1
|
Rosani U, Bortoletto E, Zhang X, Huang BW, Xin LS, Krupovic M, Bai CM. Long-read transcriptomics of Ostreid herpesvirus 1 uncovers a conserved expression strategy for the capsid maturation module and pinpoints a mechanism for evasion of the ADAR-based antiviral defence. Virus Evol 2024; 10:veae088. [PMID: 39555210 PMCID: PMC11565193 DOI: 10.1093/ve/veae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Ostreid herpesvirus 1 (OsHV-1), a member of the family Malacoherpesviridae (order Herpesvirales), is a major pathogen of bivalves. However, the molecular details of the malacoherpesvirus infection cycle and its overall similarity to the replication of mammalian herpesviruses (family Orthoherpesviridae) remain obscure. Here, to gain insights into the OsHV-1 biology, we performed long-read sequencing of infected blood clams, Anadara broughtonii, which yielded over one million OsHV-1 long reads. These data enabled the annotation of the viral genome with 78 gene units and 274 transcripts, of which 67 were polycistronic mRNAs, 35 ncRNAs, and 20 natural antisense transcripts (NATs). Transcriptomics and proteomics data indicate preferential transcription and independent translation of the capsid scaffold protein as an OsHV-1 capsid maturation protease isoform. The conservation of this transcriptional architecture across Herpesvirales likely indicates its functional importance and ancient origin. Moreover, we traced RNA editing events using short-read sequencing and supported the presence of inosine nucleotides in native OsHV-1 RNA, consistent with the activity of adenosine deaminase acting on dsRNA 1 (ADAR1). Our data suggest that, whereas RNA hyper-editing is concentrated in specific regions of the OsHV-1 genome, single-nucleotide editing is more dispersed along the OsHV-1 transcripts. In conclusion, we reveal the existence of conserved pan-Herpesvirales transcriptomic architecture of the capsid maturation module and uncover a transcription-based viral counter defence mechanism, which presumably facilitates the evasion of the host ADAR antiviral system.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, Via U. Bassi, 58/B, Padova 35121, Italy
| | - Enrico Bortoletto
- Department of Biology, University of Padova, Via U. Bassi, 58/B, Padova 35121, Italy
| | - Xiang Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Rd, Qingdao 266071, China
| | - Bo-Wen Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Rd, Qingdao 266071, China
| | - Lu-Sheng Xin
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Rd, Qingdao 266071, China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr. Roux, Paris 75015, France
| | - Chang-Ming Bai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Rd, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Rd, Qingdao 266237, China
| |
Collapse
|
2
|
Dupoué A, Koechlin H, Huber M, Merrien P, Le Grand J, Corporeau C, Fleury E, Bernay B, de Villemereuil P, Morga B, Le Luyer J. Reproductive aging weakens offspring survival and constrains the telomerase response to herpesvirus in Pacific oysters. SCIENCE ADVANCES 2024; 10:eadq2311. [PMID: 39259784 PMCID: PMC11389786 DOI: 10.1126/sciadv.adq2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Telomere length (TL) is increasingly recognized as a molecular marker that reflects how reproductive aging affects intergenerational transmissions. Here, we investigated the effects of parental age on offspring survival and the regulation of TL by examining the telomere-elongating activity of telomerase in the Pacific oyster. We assessed the classical hallmarks of aging in parents at three age classes (young, middle-aged, and old) and crossbred them using a split-brood design to examine the consequences of the nine maternal-by-paternal age combinations on their offspring. Reproductive aging leads to increased larval mortality and accelerated telomere shortening in spats, rendering them more susceptible to infection by the Ostreid herpesvirus. Viral exposure stimulates telomerase activity, a response that we identified as adaptive, but weakened by parental aging. While telomerase lengthens a spat's telomere, paradoxically, longer individual TL predicts higher mortality in adults. The telomerase-telomere complex appeared as a conservative biomarker for distinguishing survivors and losers upon exposure to polymicrobial diseases.
Collapse
Affiliation(s)
- Andréaz Dupoué
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Hugo Koechlin
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Matthias Huber
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Pauline Merrien
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | | | | | - Elodie Fleury
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| | - Benoît Bernay
- Plateforme Proteogen US EMerode, Université de Caen Normandie, Caen, France
| | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études, PSL, MNHN, CNRS, SU, UA, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Benjamin Morga
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Jérémy Le Luyer
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, IUEM, Plouzane, France
| |
Collapse
|
3
|
Lusiastuti AM, Suhermanto A, Hastilestari BR, Suryanto S, Mawardi M, Sugiani D, Syahidah D, Sudaryatma PE, Caruso D. Impact of temperature on the virulence of Streptococcus agalactiae in Indonesian aquaculture: A better vaccine design is required. Vet World 2024; 17:682-689. [PMID: 38680157 PMCID: PMC11045521 DOI: 10.14202/vetworld.2024.682-689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/28/2024] [Indexed: 05/01/2024] Open
Abstract
Due to their poikilothermic nature, fish are very sensitive to changes in temperature. Due to climate change, the average global temperature has increased by 1.5°C in the last century, which may have caused an increase in farmed fish mortality recently. Predictions using the model estimate that a 1°C increase in temperature could cause 3%-4% and 4%-6% mortality due to infectious diseases in organisms living in warm and temperate waters, respectively. There is a need to determine whether there is a relationship between increasing environmental temperature and disease virulence. This review examines the influence and impact of increasing temperatures due to climate change on the physiology and pathogenicity of Streptococcus agalactiae, which causes streptococcosis in tilapia and causes significant economic losses. Changes in the pathogenicity of S. agalactiae, especially its virulence properties due to increasing temperature, require changes in the composition design of the fish vaccine formula to provide better protection through the production of protective antibodies.
Collapse
Affiliation(s)
- Angela Mariana Lusiastuti
- Research Center for Veterinary Sciences, National Research and Innovation Agency, KST BRIN Soekarno Cibinong Bogor, 16911, Jawa Barat, Indonesia
| | - Achmad Suhermanto
- The Marine and Fisheries Polytechnic Karawang, The Ministry of Marine Affairs and Fisheries Indonesia
| | | | - Suryanto Suryanto
- Research Center for Fisheries, National Research and Innovation Agency, Indonesia
| | - Mira Mawardi
- Main Center for Freshwater Aquaculture – The Ministry of Marine Affairs and Fisheries, Jl. Selabintana No. 37, Selabatu, Kec. Cikole, Kota Sukabumi, Jawa Barat 43114, Indonesia
| | - Desy Sugiani
- Research Center for Veterinary Sciences, National Research and Innovation Agency, KST BRIN Soekarno Cibinong Bogor, 16911, Jawa Barat, Indonesia
| | - Dewi Syahidah
- Research Center for Veterinary Sciences, National Research and Innovation Agency, KST BRIN Soekarno Cibinong Bogor, 16911, Jawa Barat, Indonesia
| | | | - Domenico Caruso
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
4
|
Yang Y, Pian Y, Li J, Xu L, Lu Z, Dai Y, Li Q. Integrative analysis of genome and transcriptome reveal the genetic basis of high temperature tolerance in pleurotus giganteus (Berk. Karun & Hyde). BMC Genomics 2023; 24:552. [PMID: 37723428 PMCID: PMC10506213 DOI: 10.1186/s12864-023-09669-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Pleurotus giganteus is a commonly cultivated mushroom with notable high temperature resistance, making it significant for the growth of the edible fungi industry in the tropics. Despite its practical importance,, the genetic mechanisms underlying its ability to withstand high temperature tolerance remain elusive. RESULTS In this study, we performed high-quality genome sequencing of a monokaryon isolated from a thermotolerant strain of P. giganteus. The genome size was found to be 40.11 Mb, comprising 17 contigs and 13,054 protein-coding genes. Notably, some genes related to abiotic stress were identified in genome, such as genes regulating heat shock protein, protein kinase activity and signal transduction. These findings provide valuable insights into the genetic basis of P. giganteus' high temperature resistance. Furthermore, the phylogenetic tree showed that P. giganteus was more closely related to P. citrinopileatus than other Pleurotus species. The divergence time between Pleurotus and Lentinus was estimated as 153.9 Mya, and they have a divergence time with Panus at 168.3 Mya, which proved the taxonomic status of P. giganteus at the genome level. Additionally, a comparative transcriptome analysis was conducted between mycelia treated with 40 °C heat shock for 18 h (HS) and an untreated control group (CK). Among the 2,614 differentially expressed genes (DEGs), 1,303 genes were up-regulated and 1,311 were down-regulated in the HS group. The enrichment analysis showed that several genes related to abiotic stress, including heat shock protein, DnaJ protein homologue, ubiquitin protease, transcription factors, DNA mismatch repair proteins, and zinc finger proteins, were significantly up-regulated in the HS group. These genes may play important roles in the high temperature adaptation of P. giganteus. Six DEGs were selected according to fourfold expression changes and were validated by qRT-PCR, laying a good foundation for further gene function analysis. CONCLUSION Our study successfully reported a high-quality genome of P. giganteus and identified genes associated with high-temperature tolerance through an integrative analysis of the genome and transcriptome. This study lays a crucial foundation for understanding the high-temperature tolerance mechanism of P. giganteus, providing valuable insights for genetic modification of P. giganteus strains and the development of high-temperature strains for the edible fungus industry, particularly in tropical regions.
Collapse
Affiliation(s)
- Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
| | - Yongru Pian
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China
| | - Jingyi Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China
| | - Lin Xu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China
| | - Zhu Lu
- Jilin Academy of Vegetables and Flowers Sciences, Changchun, China
| | - Yueting Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China.
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China.
| |
Collapse
|
5
|
Combe M, Reverter M, Caruso D, Pepey E, Gozlan RE. Impact of Global Warming on the Severity of Viral Diseases: A Potentially Alarming Threat to Sustainable Aquaculture Worldwide. Microorganisms 2023; 11:1049. [PMID: 37110472 PMCID: PMC10146364 DOI: 10.3390/microorganisms11041049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
With an ever-increasing human population, food security remains a central issue for the coming years. The magnitude of the environmental impacts of food production has motivated the assessment of the environmental and health benefits of shifting diets, from meat to fish and seafood. One of the main concerns for the sustainable development of aquaculture is the emergence and spread of infectious animal diseases in a warming climate. We conducted a meta-analysis to investigate the influence of global warming on mortality due to viral infections in farmed aquatic animals. We found a positive trend between increasing temperature and increasing viral virulence, with an increase in water temperature of 1 °C resulting in an increase in mortality of 1.47-8.33% in OsHV-1 infected oysters, 2.55-6.98% in carps infected with CyHV-3 and 2.18-5.37% in fishes infected with NVVs. We suggest that global warming is going to pose a risk of viral disease outbreaks in aquaculture and could compromise global food security.
Collapse
Affiliation(s)
- Marine Combe
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France
| | - Miriam Reverter
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Domenico Caruso
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France
| | - Elodie Pepey
- ISEM, Université de Montpellier, CNRS, IRD, 34095 Montpellier, France
- CIRAD, UMR ISEM, 34398 Montpellier, France
| | | |
Collapse
|
6
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
7
|
Dotto-Maurel A, Pelletier C, Morga B, Jacquot M, Faury N, Dégremont L, Bereszczynki M, Delmotte J, Escoubas JM, Chevignon G. Evaluation of tangential flow filtration coupled to long-read sequencing for ostreid herpesvirus type 1 genome assembly. Microb Genom 2022; 8:mgen000895. [PMID: 36355418 PMCID: PMC9836095 DOI: 10.1099/mgen.0.000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Whole-genome sequencing is widely used to better understand the transmission dynamics, the evolution and the emergence of new variants of viral pathogens. This can bring crucial information to stakeholders for disease management. Unfortunately, aquatic virus genomes are usually difficult to characterize because most of these viruses cannot be easily propagated in vitro. Developing methodologies for routine genome sequencing of aquatic viruses is timely given the ongoing threat of disease emergence. This is particularly true for pathogenic viruses infecting species of commercial interest that are widely exchanged between production basins or countries. For example, the ostreid herpesvirus type 1 (OsHV-1) is a Herpesvirus widely associated with mass mortality events of juvenile Pacific oyster Crassostrea gigas. Genomes of Herpesviruses are large and complex with long direct and inverted terminal repeats. In addition, OsHV-1 is unculturable. It therefore accumulates several features that make its genome sequencing and assembly challenging. To overcome these difficulties, we developed a tangential flow filtration (TFF) method to enrich OsHV-1 infective particles from infected host tissues. This virus purification allowed us to extract high molecular weight and high-quality viral DNA that was subjected to Illumina short-read and Nanopore long-read sequencing. Dedicated bioinformatic pipelines were developed to assemble complete OsHV-1 genomes with reads from both sequencing technologies. Nanopore sequencing allowed characterization of new structural variations and major viral isomers while having 99,98 % of nucleotide identity with the Illumina assembled genome. Our study shows that TFF-based purification method, coupled with Nanopore sequencing, is a promising approach to enable in field sequencing of unculturable aquatic DNA virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean Delmotte
- IHPE, Univ. Montpellier, CNRS, Ifremer, UPVD, F-34095 Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, Univ. Montpellier, CNRS, Ifremer, UPVD, F-34095 Montpellier, France,*Correspondence: Jean-Michel Escoubas,
| | - Germain Chevignon
- Ifremer, ASIM, F-17390 La Tremblade, France,*Correspondence: Germain Chevignon,
| |
Collapse
|
8
|
Crandall G, Elliott Thompson R, Eudeline B, Vadopalas B, Timmins-Schiffman E, Roberts S. Proteomic response of early juvenile Pacific oysters ( Crassostrea gigas) to temperature. PeerJ 2022; 10:e14158. [PMID: 36262416 PMCID: PMC9575672 DOI: 10.7717/peerj.14158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Pacific oysters (Crassostrea gigas) are a valuable aquaculture product that provides important ecosystem benefits. Among other threats, climate-driven changes in ocean temperature can impact oyster metabolism, survivorship, and immune function. We investigated how elevated temperature impacts larval oysters during settlement (19-33 days post-fertilization), using shotgun proteomics with data-independent acquisition to identify proteins present in the oysters after 2 weeks of exposure to 23 °C or 29 °C. Oysters maintained at elevated temperatures were larger and had a higher settlement rate, with 86% surviving to the end of the experiment; these oysters also had higher abundance trends of proteins related to metabolism and growth. Oysters held at 23 °C were smaller, had a decreased settlement rate, displayed 100% mortality, and had elevated abundance trends of proteins related to immune response. This novel use of proteomics was able to capture characteristic shifts in protein abundance that hint at important differences in the phenotypic response of Pacific oysters to temperature regimes. Additionally, this work has produced a robust proteomic product that will be the basis for future research on bivalve developmental processes.
Collapse
Affiliation(s)
- Grace Crandall
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| | | | | | - Brent Vadopalas
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| | | | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Ericson JA, Venter L, Welford MRV, Kumanan K, Alfaro AC, Ragg NLC. Effects of seawater temperature and acute Vibriosp. challenge on the haemolymph immune and metabolic responses of adult mussels (Perna canaliculus). FISH & SHELLFISH IMMUNOLOGY 2022; 128:664-675. [PMID: 35981703 DOI: 10.1016/j.fsi.2022.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The New Zealand Greenshell™ mussel (Perna canaliculus) is an endemic bivalve species with cultural importance, that is harvested recreationally and commercially. However, production is currently hampered by increasing incidences of summer mortality in farmed and wild populations. While the causative factors for these mortality events are still unknown, it is believed that increasing seawater temperatures and pathogen loads are potentially at play. To improve our understanding of these processes, challenge experiments were conducted to investigate the combined effects of increased seawater temperature and Vibrio infection on the immune and metabolic responses of adult mussels. Biomarkers that measure the physiological response of mussels to multiple-stressors can be utilised to study resilience in a changing environment, and support efforts to strengthen biosecurity management. Mussels acclimated to two temperatures (16 °C and 24 °C) were injected with either autoclaved, filtered seawater (control) or Vibriosp. DO1 (infected). Then, haemolymph was sampled 24 h post-injection and analysed to quantify haemocyte immune responses (via flow-cytometry), antioxidant capacity (measured electrochemically) and metabolic responses (via gas chromatography-mass spectrometry) to bacterial infection. Both seawater temperature and injection type significantly influenced the immune and metabolite status of mussels. A lack of interaction effects between temperature and injection type indicated that the effects of Vibrio sp. 24 h post-infection were similar between seawater temperatures. Infected mussels had a higher proportion of dead haemocytes and lower overall haemocyte counts than uninfected controls. The proportion of haemocytes showing evidence of apoptosis was higher in mussels held at 24 °C compared with those held at 16 °C. The proportion of haemocytes producing reactive oxygen species did not differ between temperatures or injection treatments. Mussels held at 24 °C exhibited elevated levels of metabolites linked to the glycolysis pathway to support energy production. The saccharopin-lysine pathway metabolites were also increased in these mussels, indicating the role of lysine metabolism. A decrease in metabolic activity (decreases in BCAAs, GABA, urea cycle metabolites, oxidative stress metabolites) was largely seen in mussels injected with Vibrio sp. Itaconate increased as seen in previous studies, suggesting that antimicrobial activity may have been activated in infected mussels. This study highlights the complex nature of immune and metabolic responses in mussels exposed to multiple stressors and gives an insight into Vibrio sp. infection mechanisms at different seawater temperatures.
Collapse
Affiliation(s)
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Mena R V Welford
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Karthiga Kumanan
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Norman L C Ragg
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| |
Collapse
|
10
|
Gurr SJ, Trigg SA, Vadopalas B, Roberts SB, Putnam HM. Acclimatory gene expression of primed clams enhances robustness to elevated pCO 2. Mol Ecol 2022; 31:5005-5023. [PMID: 35947503 DOI: 10.1111/mec.16644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
Sub-lethal exposure to environmental challenges may enhance ability to cope with chronic or repeated change, a process known as priming. In a previous study, pre-exposure to seawater enriched with pCO2 improved growth and reduced antioxidant capacity of juvenile Pacific geoduck Panopea generosa, suggesting that transcriptional shifts may drive phenotypic modifications post-priming. To this end, juvenile clams were sampled and TagSeq gene expression data analyzed after 1) a 110-day acclimation under ambient (921 μatm, naïve) and moderately-elevated pCO2 (2870 μatm, pre-exposed); then following 2) a second 7-day exposure to three pCO2 treatments (ambient: 754 μatm; moderately-elevated: 2750 μatm; severely-elevated: 4940 μatm), a 7-day return to ambient pCO2 , and a third 7-day exposure to two pCO2 treatments (ambient: 967 μatm; moderately-elevated: 3030 μatm). Pre-exposed geoducks frontloaded genes for stress and apoptosis/innate immune response, homeostatic processes, protein degradation, and transcriptional modifiers. Pre-exposed geoducks were also responsive to subsequent encounters, with gene sets enriched for mitochondrial recycling and immune defense under elevated pCO2 and energy metabolism and biosynthesis under ambient recovery. In contrast, gene sets with higher expression in naïve clams were enriched for fatty-acid degradation and glutathione components, suggesting naïve clams could be depleting endogenous fuels, with unsustainable energetic requirements if changes in carbonate chemistry persist. Collectively, our transcriptomic data indicates pCO2 priming during post-larval periods could, via gene expression regulation, enhance robustness in bivalves to environmental change. Such priming approaches may be beneficial for aquaculture, as seafood demand intensifies concurrent with increasing climate change in marine systems.
Collapse
Affiliation(s)
- Samuel J Gurr
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Shelly A Trigg
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA, USA
| | | | - Steven B Roberts
- University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
11
|
Bao X, Wang W, Yuan T, Li Y, Chen X, Liu X, Xu X, Sun G, Li B, Yang J, Feng Y, Li Z. Transcriptome profiling based on larvae at different time points after hatching provides a core set of gene resource for understanding the immune response mechanisms of the egg-protecting behavior against Vibrio anguillarum infection in Amphioctopus fangsiao. FISH & SHELLFISH IMMUNOLOGY 2022; 124:430-441. [PMID: 35472401 DOI: 10.1016/j.fsi.2022.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Mollusks have recently received increasing attention because of their unique immune systems. Mollusks such as Amphioctopus fangsiao are economically important cephalopods, and the effects of their egg-protecting behavior on the larval immune response are unclear. Meanwhile, little research has been done on the resistance response of cephalopod larvae infected with pathogenic bacteria such as Vibrio anguillarum. In this study, V. anguillarum was used to infect the primary hatching A. fangsiao larvae under different egg-protecting behaviors for 24 h, and a total of 7156 differentially expressed genes (DEGs) were identified at four time points after hatching based on transcriptome analysis. GO and KEGG enrichment analyses showed that multiple immune-related GO terms and KEGG signaling pathways were enriched. Protein-protein interaction networks (PPI networks) were used to search functional relationships between immune-related DEGs. Finally, 20 hub genes related to multiple gene functions or involved in multiple signaling pathways were identified, and their accuracy was verified using quantitative RT-PCR. PPI networks were first used to study the effects A. fangsiao larvae after infection with V. anguillarum under different egg-protecting behaviors. The results provide significant genetic resources for exploring invertebrate larval immune processes. The data lays a foundation for further study the immune response mechanisms for invertebrates after infection.
Collapse
Affiliation(s)
- Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Tingzhu Yuan
- Marine Economy Promotion Center of Changdao County Marine Ecological Civilization Comprehensive Experimental Zone, Yantai, 265800, China
| | - Yan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xipan Chen
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Bin Li
- School of Agriculture, Ludong University, Yantai, 264025, China; Yantai Haiyu Marine Science and Technology Co. Ltd., Yantai, 264004, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
12
|
Le Luyer J, Monaco CJ, Milhade L, Reisser C, Soyez C, Raapoto H, Belliard C, Le Moullac G, Ky C, Pernet F. Gene expression plasticity, genetic variation and fatty acid remodelling in divergent populations of a tropical bivalve species. J Anim Ecol 2022; 91:1196-1208. [DOI: 10.1111/1365-2656.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Affiliation(s)
- J. Le Luyer
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - C. J. Monaco
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - L. Milhade
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - C. Reisser
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD Montpellier France
| | - C. Soyez
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - H. Raapoto
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - C. Belliard
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - G. Le Moullac
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - C.‐L. Ky
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
- Ifremer, IHPE, Univ. Montpellier, CNRS, Univ. Perpignan Via Domitia Montpellier France
| | - F. Pernet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F‐29280 Plouzané France
| |
Collapse
|
13
|
Abstract
Contamination of oysters with a variety of viruses is one key pathway to trigger outbreaks of massive oyster mortality as well as human illnesses, including gastroenteritis and hepatitis. Much effort has gone into examining the fate of viruses in contaminated oysters, yet the current state of knowledge of nonlinear virus-oyster interactions is not comprehensive because most studies have focused on a limited number of processes under a narrow range of experimental conditions. A framework is needed for describing the complex nonlinear virus-oyster interactions. Here, we introduce a mathematical model that includes key processes for viral dynamics in oysters, such as oyster filtration, viral replication, the antiviral immune response, apoptosis, autophagy, and selective accumulation. We evaluate the model performance for two groups of viruses, those that replicate in oysters (e.g., ostreid herpesvirus) and those that do not (e.g., norovirus), and show that this model simulates well the viral dynamics in oysters for both groups. The model analytically explains experimental findings and predicts how changes in different physiological processes and environmental conditions nonlinearly affect in-host viral dynamics, for example, that oysters at higher temperatures may be more resistant to infection by ostreid herpesvirus. It also provides new insight into food treatment for controlling outbreaks, for example, that depuration for reducing norovirus levels is more effective in environments where oyster filtration rates are higher. This study provides the foundation of a modeling framework to guide future experiments and numerical modeling for better prediction and management of outbreaks. IMPORTANCE The fate of viruses in contaminated oysters has received a significant amount of attention in the fields of oyster aquaculture, food quality control, and public health. However, intensive studies through laboratory experiments and in situ observations are often conducted under a narrow range of experimental conditions and for a specific purpose in their respective fields. Given the complex interactions of various processes and nonlinear viral responses to changes in physiological and environmental conditions, a theoretical framework fully describing the viral dynamics in oysters is warranted to guide future studies from a top-down design. Here, we developed a process-based, in-host modeling framework that builds a bridge for better communications between different disciplines studying virus-oyster interactions.
Collapse
|
14
|
Bai CM, Rosani U, Zhang X, Xin LS, Bortoletto E, Wegner KM, Wang CM. Viral Decoys: The Only Two Herpesviruses Infecting Invertebrates Evolved Different Transcriptional Strategies to Deflect Post-Transcriptional Editing. Viruses 2021; 13:v13101971. [PMID: 34696401 PMCID: PMC8537636 DOI: 10.3390/v13101971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
The highly versatile group of Herpesviruses cause disease in a wide range of hosts. In invertebrates, only two herpesviruses are known: the malacoherpesviruses HaHV-1 and OsHV-1 infecting gastropods and bivalves, respectively. To understand viral transcript architecture and diversity we first reconstructed full-length viral genomes of HaHV-1 infecting Haliotis diversicolor supertexta and OsHV-1 infecting Scapharca broughtonii by DNA-seq. We then used RNA-seq over the time-course of experimental infections to establish viral transcriptional dynamics, followed by PacBio long-read sequencing of full-length transcripts to untangle viral transcript architectures at two selected time points. Despite similarities in genome structure, in the number of genes and in the diverse transcriptomic architectures, we measured a ten-fold higher transcript variability in HaHV-1, with more extended antisense gene transcription. Transcriptional dynamics also appeared different, both in timing and expression trends. Both viruses were heavily affected by post-transcriptional modifications performed by ADAR1 affecting sense-antisense gene pairs forming dsRNAs. However, OsHV-1 concentrated these modifications in a few genomic hotspots, whereas HaHV-1 diluted ADAR1 impact by elongated and polycistronic transcripts distributed over its whole genome. These transcriptional strategies might thus provide alternative potential roles for sense-antisense transcription in viral transcriptomes to evade the host's immune response in different virus-host combinations.
Collapse
Affiliation(s)
- Chang-Ming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266237, China; (C.-M.B.); (X.Z.); (L.-S.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Umberto Rosani
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Warden Sea Station, 25992 List auf Sylt, Germany; (U.R.); (K.M.W.)
- Department of Biology, University of Padova, 35121 Padova, Italy;
| | - Xiang Zhang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266237, China; (C.-M.B.); (X.Z.); (L.-S.X.)
- College of Fisheries, Tianjin Agricultural University, Tianjin 300380, China
| | - Lu-Sheng Xin
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266237, China; (C.-M.B.); (X.Z.); (L.-S.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | | | - K. Mathias Wegner
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Warden Sea Station, 25992 List auf Sylt, Germany; (U.R.); (K.M.W.)
| | - Chong-Ming Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266237, China; (C.-M.B.); (X.Z.); (L.-S.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
15
|
Petton B, Destoumieux-Garzón D, Pernet F, Toulza E, de Lorgeril J, Degremont L, Mitta G. The Pacific Oyster Mortality Syndrome, a Polymicrobial and Multifactorial Disease: State of Knowledge and Future Directions. Front Immunol 2021; 12:630343. [PMID: 33679773 PMCID: PMC7930376 DOI: 10.3389/fimmu.2021.630343] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
The Pacific oyster (Crassostreae gigas) has been introduced from Asia to numerous countries around the world during the 20th century. C. gigas is the main oyster species farmed worldwide and represents more than 98% of oyster production. The severity of disease outbreaks that affect C. gigas, which primarily impact juvenile oysters, has increased dramatically since 2008. The most prevalent disease, Pacific oyster mortality syndrome (POMS), has become panzootic and represents a threat to the oyster industry. Recently, major steps towards understanding POMS have been achieved through integrative molecular approaches. These studies demonstrated that infection by Ostreid herpesvirus type 1 µVar (OsHV-1 µvar) is the first critical step in the infectious process and leads to an immunocompromised state by altering hemocyte physiology. This is followed by dysbiosis of the microbiota, which leads to a secondary colonization by opportunistic bacterial pathogens, which in turn results in oyster death. Host and environmental factors (e.g. oyster genetics and age, temperature, food availability, and microbiota) have been shown to influence POMS permissiveness. However, we still do not understand the mechanisms by which these different factors control disease expression. The present review discusses current knowledge of this polymicrobial and multifactorial disease process and explores the research avenues that must be investigated to fully elucidate the complexity of POMS. These discoveries will help in decision-making and will facilitate the development of tools and applied innovations for the sustainable and integrated management of oyster aquaculture.
Collapse
Affiliation(s)
- Bruno Petton
- Ifremer, LEMAR UMR 6539, UBO/CNRS/IRD/Ifremer, Argenton-en-Landunvez, France
| | | | - Fabrice Pernet
- Ifremer, LEMAR UMR 6539, UBO/CNRS/IRD/Ifremer, Argenton-en-Landunvez, France
| | - Eve Toulza
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Julien de Lorgeril
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | | | - Guillaume Mitta
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
16
|
Leprêtre M, Faury N, Segarra A, Claverol S, Degremont L, Palos-Ladeiro M, Armengaud J, Renault T, Morga B. Comparative Proteomics of Ostreid Herpesvirus 1 and Pacific Oyster Interactions With Two Families Exhibiting Contrasted Susceptibility to Viral Infection. Front Immunol 2021; 11:621994. [PMID: 33537036 PMCID: PMC7848083 DOI: 10.3389/fimmu.2020.621994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Massive mortality outbreaks affecting Pacific oysters (Crassostrea gigas) spat/juveniles are often associated with the detection of a herpesvirus called ostreid herpesvirus type 1 (OsHV-1). In this work, experimental infection trials of C. gigas spat with OsHV-1 were conducted using two contrasted Pacific oyster families for their susceptibility to viral infection. Live oysters were sampled at 12, 26, and 144 h post infection (hpi) to analyze host-pathogen interactions using comparative proteomics. Shotgun proteomics allowed the detection of seven viral proteins in infected oysters, some of them with potential immunomodulatoy functions. Viral proteins were mainly detected in susceptible oysters sampled at 26 hpi, which correlates with the mortality and viral load observed in this oyster family. Concerning the Pacific oyster proteome, more than 3,000 proteins were identified and contrasted proteomic responses were observed between infected A- and P-oysters, sampled at different post-injection times. Gene ontology (GO) and KEGG pathway enrichment analysis performed on significantly modulated proteins uncover the main immune processes (such as RNA interference, interferon-like pathway, antioxidant defense) which contribute to the defense and resistance of Pacific oysters to viral infection. In the more susceptible Pacific oysters, results suggest that OsHV-1 manipulate the molecular machinery of host immune response, in particular the autophagy system. This immunomodulation may lead to weakening and consecutively triggering death of Pacific oysters. The identification of several highly modulated and defense-related Pacific oyster proteins from the most resistant oysters supports the crucial role played by the innate immune system against OsHV-1 and the viral infection. Our results confirm the implication of proteins involved in an interferon-like pathway for efficient antiviral defenses and suggest that proteins involved in RNA interference process prevent viral replication in C. gigas. Overall, this study shows the interest of multi-omic approaches applied on groups of animals with differing sensitivities and provides novel insight into the interaction between Pacific oyster and OsHV-1 with key proteins involved in viral infection resistance.
Collapse
Affiliation(s)
- Maxime Leprêtre
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, Reims, France
| | - Nicole Faury
- SG2M-LGPMM, Laboratoire De Génétique Et Pathologie Des Mollusques Marins, Ifremer, La Tremblade, France
| | - Amélie Segarra
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Stéphane Claverol
- Centre Génomique Fonctionnelle de Bordeaux, Plateforme Protéome, Université de Bordeaux, Bordeaux, France
| | - Lionel Degremont
- SG2M-LGPMM, Laboratoire De Génétique Et Pathologie Des Mollusques Marins, Ifremer, La Tremblade, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, Reims, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, DépartementMédicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Tristan Renault
- Département Ressources Biologiques Et Environnement, Ifremer, Nantes, France
| | - Benjamin Morga
- SG2M-LGPMM, Laboratoire De Génétique Et Pathologie Des Mollusques Marins, Ifremer, La Tremblade, France
| |
Collapse
|
17
|
Temporal proteomic profiling reveals insight into critical developmental processes and temperature-influenced physiological response differences in a bivalve mollusc. BMC Genomics 2020; 21:723. [PMID: 33076839 PMCID: PMC7574277 DOI: 10.1186/s12864-020-07127-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/08/2020] [Indexed: 01/30/2023] Open
Abstract
Background Protein expression patterns underlie physiological processes and phenotypic differences including those occurring during early development. The Pacific oyster (Crassostrea gigas) undergoes a major phenotypic change in early development from free-swimming larval form to sessile benthic dweller while proliferating in environments with broad temperature ranges. Despite the economic and ecological importance of the species, physiological processes occurring throughout metamorphosis and the impact of temperature on these processes have not yet been mapped out. Results Towards this, we comprehensively characterized protein abundance patterns for 7978 proteins throughout metamorphosis in the Pacific oyster at different temperature regimes. We used a multi-statistical approach including principal component analysis, ANOVA-simultaneous component analysis, and hierarchical clustering coupled with functional enrichment analysis to characterize these data. We identified distinct sets of proteins with time-dependent abundances generally not affected by temperature. Over 12 days, adhesion and calcification related proteins acutely decreased, organogenesis and extracellular matrix related proteins gradually decreased, proteins related to signaling showed sinusoidal abundance patterns, and proteins related to metabolic and growth processes gradually increased. Contrastingly, different sets of proteins showed temperature-dependent abundance patterns with proteins related to immune response showing lower abundance and catabolic pro-growth processes showing higher abundance in animals reared at 29 °C relative to 23 °C. Conclusion Although time was a stronger driver than temperature of metamorphic proteome changes, temperature-induced proteome differences led to pro-growth physiology corresponding to larger oyster size at 29 °C, and to altered specific metamorphic processes and possible pathogen presence at 23 °C. These findings offer high resolution insight into why oysters may experience high mortality rates during this life transition in both field and culture settings. The proteome resource generated by this study provides data-driven guidance for future work on developmental changes in molluscs. Furthermore, the analytical approach taken here provides a foundation for effective shotgun proteomic analyses across a variety of taxa.
Collapse
|
18
|
Delisle L, Pauletto M, Vidal-Dupiol J, Petton B, Bargelloni L, Montagnani C, Pernet F, Corporeau C, Fleury E. High temperature induces transcriptomic changes in Crassostrea gigas that hinders progress of Ostreid herpesvirus (OsHV-1) and promotes survival. J Exp Biol 2020; 223:jeb.226233. [PMID: 34005719 PMCID: PMC7578350 DOI: 10.1242/jeb.226233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
Among all the environmental factors, seawater temperature plays a decisive role in triggering marine diseases. Like fever in vertebrates, high seawater temperature could modulate the host response to the pathogens in ectothermic animals. In France, massive mortality of Pacific oysters Crassostrea gigas caused by the ostreid herpesvirus 1 (OsHV-1) is markedly reduced when temperatures exceed 24°C in the field. In the present study we assess how high temperature influences the host response to the pathogen by comparing transcriptomes (RNA-sequencing) during the course of experimental infection at 21°C (reference) and 29°C. We show that high temperature induced host physiological processes that are unfavorable to the viral infection. Temperature influenced the expression of transcripts related to the immune process and increased the transcription of genes related to apoptotic process, synaptic signaling, and protein processes at 29°C. Concomitantly, the expression of genes associated to catabolism, metabolites transport, macromolecules synthesis and cell growth remained low since the first stage of infection at 29°C. Moreover, viral entry into the host might have been limited at 29°C by changes in extracellular matrix composition and protein abundance. Overall, these results provide new insights into how environmental factors modulate the host-pathogen interactions.
Collapse
Affiliation(s)
- Lizenn Delisle
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, F-34095 Montpellier, France
| | - Bruno Petton
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, F-34095 Montpellier, France
| | - Fabrice Pernet
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | | | - Elodie Fleury
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| |
Collapse
|