1
|
Van Wert JC, Ekström AT, Gilbert MJH, Hendriks BJ, Cooke SJ, Patterson DA, Hinch SG, Eliason EJ. Coronary circulation enhances the aerobic performance of wild Pacific salmon. J Exp Biol 2024; 227:jeb247422. [PMID: 38841879 PMCID: PMC11418299 DOI: 10.1242/jeb.247422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Female Pacific salmon often experience higher mortality than males during their once-in-a-lifetime up-river spawning migration, particularly when exposed to secondary stressors (e.g. high temperatures). However, the underlying mechanisms remain unknown. One hypothesis is that female Pacific salmon hearts are more oxygen-limited than those of males and are less able to supply oxygen to the body's tissues during this demanding migration. Notably, female hearts have higher coronary blood flow, which could indicate a greater reliance on this oxygen source. Oxygen limitations can develop from naturally occurring coronary blockages (i.e. coronary arteriosclerosis) found in mature salmon hearts. If female hearts rely more heavily on coronary blood flow but experience similar arteriosclerosis levels as males, they will have disproportionately impaired aerobic performance. To test this hypothesis, we measured resting (RMR) and maximum metabolic rate (MMR), aerobic scope (AS) and acute upper thermal tolerance in coho salmon (Oncorhynchus kisutch) with an intact or artificially blocked coronary oxygen supply. We also assessed venous blood oxygen and chemistry (cortisol, ions and metabolite concentrations) at different time intervals during recovery from exhaustive exercise. We found that coronary blockage impaired MMR, AS and the partial pressure of oxygen in venous blood (PvO2) during exercise recovery but did not differ between sexes. Coronary ligation lowered acute upper thermal tolerance by 1.1°C. Although we did not find evidence of enhanced female reliance on coronary supply, our findings highlight the importance of coronary blood supply for mature wild salmon, where migration success may be linked to cardiac performance, particularly during warm water conditions.
Collapse
Affiliation(s)
- Jacey C. Van Wert
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Andreas T. Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Matthew J. H. Gilbert
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Brian J. Hendriks
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4,Canada
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - David A. Patterson
- Fisheries and Oceans Canada, Aquatic Research Cooperative Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Scott G. Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4,Canada
| | - Erika J. Eliason
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Dos Santos MF, do Nascimento LM, da Paz CA, Câmara TM, Motomya YKM, da Cunha Ferreira R, da Silva Deiga Y, Monteiro E, Cantanhêde SM, Amado LL, Hamoy M. Behavioral and electrophysiological study in Colossoma macropomum treated with different concentrations of Nepeta cataria oil in an immersion bath revealed a therapeutic window for anesthesia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1651-1665. [PMID: 38801500 DOI: 10.1007/s10695-024-01361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
The purpose of this study was to characterize the activity of essential oils from Nepeta Cataria (EON) at concentrations of 125 μ L L-1, 150 μ L L-1, 175 μ L L-1, and 200 μ L L-1 on the behavior of loss of the posture reflex and recovery of the posture reflex and electrocardiographic activity and recording of the opercular beat of Colossoma macropomum during immersion bathing for a period of 5 min, in order to obtain a window for safe use during anesthesia. The fish (23.38 ± 3.5 g) were assigned to the following experiments: experiment 1 (latency to loss and recovery of the posture reflex): (a) 125 μ L L-1, (b) 150 μ L L-1, (c) 175 μ L L-1, and (d) 200 μ L L-1 (n = 9) per group. Experiment 2 (electrocardiographic and heartbeat recordings): (a) control group; (b) vehicle control group (2 ml of alcohol per liter of water), (c) 125 μ L L-1, (d) 150 μ L L-1, (e) 175 μ L L-1, and (f) 200 μ L L-1 (n = 9), per group. All the concentrations used showed efficacy in inducing loss of the posture reflex and reversibility with recovery of the posture reflex, but the electrocardiographic recordings indicated morphographic changes such as bradycardia during induction and p wave apiculation during recovery at the highest concentrations tested. In this way, we suggest a safe use window for short-term anesthesia with EON in the concentration range of 125 to 150 μ L L-1 for juvenile Colossoma macropomum.
Collapse
Affiliation(s)
- Murilo Farias Dos Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil.
| | - Lorena Meirelis do Nascimento
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Clarissa Araújo da Paz
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Tays Mata Câmara
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Yan Kenzo Monteiro Motomya
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Rayllan da Cunha Ferreira
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Yris da Silva Deiga
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Erika Monteiro
- Laboratory of Ecotoxicology, Biological Institute, Federal University of Pará, Belém, PA, Brazil
| | | | - Lílian Lund Amado
- Laboratory of Ecotoxicology, Biological Institute, Federal University of Pará, Belém, PA, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
3
|
Housh MJ, Telish J, Forsgren KL, Lema SC. Fluctuating and Stable High Temperatures Differentially Affect Reproductive Endocrinology of Female Pupfish. Integr Org Biol 2024; 6:obae003. [PMID: 38464886 PMCID: PMC10924253 DOI: 10.1093/iob/obae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/25/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024] Open
Abstract
For many fishes, reproductive function is thermally constrained such that exposure to temperatures above some upper threshold has detrimental effects on gametic development and maturation, spawning frequency, and mating behavior. Such impairment of reproductive performance at elevated temperatures involves changes to hypothalamic-pituitary-gonadal (HPG) axis signaling and diminished gonadal steroidogenesis. However, how HPG pathways respond to consistently high versus temporally elevated temperatures is not clear. Here, sexually mature Amargosa River Pupfish (Cyprinodon nevadensis amargosae) were maintained under thermal regimes of either stable ∼25°C (low temperature), diurnal cycling temperatures between ∼27 and 35°C (fluctuating temperature), or stable ∼35°C (high temperature) conditions for 50 days to examine effects of these conditions on HPG endocrine signaling components in the pituitary gland and gonad, ovarian and testicular gametogenesis status, and liver gene expression relating to oogenesis. Female pupfish maintained under stable high and fluctuating temperature treatments showed reduced gonadosomatic index values as well as a lower proportion of oocytes in the lipid droplet and vitellogenic stages. Females in both fluctuating and stable 35°C conditions exhibited reduced ovarian mRNAs for steroid acute regulatory protein (star), cholesterol side chain-cleavage enzyme, P450scc (cyp11a1), and 3β-hydroxysteroid dehydrogenase (3bhsd), while ovarian transcripts encoding 11β-hydroxysteroid dehydrogenase (11bhsd) and sex hormone-binding globulin (shbg) were elevated in females at constant 35°C only. Ovarian aromatase (cyp19a1a) mRNA levels were unaffected, but circulating 17β-estradiol (E2) was lower in females at 35°C compared to the fluctuating temperature condition. In the liver, mRNA levels for choriogenins and vitellogenin were downregulated in both the fluctuating and 35°C conditions, while hepatic estrogen receptor 2a (esr2a) and shbg mRNAs were elevated in 35°C females. Taken together, these results demonstrate the potential for elevated temperatures to impair ovarian steroidogenesis and reduce egg envelope and vitellogenin protein production in female C. n. amargosae pupfish, while also shedding light on how thermal regimes that only intermittently reach the upper thermal range for reproduction have differential impacts on reproductive endocrine pathways than constantly warm conditions.
Collapse
Affiliation(s)
- M J Housh
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - J Telish
- Department of Biological Science, California State University, Fullerton, CA 92834, USA
| | - K L Forsgren
- Department of Biological Science, California State University, Fullerton, CA 92834, USA
| | - S C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
4
|
Ekström A, Hendriks B, Van Wert JC, Gilbert MJH, Farrell AP, Cooke SJ, Patterson DA, Hinch SG, Eliason EJ. Impairing cardiac oxygen supply in swimming coho salmon compromises their heart function and tolerance to acute warming. Sci Rep 2023; 13:21204. [PMID: 38040741 PMCID: PMC10692232 DOI: 10.1038/s41598-023-47713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
Climatic warming elevates mortality for many salmonid populations during their physically challenging up-river spawning migrations, yet, the mechanisms underlying the increased mortality remain elusive. One hypothesis posits that a cardiac oxygen insufficiency impairs the heart's capacity to pump sufficient oxygen to body tissues to sustain up-river swimming, especially in warm water when oxygen availability declines and cardiac and whole-animal oxygen demand increases. We tested this hypothesis by measuring cardiac and metabolic (cardiorespiratory) performance, and assessing the upper thermal tolerance of coho salmon (Oncorhynchus kisutch) during sustained swimming and acute warming. By surgically ligating the coronary artery, which naturally accumulates arteriosclerotic lesions in migrating salmon, we partially impaired oxygen supply to the heart. Coronary ligation caused drastic cardiac impairment during swimming, even at benign temperatures, and substantially constrained cardiorespiratory performance during swimming and progressive warming compared to sham-operated control fish. Furthermore, upper thermal tolerance during swimming was markedly reduced (by 4.4 °C) following ligation. While the cardiorespiratory capacity of female salmon was generally lower at higher temperatures compared to males, upper thermal tolerance during swimming was similar between sexes within treatment groups. Cardiac oxygen supply is a crucial determinant for the migratory capacity of salmon facing climatic environmental warming.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 40530, Gothenburg, Sweden.
| | - Brian Hendriks
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jacey C Van Wert
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106-9620, USA
| | - Matthew J H Gilbert
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Anthony P Farrell
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106-9620, USA
| |
Collapse
|
5
|
Hardison EA, Kraskura K, Van Wert J, Nguyen T, Eliason EJ. Diet mediates thermal performance traits: implications for marine ectotherms. J Exp Biol 2021; 224:272691. [PMID: 34647599 DOI: 10.1242/jeb.242846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022]
Abstract
Thermal acclimation is a key process enabling ectotherms to cope with temperature change. To undergo a successful acclimation response, ectotherms require energy and nutritional building blocks obtained from their diet. However, diet is often overlooked as a factor that can alter acclimation responses. Using a temperate omnivorous fish, opaleye (Girella nigricans), as a model system, we tested the hypotheses that (1) diet can impact the magnitude of thermal acclimation responses and (2) traits vary in their sensitivity to both temperature acclimation and diet. We fed opaleye a simple omnivorous diet (ad libitum Artemia sp. and Ulva sp.) or a carnivorous diet (ad libitum Artemia sp.) at two ecologically relevant temperatures (12 and 20°C) and measured a suite of whole-animal (growth, sprint speed, metabolism), organ (cardiac thermal tolerance) and cellular-level traits (oxidative stress, glycolytic capacity). When opaleye were offered two diet options compared with one, they had reduced cardiovascular thermal performance and higher standard metabolic rate under conditions representative of the maximal seasonal temperature the population experiences (20°C). Further, sprint speed and absolute aerobic scope were insensitive to diet and temperature, while growth was highly sensitive to temperature but not diet, and standard metabolic rate and maximum heart rate were sensitive to both diet and temperature. Our results reveal that diet influences thermal performance in trait-specific ways, which could create diet trade-offs for generalist ectotherms living in thermally variable environments. Ectotherms that alter their diet may be able to regulate their performance at different environmental temperatures.
Collapse
Affiliation(s)
- Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jacey Van Wert
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tina Nguyen
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
6
|
Kraskura K, Hardison EA, Little AG, Dressler T, Prystay TS, Hendriks B, Farrell AP, Cooke SJ, Patterson DA, Hinch SG, Eliason EJ. Sex-specific differences in swimming, aerobic metabolism and recovery from exercise in adult coho salmon ( Oncorhynchus kisutch) across ecologically relevant temperatures. CONSERVATION PHYSIOLOGY 2021; 9:coab016. [PMID: 34840800 PMCID: PMC8611523 DOI: 10.1093/conphys/coab016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 06/13/2023]
Abstract
Adult female Pacific salmon can have higher migration mortality rates than males, particularly at warm temperatures. However, the mechanisms underlying this phenomenon remain a mystery. Given the importance of swimming energetics on fitness, we measured critical swim speed, swimming metabolism, cost of transport, aerobic scope (absolute and factorial) and exercise recovery in adult female and male coho salmon (Oncorhynchus kisutch) held for 2 days at 3 environmentally relevant temperatures (9°C, 14°C, 18°C) in fresh water. Critical swimming performance (U crit) was equivalent between sexes and maximal at 14°C. Absolute aerobic scope was sex- and temperature-independent, whereas factorial aerobic scope decreased with increasing temperature in both sexes. The full cost of recovery from exhaustive exercise (excess post-exercise oxygen consumption) was higher in males compared to females. Immediately following exhaustive exercise (i.e. 1 h), recovery was impaired at 18°C for both sexes. At an intermediate time scale (i.e. 5 h), recovery in males was compromised at 14°C and 18°C compared to females. Overall, swimming, aerobic metabolism, and recovery energetics do not appear to explain the phenomenon of increased mortality rates in female coho salmon. However, our results suggest that warming temperatures compromise recovery following exhaustive exercise in both male and female salmon, which may delay migration progression and could contribute to en route mortality.
Collapse
Affiliation(s)
- K Kraskura
- Department of Ecology, Evolution and Marine Biology, University of
California, Santa Barbara, California 93106, USA
| | - E A Hardison
- Department of Ecology, Evolution and Marine Biology, University of
California, Santa Barbara, California 93106, USA
| | - A G Little
- Department of Biology Biosciences Complex, Queens
University, Kingston, Ontario K7L 3N6, Canada
| | - T Dressler
- Department of Ecology, Evolution and Marine Biology, University of
California, Santa Barbara, California 93106, USA
| | - T S Prystay
- Department of Biology and Institute of Environmental and Interdisciplinary
Science, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - B Hendriks
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and
Conservation Sciences, University of British Columbia, Vancouver,
British Columbia V6T 1Z4, Canada
| | - A P Farrell
- Department of Zoology, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Faculty of Land and Food Systems, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - S J Cooke
- Department of Biology and Institute of Environmental and Interdisciplinary
Science, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - D A Patterson
- Fisheries and Oceans Canada, Science Branch, Pacific Region, School of Resource
and Environmental Management, Simon Fraser University, Burnaby,
British Columbia V5A 1S6, Canada
| | - S G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and
Conservation Sciences, University of British Columbia, Vancouver,
British Columbia V6T 1Z4, Canada
| | - E J Eliason
- Department of Ecology, Evolution and Marine Biology, University of
California, Santa Barbara, California 93106, USA
| |
Collapse
|