate University of Science and Technology Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Graduate University of Science and Technology Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Jérôme Fuchs
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle CNRS, 22 S U, EPHE, UA CP51 Paris France
| | - Lu Dong
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences Beijing Normal University Beijing China
| | - Urban Olsson
- Systematics and Biodiversity, Department of Biology and Environmental Sciences University of Gothenburg Gothenburg Sweden
- Gothenburg Global Biodiversity Center Göteborg Sweden
| | - Yuan Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Per Alström
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Frank E. Rheindt
- Department of Biological Sciences National University of Singapore Singapore Singapore
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| |
Collapse
|
5
|
Venable GX, Gahm K, Prum RO. Hummingbird plumage color diversity exceeds the known gamut of all other birds. Commun Biol 2022; 5:576. [PMID: 35739263 PMCID: PMC9226176 DOI: 10.1038/s42003-022-03518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
A color gamut quantitatively describes the diversity of a taxon's integumentary coloration as seen by a specific organismal visual system. We estimated the plumage color gamut of hummingbirds (Trochilidae), a family known for its diverse barbule structural coloration, using a tetrahedral avian color stimulus space and spectra from a taxonomically diverse sample of 114 species. The spectra sampled occupied 34.2% of the total diversity of colors perceivable by hummingbirds, which suggests constraints on their plumage color production. However, the size of the hummingbird color gamut is equivalent to, or greater than, the previous estimate of the gamut for all birds. Using the violet cone type visual system, our new data for hummingbirds increases the avian color gamut by 56%. Our results demonstrate that barbule structural color is the most evolvable plumage coloration mechanism, achieving unique, highly saturated colors with multi-reflectance peaks.
Collapse
Affiliation(s)
- Gabriela X Venable
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
| | - Kaija Gahm
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Department of Ecology and Evolution, Univeristy of California, Los Angeles, California, CA, USA
| | - Richard O Prum
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Moncrieff AE, Faircloth BC, Brumfield RT. Systematics of Lepidothrix manakins (Aves: Passeriformes: Pipridae) using RADcap markers. Mol Phylogenet Evol 2022; 173:107525. [DOI: 10.1016/j.ympev.2022.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
|
7
|
McCoy DE, Shultz AJ, Vidoudez C, van der Heide E, Dall JE, Trauger SA, Haig D. Microstructures amplify carotenoid plumage signals in tanagers. Sci Rep 2021; 11:8582. [PMID: 33883641 PMCID: PMC8060279 DOI: 10.1038/s41598-021-88106-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/08/2021] [Indexed: 02/02/2023] Open
Abstract
Brilliantly-colored birds are a model system for research into evolution and sexual selection. Red, orange, and yellow carotenoid-colored plumages have been considered honest signals of condition; however, sex differences in feather pigments and microstructures are not well understood. Here, we show that microstructures, rather than carotenoid pigments, seem to be a major driver of male-female color differences in the social, sexually-dimorphic tanager genus Ramphocelus. We comprehensively quantified feather (i) color (using spectrophotometry), (ii) pigments (using liquid chromatography-mass spectrometry (LC-MS)), and (iii) microstructures (using scanning electron microscopy (SEM) and finite-difference time-domain (FDTD) optical modeling). Males have significantly more saturated color patches than females. However, our exploratory analysis of pigments suggested that males and females have concordant carotenoid pigment profiles across all species (MCMCglmm model, female:male ratio = 0.95). Male, but not female, feathers have elaborate microstructures which amplify color appearance. Oblong, expanded feather barbs in males enhance color saturation (for the same amount of pigment) by increasing the transmission of optical power through the feather. Dihedral barbules (vertically-angled, strap-shaped barbules) in males reduce total reflectance to generate "super black" and "velvet red" plumage. Melanin in females explains some, but not all, of the male-female plumage differences. Our results suggest that a widely cited index of honesty, carotenoid pigments, cannot fully explain male appearance. We propose that males are selected to evolve amplifiers-in this case, microstructures that enhance appearance-that are not necessarily themselves linked to quality.
Collapse
Affiliation(s)
- Dakota E McCoy
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| | - Allison J Shultz
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Informatics Group, Harvard University, 38 Oxford Street, Cambridge, MA, 02138, USA
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Ornithology Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd, Los Angeles, CA, 90007, USA
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Harvard University, 52 Oxford Street (B2), Cambridge, MA, 02138, USA
| | - Emma van der Heide
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Jacqueline E Dall
- Ornithology Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd, Los Angeles, CA, 90007, USA
| | - Sunia A Trauger
- Harvard Center for Mass Spectrometry, Harvard University, 52 Oxford Street (B2), Cambridge, MA, 02138, USA
| | - David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
8
|
Liénard MA, Bernard GD, Allen A, Lassance JM, Song S, Childers RR, Yu N, Ye D, Stephenson A, Valencia-Montoya WA, Salzman S, Whitaker MRL, Calonje M, Zhang F, Pierce NE. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies. Proc Natl Acad Sci U S A 2021; 118:e2008986118. [PMID: 33547236 PMCID: PMC8017955 DOI: 10.1073/pnas.2008986118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Color vision has evolved multiple times in both vertebrates and invertebrates and is largely determined by the number and variation in spectral sensitivities of distinct opsin subclasses. However, because of the difficulty of expressing long-wavelength (LW) invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased toward research primarily in vertebrates. This has restricted our ability to address whether invertebrate Gq protein-coupled opsins function in a novel or convergent way compared to vertebrate Gt opsins. Here we develop a robust heterologous expression system to purify invertebrate rhodopsins, identify specific amino acid changes responsible for adaptive spectral tuning, and pinpoint how molecular variation in invertebrate opsins underlie wavelength sensitivity shifts that enhance visual perception. By combining functional and optophysiological approaches, we disentangle the relative contributions of lateral filtering pigments from red-shifted LW and blue short-wavelength opsins expressed in distinct photoreceptor cells of individual ommatidia. We use in situ hybridization to visualize six ommatidial classes in the compound eye of a lycaenid butterfly with a four-opsin visual system. We show experimentally that certain key tuning residues underlying green spectral shifts in blue opsin paralogs have evolved repeatedly among short-wavelength opsin lineages. Taken together, our results demonstrate the interplay between regulatory and adaptive evolution at multiple Gq opsin loci, as well as how coordinated spectral shifts in LW and blue opsins can act together to enhance insect spectral sensitivity at blue and red wavelengths for visual performance adaptation.
Collapse
Affiliation(s)
- Marjorie A Liénard
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142;
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Gary D Bernard
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195
| | - Andrew Allen
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142
| | - Jean-Marc Lassance
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Siliang Song
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Richard Rabideau Childers
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Nanfang Yu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027
| | - Dajia Ye
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Adriana Stephenson
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Wendy A Valencia-Montoya
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Shayla Salzman
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Melissa R L Whitaker
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | | | - Feng Zhang
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Cambridge, MA 02139
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138;
| |
Collapse
|
9
|
Dou S, Xu H, Zhao J, Zhang K, Li N, Lin Y, Pan L, Li Y. Bioinspired Microstructured Materials for Optical and Thermal Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000697. [PMID: 32686250 DOI: 10.1002/adma.202000697] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Precise optical and thermal regulatory systems are found in nature, specifically in the microstructures on organisms' surfaces. In fact, the interaction between light and matter through these microstructures is of great significance to the evolution and survival of organisms. Furthermore, the optical regulation by these biological microstructures is engineered owing to natural selection. Herein, the role that microstructures play in enhancing optical performance or creating new optical properties in nature is summarized, with a focus on the regulation mechanisms of the solar and infrared spectra emanating from the microstructures and their role in the field of thermal radiation. The causes of the unique optical phenomena are discussed, focusing on prevailing characteristics such as high absorption, high transmission, adjustable reflection, adjustable absorption, and dynamic infrared radiative design. On this basis, the comprehensive control performance of light and heat integrated by this bioinspired microstructure is introduced in detail and a solution strategy for the development of low-energy, environmentally friendly, intelligent thermal control instruments is discussed. In order to develop such an instrument, a microstructural design foundation is provided.
Collapse
Affiliation(s)
- Shuliang Dou
- National Key Laboratory of Science and Technology on Advanced Composites, Harbin Institute of Technology, Harbin, 150006, China
| | - Hongbo Xu
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiupeng Zhao
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ke Zhang
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Na Li
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yipeng Lin
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Pan
- National Key Laboratory of Science and Technology on Advanced Composites, Harbin Institute of Technology, Harbin, 150006, China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
10
|
Bermúdez-Ureña E, Kilchoer C, Lord NP, Steiner U, Wilts BD. Structural Diversity with Varying Disorder Enables the Multicolored Display in the Longhorn Beetle Sulawesiella rafaelae. iScience 2020; 23:101339. [PMID: 32688285 PMCID: PMC7371903 DOI: 10.1016/j.isci.2020.101339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
Light control through layered photonic nanostructures enables the strikingly colored displays of many beetles, birds, and butterflies. To achieve different reflected colors, natural organisms mainly rely on refractive index variations or scaling of a fixed structure design, as opposed to varying the type of structure. Here, we describe the presence of distinct coloration mechanisms in the longhorn beetle Sulawesiella rafaelae, which exhibits turquoise, yellow-green, and orange colors, each with a variable iridescence. By optical and electron microscopy, we show that the colors originate from multilayered architectures in hair-like scales with varying amounts of structural disorder. Structural characterizations and optical modeling show that the disorder strongly influences the optical properties of the scales, allowing an independent adjustment of the optical response. Our results shed light on the interplay of disorder in multilayered photonic structures and their biological significance, and could potentially inspire new ecological research and the development of novel optical components.
Collapse
Affiliation(s)
- Esteban Bermúdez-Ureña
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Cédric Kilchoer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Nathan P Lord
- Department of Entomology, Louisiana State University Agricultural Center, 404 Life Sciences Building, LSU, Baton Rouge, LA 70803, USA
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| |
Collapse
|
11
|
Dračková T, Smolinský R, Hiadlovská Z, Dolinay M, Martínková N. Quantifying colour difference in animals with variable patterning. JOURNAL OF VERTEBRATE BIOLOGY 2020. [DOI: 10.25225/jvb.20029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tereza Dračková
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic; e-mail:
| | - Radovan Smolinský
- Department of Biology, Faculty of Education, Masaryk University, Brno, Czech Republic; e-mail:
| | - Zuzana Hiadlovská
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic; e-mail:
| | - Matej Dolinay
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; e-mail:
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; e-mail:
| |
Collapse
|