1
|
Michail C, Rodrigues Lima F, Viguier M, Deshayes F. Structure and function of the lysine methyltransferase SETD2 in cancer: From histones to cytoskeleton. Neoplasia 2025; 59:101090. [PMID: 39591760 PMCID: PMC11626819 DOI: 10.1016/j.neo.2024.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
SETD2 is known to be the unique histone methyltransferase responsible for the trimethylation of the lysine 36 of histone H3 thus generating H3K36me3. This epigenetic mark is critical for transcriptional activation and elongation, DNA repair, mRNA splicing, and DNA methylation. Recurrent SETD2-inactivating mutations and altered H3K36me3 levels are found in cancer at high frequency and numerous studies indicate that SETD2 acts as a tumor suppressor. Recently, SETD2 was further shown to methylate non-histone proteins particularly the cytoskeletal proteins tubulin and actin with subsequent impacts on cytoskeleton structure, mitosis and cell migration. Herein, we provide a review of the role of SETD2 in different cancers with special emphasis on the structural basis of the functions of this key lysine methyltransferase. Moreover, beyond the role of this enzyme in epigenetics and H3K36me3-dependent processes, we highlight the putative role of "non-epigenetic/H3K36me3" functions of SETD2 in cancer, particularly those involving the cytoskeleton.
Collapse
Affiliation(s)
- Christina Michail
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Fernando Rodrigues Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Mireille Viguier
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France.
| | - Frédérique Deshayes
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France.
| |
Collapse
|
2
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2024:10.1038/s41585-024-00952-1. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
3
|
Brand-Saberi B. Embryonic development grand challenge: crosslinking advances. Front Cell Dev Biol 2024; 12:1467261. [PMID: 39364136 PMCID: PMC11446776 DOI: 10.3389/fcell.2024.1467261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Research on embryonic development is entering into a new era. As a traditionally descriptive discipline within anatomy, embryologists have formed international consortia and digitized important histological collections for preservation and open access. Embryonic development has recently received a wider attention in context with temporo-spatial transcriptomics at single cell level. These can be expected to fuel the realization of the transdisciplinary significance of efforts to decipher embryonic development. Addressing its complexities encompasses a wealth of challenges that intersect across the domains of science, society, and politics underlining its outstanding importance as well as its inherently interdisciplinary nature. The challenges of this field are by no means confined to understanding the intricate biological mechanisms but also have humanitarian implications. To fully appreciate the mechanisms underlying human development, principles of embryogenesis have predominantly been analyzed employing animal models which allow us to broaden our view on developmental processes. As a result of recent pioneering work and technical progress centered around stem cell-based 3D approaches, we are entering into a historical new phase of learning about mammalian embryonic development. In vertebrates, a growing concern now focuses the reduction of animal experimentation. This perspective article outlines the major challenges in this amazing field that offer an enormous potential for basic biomedical sciences as well as related translational approaches if they are tackled in a multidisciplinary discourse.
Collapse
Affiliation(s)
- Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy Universitaetsstrasse, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Göpel T, Burggren WW. Temperature and hypoxia trigger developmental phenotypic plasticity of cardiorespiratory physiology and growth in the parthenogenetic marbled crayfish, Procambarus virginalis Lyko, 2017. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111562. [PMID: 38113959 DOI: 10.1016/j.cbpa.2023.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Attempting to differentiate phenotypic variation caused by environmentally-induced alterations in gene expression from that caused by actual allelic differences can be experimentally difficult. Environmental variables must be carefully controlled and then interindividual genetic differences ruled out as sources of phenotypic variation. We investigated phenotypic variability of cardiorespiratory physiology as well as biometric traits in the parthenogenetically-reproducing marbled crayfish Procambarus virginalis Lyko, 2017, all offspring being genetically identical clones. Populations of P. virginalis were reared from eggs tank-bred at four different temperatures (16, 19, 22 and 25 °C) or two different oxygen levels (9.5 and 20 kPa). Then, at Stage 3 and 4 juvenile stages, physiological (heart rate, oxygen consumption) and morphological (carapace length, body mass) variables were measured. Heart rate and oxygen consumption measured at 23 °C showed only small effects of rearing temperature in Stage 3 juveniles, with larger effects evident in older, Stage 4 juveniles. Additionally, coefficients of variation were calculated to compare our data to previously published data on P. virginalis as well as sexually-reproducing crayfish. Comparison revealed that carapace length, body mass and heart rate (but not oxygen consumption) indeed showed lower, yet notable coefficients of variation in clonal crayfish. Yet, despite being genetically identical, significant variation in their morphology and physiology in response to different rearing conditions nonetheless occurred in marbled crayfish. This suggests that epigenetically induced phenotypic variation might play a significant role in asexual but also sexually reproducing species.
Collapse
Affiliation(s)
- Torben Göpel
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, USA; Multiscale Biology, Georg-August-Universität Göttingen, Göttingen, Germany.
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
5
|
Ma C, Li Q, Yang Y, Ge L, Cai J, Wang J, Zhu M, Xiong Y, Zhang W, Xie J, Cao Y, Zhao H, Wei Q, Huang C, Shi J, Zhang JV, Duan E, Lei X. mTOR hypoactivity leads to trophectoderm cell failure by enhancing lysosomal activation and disrupting the cytoskeleton in preimplantation embryo. Cell Biosci 2023; 13:219. [PMID: 38037142 PMCID: PMC10688112 DOI: 10.1186/s13578-023-01176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Metabolic homeostasis is closely related to early impairment of cell fate determination and embryo development. The protein kinase mechanistic target of rapamycin (mTOR) is a key regulator of cellular metabolism in the body. Inhibition of mTOR signaling in early embryo causes postimplantation development failure, yet the mechanisms are still poorly understood. METHODS Pregnancy mice and preimplantation mouse embryo were treated with mTOR inhibitor in vivo and in vitro respectively, and subsequently examined the blastocyst formation, implantation, and post-implantation development. We used immunofluorescence staining, RNA-Seq smart2, and genome-wide bisulfite sequencing technologies to investigate the impact of mTOR inhibitors on the quality, cell fate determination, and molecular alterations in developing embryos. RESULTS We showed mTOR suppression during preimplantation decreases the rate of blastocyst formation and the competency of implantation, impairs the post implantation embryonic development. We discovered that blocking mTOR signaling negatively affected the transformation of 8-cell embryos into blastocysts and caused various deficiencies in blastocyst quality. These included problems with compromised trophectoderm cell differentiation, as well as disruptions in cell fate specification. mTOR suppression significantly affected the transcription and DNA methylation of embryos. Treatment with mTOR inhibitors increase lysosomal activation and disrupts the organization and dynamics of the actin cytoskeleton in blastocysts. CONCLUSIONS These results demonstrate that mTOR plays a crucial role in 8-cell to blastocyst transition and safeguards embryo quality during early embryo development.
Collapse
Affiliation(s)
- Chiyuan Ma
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qin Li
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuxin Yang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Lei Ge
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiaxuan Cai
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Juan Wang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Maoxian Zhu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yue Xiong
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenya Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingtong Xie
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou, 571199, China
| | - Yujing Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huashan Zhao
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qing Wei
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chen Huang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junchao Shi
- CAS Key Laboratory of Genome Sciences and Information, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Burggren WW, Mendez-Sanchez JF. "Bet hedging" against climate change in developing and adult animals: roles for stochastic gene expression, phenotypic plasticity, epigenetic inheritance and adaptation. Front Physiol 2023; 14:1245875. [PMID: 37869716 PMCID: PMC10588650 DOI: 10.3389/fphys.2023.1245875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Animals from embryos to adults experiencing stress from climate change have numerous mechanisms available for enhancing their long-term survival. In this review we consider these options, and how viable they are in a world increasingly experiencing extreme weather associated with climate change. A deeply understood mechanism involves natural selection, leading to evolution of new adaptations that help cope with extreme and stochastic weather events associated with climate change. While potentially effective at staving off environmental challenges, such adaptations typically occur very slowly and incrementally over evolutionary time. Consequently, adaptation through natural selection is in most instances regarded as too slow to aid survival in rapidly changing environments, especially when considering the stochastic nature of extreme weather events associated with climate change. Alternative mechanisms operating in a much shorter time frame than adaptation involve the rapid creation of alternate phenotypes within a life cycle or a few generations. Stochastic gene expression creates multiple phenotypes from the same genotype even in the absence of environmental cues. In contrast, other mechanisms for phenotype change that are externally driven by environmental clues include well-understood developmental phenotypic plasticity (variation, flexibility), which can enable rapid, within-generation changes. Increasingly appreciated are epigenetic influences during development leading to rapid phenotypic changes that can also immediately be very widespread throughout a population, rather than confined to a few individuals as in the case of favorable gene mutations. Such epigenetically-induced phenotypic plasticity can arise rapidly in response to stressors within a generation or across a few generations and just as rapidly be "sunsetted" when the stressor dissipates, providing some capability to withstand environmental stressors emerging from climate change. Importantly, survival mechanisms resulting from adaptations and developmental phenotypic plasticity are not necessarily mutually exclusive, allowing for classic "bet hedging". Thus, the appearance of multiple phenotypes within a single population provides for a phenotype potentially optimal for some future environment. This enhances survival during stochastic extreme weather events associated with climate change. Finally, we end with recommendations for future physiological experiments, recommending in particular that experiments investigating phenotypic flexibility adopt more realistic protocols that reflect the stochastic nature of weather.
Collapse
Affiliation(s)
- Warren W. Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Jose Fernando Mendez-Sanchez
- Laboratorio de Ecofisiología Animal, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
7
|
D'Incal CP, Van Rossem KE, De Man K, Konings A, Van Dijck A, Rizzuti L, Vitriolo A, Testa G, Gozes I, Vanden Berghe W, Kooy RF. Chromatin remodeler Activity-Dependent Neuroprotective Protein (ADNP) contributes to syndromic autism. Clin Epigenetics 2023; 15:45. [PMID: 36945042 PMCID: PMC10031977 DOI: 10.1186/s13148-023-01450-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Individuals affected with autism often suffer additional co-morbidities such as intellectual disability. The genes contributing to autism cluster on a relatively limited number of cellular pathways, including chromatin remodeling. However, limited information is available on how mutations in single genes can result in such pleiotropic clinical features in affected individuals. In this review, we summarize available information on one of the most frequently mutated genes in syndromic autism the Activity-Dependent Neuroprotective Protein (ADNP). RESULTS Heterozygous and predicted loss-of-function ADNP mutations in individuals inevitably result in the clinical presentation with the Helsmoortel-Van der Aa syndrome, a frequent form of syndromic autism. ADNP, a zinc finger DNA-binding protein has a role in chromatin remodeling: The protein is associated with the pericentromeric protein HP1, the SWI/SNF core complex protein BRG1, and other members of this chromatin remodeling complex and, in murine stem cells, with the chromodomain helicase CHD4 in a ChAHP complex. ADNP has recently been shown to possess R-loop processing activity. In addition, many additional functions, for instance, in association with cytoskeletal proteins have been linked to ADNP. CONCLUSIONS We here present an integrated evaluation of all current aspects of gene function and evaluate how abnormalities in chromatin remodeling might relate to the pleiotropic clinical presentation in individual"s" with Helsmoortel-Van der Aa syndrome.
Collapse
Affiliation(s)
- Claudio Peter D'Incal
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Kirsten Esther Van Rossem
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Kevin De Man
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anthony Konings
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Ludovico Rizzuti
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Alessandro Vitriolo
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Sackler School of Medicine, 727, 69978, Tel Aviv, Israel
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium.
| |
Collapse
|
8
|
Yu J, Yu C, Bayliss G, Zhuang S. Protein arginine methyltransferases in renal development, injury, repair, and fibrosis. Front Pharmacol 2023; 14:1123415. [PMID: 36817133 PMCID: PMC9935595 DOI: 10.3389/fphar.2023.1123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) methylate a range of histone and non-histone substrates and participate in multiple biological processes by regulating gene transcription and post-translational modifications. To date, most studies on PRMTs have focused on their roles in tumors and in the physiological and pathological conditions of other organs. Emerging evidence indicates that PRMTs are expressed in the kidney and contribute to renal development, injury, repair, and fibrosis. In this review, we summarize the role and the mechanisms of PRMTs in regulating these renal processes and provide a perspective for future clinical applications.
Collapse
Affiliation(s)
- Jianjun Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Georgia Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
9
|
Zhang Y, Zhang H, Wu W, Wang D, Lv Y, Zhao D, Wang L, Liu Y, Zhang K. Clinical and genetic features of luscan-lumish syndrome associated with a novel de novo variant of SETD2 gene: Case report and literature review. Front Genet 2023; 14:1081391. [PMID: 36777730 PMCID: PMC9911649 DOI: 10.3389/fgene.2023.1081391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction: Luscan-Lumish syndrome (LLS) is currently recognized as a rarely-observed condition featured with overgrowth, macrocephaly, obesity, type I Chiari malformation, and linguistic retardation. So far, there have been only a few LLS cases registered worldwide, but with none of them reported from China. To acquire a deeper understanding on the clinical and genetic features of this disease, a Chinese boy with LLS caused by a heterozygous variant in SETD2 gene was investigated in the present study. Methods: The patient was clinically examined and the medical history of his family was collected. Genetic testing was performed to determine the genetic etiology. Results: The proband was a boy aged 5-year-7-month-old, who was referred to our hospital due to "being a slow learner in kindergarten". The child had a history of delayed motor and language development in comparison to his peers. After admission, physical examination revealed tall stature and macrocephaly as the major manifestation, in addition to a relatively lower rating in intelligence assessment as well as abnormal MRI images showing a slightly shorter corpus callosum accompanied by a mildly thinner corpus callosum body. Whole exome sequencing (WES) revealed a heterozygous c.2514_2516delTAG (p.Ser838del) variant in SETD2 gene, which was subsequently identified as a novel de novo variant. According to the standardized genetic variant classification published by the American College of Medical Genetics and Genomics (ACMG), the variant, with a pathogenicity analysis result indicating PS2 + PM2_Supporting + PM4, was determined to be likely pathogenic. Through literature review, the clinical phenotypes of the 15 LLS cases were summarized, including 8 cases of overgrowth (53%), 13 cases of macrocephaly (87%), 11 cases of developmental delay (73%), 8 cases of autism (53%), and 7 cases of special facial features (47%). Besides, abnormal craniocerebral MRI findings were noticed in 7 cases. Despite that the mutation sites of the 15 patients varied from case to case, they showed a uniformly distributed pattern throughout the whole SETD2 gene, including 5 missense mutations, 5 frameshift mutations and 5 non-sense mutations. Conclusion: LLS, not having been recognized till recent years, is identified as an autosomal dominant syndrome triggered by SETD2 gene mutation. As the first report of LLS in China, the case in our study was proved to be associated with a unique type of SETD2 gene mutation that has never been reported previously, which is believed to enrich the mutation spectrum of SETD2 gene and also, deepening the clinicians' understanding on the disease.
Collapse
Affiliation(s)
- Yanqing Zhang
- Pediatric Healthcare Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospital), Jinan, Shandong, China
| | - Haozheng Zhang
- Pediatric Research Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospita), Jinan, Shandong, China
| | - Wei Wu
- Pediatric Healthcare Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospital), Jinan, Shandong, China
| | - Dong Wang
- Pediatric Research Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospita), Jinan, Shandong, China
| | - Yuqiang Lv
- Pediatric Research Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospita), Jinan, Shandong, China
| | - Dongmei Zhao
- Pediatric Healthcare Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospital), Jinan, Shandong, China
| | - Lingxiao Wang
- Department of General Pediatric, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China,*Correspondence: Lingxiao Wang, ; Yi Liu, ; Kaihui Zhang,
| | - Yi Liu
- Pediatric Research Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospita), Jinan, Shandong, China,*Correspondence: Lingxiao Wang, ; Yi Liu, ; Kaihui Zhang,
| | - Kaihui Zhang
- Pediatric Research Institute, Children’s Hospital affiliated to Shandong University (Jinan Children’s Hospita), Jinan, Shandong, China,*Correspondence: Lingxiao Wang, ; Yi Liu, ; Kaihui Zhang,
| |
Collapse
|
10
|
Elkin ER, Higgins C, Aung MT, Bakulski KM. Metals Exposures and DNA Methylation: Current Evidence and Future Directions. Curr Environ Health Rep 2022; 9:673-696. [PMID: 36282474 PMCID: PMC10082670 DOI: 10.1007/s40572-022-00382-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF THE REVIEW Exposure to essential and non-essential metals is widespread. Metals exposure is linked to epigenetic, particularly DNA methylation, differences. The strength of evidence with respect to the metal exposure type, timing, and level, as well as the DNA methylation association magnitude, and reproducibility are not clear. Focusing on the most recent 3 years, we reviewed the human epidemiologic evidence (n = 26 studies) and the toxicologic animal model evidence (n = 18 studies) for associations between metals exposure and DNA methylation. RECENT FINDINGS In humans, the greatest number of studies focused on lead exposure, followed by studies examining cadmium and arsenic. Approximately half of studies considered metals exposure during the in utero period and measured DNA methylation with the genome-wide Illumina arrays in newborn blood or placenta. Few studies performed formal replication testing or meta-analyses. Toxicology studies of metals and epigenetics had diversity in model systems (mice, rats, drosophila, tilapia, and zebrafish were represented), high heterogeneity of tissues used for DNA methylation measure (liver, testis, ovary, heart, blood, brain, muscle, lung, kidney, whole embryo), and a variety of technologies used for DNA methylation assessment (global, gene specific, genome-wide). The most common metals tested in toxicologic studies were lead and cadmium. Together, the recent studies reviewed provide the strongest evidence for DNA methylation signatures with prenatal metals exposures. There is also mounting epidemiologic evidence supporting lead, arsenic, and cadmium exposures with DNA methylation signatures in adults. The field of metals and DNA methylation is strengthened by the inclusion of both epidemiology and toxicology approaches, and further advancements can be made by coordinating efforts or integrating analyses across studies. Future advances in understanding the molecular basis of sequence specific epigenetic responses to metals exposures, methods for handling exposure mixtures in a genome-wide analytic framework, and pipelines to facilitate collaborative testing will continue to advance the field.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Cesar Higgins
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Correlation Analysis of DNA Methylation in the von Willebrand Factor Promoter Region and the Risk of Unexplained Recurrent Hemophilia: Systematic Review and Meta-Analysis. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3977289. [PMID: 35711531 PMCID: PMC9187466 DOI: 10.1155/2022/3977289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/09/2022] [Indexed: 01/19/2023]
Abstract
This study systematically reviewed the effect of DNA methylation in the promoter region of the coagulation factor vWF gene on the risk of unexplained recurrent hemophilia. PubMed, Medline, Web of Science, and other computers were used to search the database, and the statistical randomized controlled trials of coagulation factor vWF in the risk analysis of unknown recurrent hemophilia were collected. The Cochrane systematic evaluation method was used to evaluate the quality of the included kinds of literature, and Revman5 software was used to sort out and analyze the kinds of literature. Meta-analysis showed that there was a statistical difference between the experimental group and the control group in case fatality rate (OR = 1.76, 95% CI (1.29, 2.39), P=0.0003, I2 = 0%, Z = 3.58), adverse events (OR = 2.38, 95% CI (1.65, 3.45), P < 0.00001, I2 = 0%, Z = 4.60), incidence of joint hemorrhage (OR = 2.52, 95% CI (1.62, 3.91), P < 0.00001, I2 = 0%, Z = 4.12), incidence of subcutaneous stasis (OR = 1.76, 95% CI (1.26, 2.45), P=0.0009, I2 = 5%, Z = 3.33), and hematoma volume (OR = 1.78, 95% CI (1.32, 2.40), P=0.0001, I2 = 23%, Z = 3.80). DNA methylation in the promoter region of the coagulation factor vWF gene was significantly associated with the risk of unexplained recurrent hemophilia. Whether demethylation can improve the bleeding index of patients with recurrent hemophilia remains to be further explored.
Collapse
|
12
|
Abstract
Organisms mount the cellular stress response whenever environmental parameters exceed the range that is conducive to maintaining homeostasis. This response is critical for survival in emergency situations because it protects macromolecular integrity and, therefore, cell/organismal function. From an evolutionary perspective, the cellular stress response counteracts severe stress by accelerating adaptation via a process called stress-induced evolution. In this Review, we summarize five key physiological mechanisms of stress-induced evolution. Namely, these are stress-induced changes in: (1) mutation rates, (2) histone post-translational modifications, (3) DNA methylation, (4) chromoanagenesis and (5) transposable element activity. Through each of these mechanisms, organisms rapidly generate heritable phenotypes that may be adaptive, maladaptive or neutral in specific contexts. Regardless of their consequences to individual fitness, these mechanisms produce phenotypic variation at the population level. Because variation fuels natural selection, the physiological mechanisms of stress-induced evolution increase the likelihood that populations can avoid extirpation and instead adapt under the stress of new environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| | - Dietmar Kültz
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
13
|
Titelbaum M, Brant B, Baumel D, Burstein-Willensky A, Perez S, Barsheshet Y, Avni O. Ezh2 harnesses the intranuclear actin cytoskeleton to remodel chromatin in differentiating Th cells. iScience 2021; 24:103093. [PMID: 34622148 PMCID: PMC8479699 DOI: 10.1016/j.isci.2021.103093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/20/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Following their first interaction with the antigen, quiescent naive T-helper (Th; CD4+) cells enlarge, differentiate, and proliferate; these processes are accompanied by substantial epigenetic alterations. We showed previously that the epigenetic regulators the polycomb-group (PcG) proteins have a dual function as both positive and negative transcriptional regulators; however, the underlying mechanisms remain poorly understood. Here, we demonstrate that during Th cell differentiation the methyltransferase activity of the PcG protein Ezh2 regulates post-transcriptionally inducible assembly of intranuclear actin filaments. These filaments are colocalized with the actin regulators Vav1 and WASp, vertically oriented to the T cell receptor, and intermingle with the chromatin fibers. Ezh2 and Vav1 are observed together at chromatin-actin intersections. Furthermore, the inducible assembly of nuclear actin filaments is required for chromatin spreading and nuclear growth. Altogether these findings delineate a model in which the epigenetic machinery orchestrates the dynamic mechanical force of the intranuclear cytoskeleton to reorganize chromatin during differentiation. Ezh2 regulates post-transcriptionally the inducible assembly of intranuclear F-actin F-actin is oriented toward the TCR and intermingled with the chromatin fibers F-actin is required for chromatin spreading and nuclear growth The epigenetic machinery harnesses intranuclear cytoskeleton to reorganize chromatin
Collapse
Affiliation(s)
- Moran Titelbaum
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Boris Brant
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Daniel Baumel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Shira Perez
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Orly Avni
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
14
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
15
|
Roffers-Agarwal J, Lidberg KA, Gammill LS. The lysine methyltransferase SETD2 is a dynamically expressed regulator of early neural crest development. Genesis 2021; 59:e23448. [PMID: 34498354 DOI: 10.1002/dvg.23448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 11/11/2022]
Abstract
SETD2 is a histone H3 lysine 36 (H3K36) tri-methylase that is upregulated in response to neural crest induction. Because the H3K36 di-methylase NSD3 and cytoplasmic non-histone protein methylation are necessary for neural crest development, we investigated the expression and requirement for SETD2 in the neural crest. SetD2 is expressed throughout the chick blastoderm beginning at gastrulation. Subsequently, SetD2 mRNA becomes restricted to the neural plate, where it is strongly and dynamically expressed as neural tissue is regionalized and cell fate decisions are made. This includes expression in premigratory neural crest cells, which is downregulated prior to migration. Likely due to the early onset of its expression, SETD2 morpholino knockdown does not significantly alter premigratory Sox10 expression or neural crest migration; however, both are disrupted by a methyltransferase mutant SETD2 construct. These results suggest that SETD2 activity is essential for early neural crest development, further demonstrating that lysine methylation is an important mechanism regulating the neural crest.
Collapse
Affiliation(s)
- Julaine Roffers-Agarwal
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kevin A Lidberg
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Laura S Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
16
|
Burggren W. Developmental Physiology: Grand Challenges. Front Physiol 2021; 12:706061. [PMID: 34177630 PMCID: PMC8225327 DOI: 10.3389/fphys.2021.706061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|
17
|
Hubert JN, Suybeng V, Vallée M, Delhomme TM, Maubec E, Boland A, Bacq D, Deleuze JF, Jouenne F, Brennan P, McKay JD, Avril MF, Bressac-de Paillerets B, Chanudet E. The PI3K/mTOR Pathway Is Targeted by Rare Germline Variants in Patients with Both Melanoma and Renal Cell Carcinoma. Cancers (Basel) 2021; 13:2243. [PMID: 34067022 PMCID: PMC8125037 DOI: 10.3390/cancers13092243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Malignant melanoma and RCC have different embryonic origins, no common lifestyle risk factors but intriguingly share biological properties such as immune regulation and radioresistance. An excess risk of malignant melanoma is observed in RCC patients and vice versa. This bidirectional association is poorly understood, and hypothetic genetic co-susceptibility remains largely unexplored. Results: We hereby provide a clinical and genetic description of a series of 125 cases affected by both malignant melanoma and RCC. Clinical germline mutation testing identified a pathogenic variant in a melanoma and/or RCC predisposing gene in 17/125 cases (13.6%). This included mutually exclusive variants in MITF (p.E318K locus, N = 9 cases), BAP1 (N = 3), CDKN2A (N = 2), FLCN (N = 2), and PTEN (N = 1). A subset of 46 early-onset cases, without underlying germline variation, was whole-exome sequenced. In this series, thirteen genes were significantly enriched in mostly exclusive rare variants predicted to be deleterious, compared to 19,751 controls of similar ancestry. The observed variation mainly consisted of novel or low-frequency variants (<0.01%) within genes displaying strong evolutionary mutational constraints along the PI3K/mTOR pathway, including PIK3CD, NFRKB, EP300, MTOR, and related epigenetic modifier SETD2. The screening of independently processed germline exomes from The Cancer Genome Atlas confirmed an association with melanoma and RCC but not with cancers of established differing etiology such as lung cancers. Conclusions: Our study highlights that an exome-wide case-control enrichment approach may better characterize the rare variant-based missing heritability of multiple primary cancers. In our series, the co-occurrence of malignant melanoma and RCC was associated with germline variation in the PI3K/mTOR signaling cascade, with potential relevance for early diagnostic and clinical management.
Collapse
Affiliation(s)
- Jean-Noël Hubert
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| | - Voreak Suybeng
- Gustave Roussy, Département de Biopathologie, 94805 Villejuif, France; (V.S.); (F.J.)
| | - Maxime Vallée
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| | - Tiffany M. Delhomme
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| | - Eve Maubec
- Department of Dermatology, AP-HP, Hôpital Avicenne, University Paris 13, 93000 Bobigny, France;
- UMRS-1124, Campus Paris Saint-Germain-des-Prés, University of Paris, 75006 Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, CEA, 91057 Evry, France; (A.B.); (D.B.); (J.-F.D.)
| | - Delphine Bacq
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, CEA, 91057 Evry, France; (A.B.); (D.B.); (J.-F.D.)
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, CEA, 91057 Evry, France; (A.B.); (D.B.); (J.-F.D.)
| | - Fanélie Jouenne
- Gustave Roussy, Département de Biopathologie, 94805 Villejuif, France; (V.S.); (F.J.)
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| | - James D. McKay
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| | | | - Brigitte Bressac-de Paillerets
- Gustave Roussy, Département de Biopathologie, 94805 Villejuif, France; (V.S.); (F.J.)
- INSERM U1279, Tumor Cell Dynamics, 94805 Villejuif, France
| | - Estelle Chanudet
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| |
Collapse
|
18
|
Karki M, Jangid RK, Anish R, Seervai RNH, Bertocchio JP, Hotta T, Msaouel P, Jung SY, Grimm SL, Coarfa C, Weissman BE, Ohi R, Verhey KJ, Hodges HC, Burggren W, Dere R, Park IY, Prasad BVV, Rathmell WK, Walker CL, Tripathi DN. A cytoskeletal function for PBRM1 reading methylated microtubules. SCIENCE ADVANCES 2021; 7:eabf2866. [PMID: 33811077 PMCID: PMC11059954 DOI: 10.1126/sciadv.abf2866] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Epigenetic effectors "read" marks "written" on chromatin to regulate function and fidelity of the genome. Here, we show that this coordinated read-write activity of the epigenetic machinery extends to the cytoskeleton, with PBRM1 in the PBAF chromatin remodeling complex reading microtubule methyl marks written by the SETD2 histone methyltransferase. PBRM1 binds SETD2 methyl marks via BAH domains, recruiting PBAF components to the mitotic spindle. This read-write activity was required for normal mitosis: Loss of SETD2 methylation or pathogenic BAH domain mutations disrupt PBRM1 microtubule binding and PBAF recruitment and cause genomic instability. These data reveal PBRM1 functions beyond chromatin remodeling with domains that allow it to integrate chromatin and cytoskeletal activity via its acetyl-binding BD and methyl-binding BAH domains, respectively. Conserved coordinated activity of the epigenetic machinery on the cytoskeleton opens a previously unknown window into how chromatin remodeler defects can drive disease via both epigenetic and cytoskeletal dysfunction.
Collapse
Affiliation(s)
- Menuka Karki
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rahul K Jangid
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ramakrishnan Anish
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Riyad N H Seervai
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean-Philippe Bertocchio
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genitourinary Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pavlos Msaouel
- Department of Genitourinary Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandra L Grimm
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - H Courtney Hodges
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Warren Burggren
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Ruhee Dere
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - In Young Park
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - W Kimryn Rathmell
- Vanderbilt-Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Cheryl L Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Durga N Tripathi
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
19
|
Okechukwu C. Deciphering and manipulating the epigenome for the treatment of Parkinson’s and Alzheimer’s disease. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_90_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Bautista NM, Crespel A, Crossley J, Padilla P, Burggren W. Parental transgenerational epigenetic inheritance related to dietary crude oil exposure in Danio rerio. J Exp Biol 2020; 223:jeb222224. [PMID: 32620709 DOI: 10.1242/jeb.222224] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022]
Abstract
Transgenerational inheritance from both parental lines can occur by genetic and epigenetic inheritance. Maternal effects substantially influence offspring survival and fitness. However, investigation of the paternal contribution to offspring success has been somewhat neglected. In the present study, adult zebrafish were separated into female and male groups exposed for 21 days to either a control diet or to a diet containing water accommodated fractions of crude oil. Four F1 offspring groups were obtained: (1) control (non-exposed parents), (2) paternally exposed, (3) maternally exposed and (4) dual-parent-exposed. To determine the maternal and paternal influence on their offspring, we evaluated responses from molecular to whole organismal levels in both generations. Growth rate, hypoxia resistance and heart rate did not differ among parental groups. However, global DNA methylation in heart tissue was decreased in oil-exposed fish compared with control parents. This decrease was accompanied by an upregulation of glycine N-methyltransferase. Unexpectedly, maternal, paternal and dual exposure all enhanced survival of F1 offspring raised in oiled conditions. Regardless of parental exposure, however, F1 offspring exposed to oil exhibited bradycardia. Compared with offspring from control parents, global DNA methylation was decreased in the three offspring groups derived from oil-exposed parents. However, no difference between groups was observed in gene regulation involved in methylation transfer, suggesting that the changes observed in the F1 populations may have been inherited from both parental lines. Phenotypic responses during exposure to persistent environmental stressors in F1 offspring appear to be influenced by maternal and paternal exposure, potentially benefitting offspring populations to survive in challenging environments.
Collapse
Affiliation(s)
- Naim M Bautista
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
- Zoophysiology, Department of Bioscience, Aarhus University, C. F. Møllers Alle 3, Aarhus C 8000, Denmark
| | - Amélie Crespel
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Janna Crossley
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | - Pamela Padilla
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | - Warren Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| |
Collapse
|