1
|
Storz JF, Scott GR. To what extent do physiological tolerances determine elevational range limits of mammals? J Physiol 2024; 602:5475-5484. [PMID: 37889163 PMCID: PMC11052920 DOI: 10.1113/jp284586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
A key question in biology concerns the extent to which distributional range limits of species are determined by intrinsic limits of physiological tolerance. Here, we use common-garden data for wild rodents to assess whether species with higher elevational range limits typically have higher thermogenic capacities in comparison to closely related lowland species. Among South American leaf-eared mice (genus Phyllotis), mean thermogenic performance is higher in species with higher elevational range limits, but there is little among-species variation in the magnitude of plasticity in this trait. In the North American rodent genus Peromyscus, highland deer mice (Peromyscus maniculatus) have greater thermogenic maximal oxygen uptake (V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ) than lowland white-footed mice (Peromyscus leucopus) at a level of hypoxia that matches the upper elevational range limit of the former species. In highland deer mice, the enhanced thermogenicV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ in hypoxia is attributable to a combination of evolved and plastic changes in physiological pathways that govern the transport and utilization of O2 and metabolic substrates. Experiments with Peromyscus mice also demonstrate that exposure to hypoxia during different stages of development elicits plastic changes in cardiorespiratory traits that improve thermogenicV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ via distinct physiological mechanisms. Evolved differences in thermogenic capacity provide clues about why some species are able to persist in higher-elevation habitats that lie slightly beyond the tolerable limits of other species. Such differences in environmental tolerance also suggest why some species might be more vulnerable to climate change than others.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Peng W, Shi L, Huang Q, Li T, Jian W, Zhao L, Xu R, Liu T, Zhang B, Wang H, Tong L, Tang H, Wang Y. Metabolite profiles of distinct obesity phenotypes integrating impacts of altitude and their association with diet and metabolic disorders in Tibetans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174754. [PMID: 39032745 DOI: 10.1016/j.scitotenv.2024.174754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE Improved understanding of metabolic obesity phenotypes holds great promise for personalized strategies to combat obesity and its co-morbidities. Such investigation is however lacking in Tibetans with unique living environments and lifestyle in the highlands. Effects of altitude on heterogeneous metabolic obesity phenotypes remain unexplored. METHODS We defined metabolic obesity phenotypes i.e., metabolically healthy/unhealthy and obesity/normal weight in Tibetans (n = 1204) living at 2800 m in the suburb or over 4000 m in pastoral areas. 129 lipoprotein parameters and 25 low-molecular-weight metabolites were quantified and their associations with each phenotype were assessed using logistic regression models adjusting for potential confounders. The metabolic BMI (mBMI) was generated using a machine learning strategy and its relationship with prevalence of obesity co-morbidities and dietary exposures were investigated. RESULTS Ultrahigh altitude positively associated with the metabolically healthy and non-obese phenotype and had a tendency towards a negative association with metabolically unhealthy phenotype. Phenotype-specific associations were found for 107 metabolites (e.g., lipoprotein subclasses, N-acetyl-glycoproteins, amino acids, fatty acids and lactate, p < 0.05), among which 55 were manipulated by altitude. The mBMI showed consistent yet more pronounced associations with cardiometabolic outcomes than BMI. The ORs for diabetes, prediabetes and hypertriglyceridemia were reduced in individuals residing at ultrahigh altitude compared to those residing at high altitude. The mBMI mediated the negative association between pastoral diet and prevalence of prediabetes, hypertension and hypertriglyceridemia, respectively. CONCLUSIONS We found metabolite markers representing distinct obesity phenotypes associated with obesity co-morbidities and the modification effect of altitude, deciphering mechanisms underlying protective effect of ultrahigh altitude and the pastoral diet on metabolic health.
Collapse
Affiliation(s)
- Wen Peng
- Department of Public Health, Qinghai University Medical College, No. 16 Kunlun Rd, Xining, 810008, China; Nutrition and Health Promotion Center, Qinghai University Medical College, No. 16 Kunlun Rd, Xining 810008, China; Qinghai Provincial Key Laboratory of Prevention and Control of Glucolipid Metabolic Diseases with Traditional Chinese Medicine, Medical College, Qinghai University, No. 16 Kunlun Rd, Xining 810008, China.
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 199 Chang'an South Rd, Xi'an, Shaanxi 710062, China
| | - Qingxia Huang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, No. 825 Zhangheng Rd, Shanghai 200438, China
| | - Tiemei Li
- Department of Public Health, Qinghai University Medical College, No. 16 Kunlun Rd, Xining, 810008, China; Nutrition and Health Promotion Center, Qinghai University Medical College, No. 16 Kunlun Rd, Xining 810008, China
| | - Wenxiu Jian
- Department of Public Health, Qinghai University Medical College, No. 16 Kunlun Rd, Xining, 810008, China; Nutrition and Health Promotion Center, Qinghai University Medical College, No. 16 Kunlun Rd, Xining 810008, China
| | - Lei Zhao
- Department of Public Health, Qinghai University Medical College, No. 16 Kunlun Rd, Xining, 810008, China; Nutrition and Health Promotion Center, Qinghai University Medical College, No. 16 Kunlun Rd, Xining 810008, China
| | - Ruijie Xu
- Global Health Institute, School of Public Health, Xi'an Jiaotong University, Room 3104, No. 21 Hongren Building, West China Science and Technology lnnovation Harbour (iHarbour), Xi'an 710061, China
| | - Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 199 Chang'an South Rd, Xi'an, Shaanxi 710062, China
| | - Bin Zhang
- School of Mathematics and Statistics, Qinghai Nationalities University, No. 3 Bayi Middle Rd, Xining 810007, China
| | - Haijing Wang
- Department of Public Health, Qinghai University Medical College, No. 16 Kunlun Rd, Xining, 810008, China; Nutrition and Health Promotion Center, Qinghai University Medical College, No. 16 Kunlun Rd, Xining 810008, China
| | - Li Tong
- Qinghai Provincial Key Laboratory of Prevention and Control of Glucolipid Metabolic Diseases with Traditional Chinese Medicine, Medical College, Qinghai University, No. 16 Kunlun Rd, Xining 810008, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, No. 825 Zhangheng Rd, Shanghai 200438, China.
| | - Youfa Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University, Room 3104, No. 21 Hongren Building, West China Science and Technology lnnovation Harbour (iHarbour), Xi'an 710061, China.
| |
Collapse
|
3
|
Scott GR, Garvey KM, Wearing OH. The role of the heart in the evolution of aerobic performance. J Exp Biol 2024; 227:jeb247642. [PMID: 39045710 DOI: 10.1242/jeb.247642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Aerobic metabolism underlies vital traits such as locomotion and thermogenesis, and aerobic capacity influences fitness in many animals. The heart is a key determinant of aerobic capacity, but the relative influence of cardiac output versus other steps in the O2 transport pathway remains contentious. In this Commentary, we consider this issue by examining the mechanistic basis for adaptive increases in aerobic capacity (thermogenic V̇O2,max; also called summit metabolism) in deer mice (Peromyscus maniculatus) native to high altitude. Thermogenic V̇O2,max is increased by acclimation to cold hypoxia (simulating high-altitude conditions), and high-altitude populations generally have greater V̇O2,max than their low-altitude counterparts. This plastic and evolved variation in V̇O2,max is associated with corresponding variation in maximal cardiac output, along with variation in other traits across the O2 pathway (e.g. arterial O2 saturation, blood haemoglobin content and O2 affinity, tissue O2 extraction, tissue oxidative capacity). By applying fundamental principles of gas exchange, we show that the relative influence of cardiac output on V̇O2,max depends on the O2 diffusing capacity of thermogenic tissues (skeletal muscles and brown adipose tissues). Functional interactions between cardiac output and blood haemoglobin content determine circulatory O2 delivery and thus affect V̇O2,max, particularly in high-altitude environments where erythropoiesis can increase haematocrit and blood viscosity. There may also be functional linkages between cardiac output and tissue O2 diffusion due to the role of blood flow in determining capillary haematocrit and red blood cell flux. Therefore, the functional interactions between cardiac output and other traits in the O2 pathway underlie the adaptive evolution of aerobic capacities.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Kayla M Garvey
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Oliver H Wearing
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 2A1
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada, V1V 1V7
| |
Collapse
|
4
|
Bautista NM, Herrera ND, Shadowitz E, Wearing OH, Cheviron ZA, Scott GR, Storz JF. Local adaptation, plasticity, and evolved resistance to hypoxic cold stress in high-altitude deer mice. Proc Natl Acad Sci U S A 2024; 121:e2412526121. [PMID: 39352929 PMCID: PMC11474095 DOI: 10.1073/pnas.2412526121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
A fundamental question in evolutionary biology concerns the relative contributions of phenotypic plasticity vs. local adaptation (genotypic specialization) in enabling wide-ranging species to inhabit diverse environmental conditions. Here, we conduct a long-term hypoxia acclimation experiment to assess the relative roles of local adaptation and plasticity in enabling highland and lowland deer mice (Peromyscus maniculatus) to sustain aerobic thermogenesis at progressively increasing elevations. We assessed the relative physiological performance capacities of highland and lowland natives as they were exposed to progressive, stepwise increases in hypoxia, simulating the gradual ascent from sea level to an elevation of 6,000 m. The final elevation of 6,000 m far exceeds the highest attainable elevations within the species' range, and therefore tests the animals' ability to tolerate levels of hypoxia that surpass the prevailing conditions within their current distributional limits. Our results demonstrate that highland natives exhibit superior thermogenic capacities at the most severe levels of hypoxia, suggesting that the species' broad fundamental niche and its ability to inhabit such a broad range of elevational zones is attributable to genetically based local adaptation, including evolved changes in plasticity. Transcriptomic and physiological measurements identify evolved changes in the acclimation response to hypoxia that contribute to the enhanced thermogenic capacity of highland natives.
Collapse
Affiliation(s)
- Naim M. Bautista
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| | | | - Ellen Shadowitz
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Oliver H. Wearing
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | | | - Graham R. Scott
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| |
Collapse
|
5
|
Liu W, Liao SS, Bao MH, Huo DL, Cao J, Zhao ZJ. Lactating striped hamsters (Cricetulus barabensis) do not decrease the thermogenic capacity to cope with extreme cold temperature. ZOOLOGY 2024; 166:126195. [PMID: 39128254 DOI: 10.1016/j.zool.2024.126195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
For small non-hibernating mammals, a high thermogenic capacity is important to increase activity levels in the cold. It has been previously reported that lactating females decrease their thermogenic activity of brown adipose tissue (BAT), whereas their capacity to cope with extreme cold remains uncertain. In this study we examined food intake, body temperature and locomotor behavior, resting metabolic rate, non-shivering thermogenesis, and cytochrome c oxidase activity, and the rate of state 4 respiration of liver, skeletal muscle, and BAT in striped hamsters (Cricetulus barabensis) at peak lactation and non- breeding hamsters (controls). The lactating hamsters and non- breeding controls were acutely exposed to -15°C, and several markers indicative of thermogenic capacity were examined. In comparison to non-breeding females, lactating hamsters significantly increased food intake and body temperature, but decreased locomotor behavior, and the BAT mass, indicative of decreased BAT thermogenesis at peak lactation. Unexpectedly, lactating hamsters showed similar body temperature, resting metabolic rate, non-shivering thermogenesis with non-breeding females after acute exposure to -15°C. Furthermore, cytochrome c oxidase activity of liver, skeletal muscle and BAT, and serum thyroid hormone concentration, and BAT uncoupling protein 1 expression, in lactating hamsters were similar with that in non-breeding hamsters after acute extreme cold exposure. This suggests that lactating females have the same thermogenic capacity to survive cold temperatures compared to non-breeding animals. This is particularly important for females in the field to cope with cold environments during the period of reproduction. Our findings indicate that the females during lactation, one of the highest energy requirement periods, do not impair their thermogenic capacity in response to acute cold exposure.
Collapse
Affiliation(s)
- Wei Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Sha-Sha Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Meng-Huan Bao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Da-Liang Huo
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
6
|
Lyons SA, McClelland GB. Highland deer mice support increased thermogenesis in response to chronic cold hypoxia by shifting uptake of circulating fatty acids from muscles to brown adipose tissue. J Exp Biol 2024; 227:jeb247340. [PMID: 38506250 PMCID: PMC11057874 DOI: 10.1242/jeb.247340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
During maximal cold challenge (cold-induced V̇O2,max) in hypoxia, highland deer mice (Peromyscus maniculatus) show higher rates of circulatory fatty acid delivery compared with lowland deer mice. Fatty acid delivery also increases with acclimation to cold hypoxia (CH) and probably plays a major role in supporting the high rates of thermogenesis observed in highland deer mice. However, it is unknown which tissues take up these fatty acids and their relative contribution to thermogenesis. The goal of this study was to determine the uptake of circulating fatty acids into 24 different tissues during hypoxic cold-induced V̇O2,max, by using [1-14C]2-bromopalmitic acid. To uncover evolved and environment-induced changes in fatty acid uptake, we compared lab-born and -raised highland and lowland deer mice, acclimated to either thermoneutral (30°C, 21 kPa O2) or CH (5°C, 12 kPa O2) conditions. During hypoxic cold-induced V̇O2,max, CH-acclimated highlanders decreased muscle fatty acid uptake and increased uptake into brown adipose tissue (BAT) relative to thermoneutral highlanders, a response that was absent in lowlanders. CH acclimation was also associated with increased activities of enzymes citrate synthase and β-hydroxyacyl-CoA dehydrogenase in the BAT of highlanders, and higher levels of fatty acid translocase CD36 (FAT/CD36) in both populations. This is the first study to show that cold-induced fatty acid uptake is distributed across a wide range of tissues. Highland deer mice show plasticity in this fatty acid distribution in response to chronic cold hypoxia, and combined with higher rates of tissue delivery, this contributes to their survival in the cold high alpine environment.
Collapse
Affiliation(s)
- Sulayman A. Lyons
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | | |
Collapse
|
7
|
Coulson SZ, Duffy BM, Staples JF. Mitochondrial techniques for physiologists. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110947. [PMID: 38278207 DOI: 10.1016/j.cbpb.2024.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Mitochondria serve several important roles in maintaining cellular homeostasis, including adenosine triphosphate (ATP) synthesis, apoptotic signalling, and regulation of both reactive oxygen species (ROS) and calcium. Therefore, mitochondrial studies may reveal insights into metabolism at higher levels of physiological organization. The apparent complexity of mitochondrial function may be daunting to researchers new to mitochondrial physiology. This review is aimed, therefore, at such researchers to provide a brief, yet approachable overview of common techniques used to assess mitochondrial function. Here we discuss the use of high-resolution respirometry in mitochondrial experiments and common analytical platforms used for this technique. Next, we compare the use of common mitochondrial preparation techniques, including adherent cells, tissue homogenate, permeabilized fibers and isolated mitochondria. Finally, we outline additional techniques that can be used in tandem with high-resolution respirometry to assess additional aspects of mitochondrial metabolism, including ATP synthesis, calcium uptake, membrane potential and reactive oxygen species emission. We also include limitations to each of these techniques and outline recommendations for experimental design and interpretation. With a general understanding of methodologies commonly used to study mitochondrial physiology, experimenters may begin contributing to our understanding of this organelle, and how it affects other physiological phenotypes.
Collapse
Affiliation(s)
- Soren Z Coulson
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada.
| | - Brynne M Duffy
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada. https://twitter.com/BrynneDuffy
| | - James F Staples
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada
| |
Collapse
|
8
|
Ren S, Zhang L, Tang X, Zhao Y, Cheng Q, Speakman JR, Zhang Y. Temporal and spatial variations in body mass and thermogenic capacity associated with alterations in the gut microbiota and host transcriptome in mammalian herbivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167776. [PMID: 37848151 DOI: 10.1016/j.scitotenv.2023.167776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Most wild animals follow Bergmann's rule and grow in body size as cold stress increases. However, the underlying thermogenic strategies and their relationship with the gut microbiota have not been comprehensively elucidated. Herein, we used the plateau pikas as a model to investigate body mass, thermogenic capacity, host transcriptome, gut microbiota and metabolites collected from seven sites ranging from 3100 to 4700 m on the Qinghai-Tibetan Plateau (QTP) in summer and winter to test the seasonal thermogenesis strategy in small herbivorous mammals. The results showed that the increase in pika body mass with altitude followed Bergmann's rule in summer and an inverted parabolic shape was observed in winter. However, physiological parameters and transcriptome profiles indicated that the thermogenic capacity of pikas increased with altitude in summer and decreased with altitude in winter. The abundance of Firmicutes declined, whereas that of Bacteroidetes significantly increased with altitude in summer. Phenylalanine, tyrosine, and proline were enriched in summer, whereas carnitine and succinate were enriched in winter. Spearman's correlation analysis revealed significant positive correlations between Prevotella, Bacteroides, Ruminococcus, Alistipes and Akkermansia and metabolites of amino acids, pika physiological parameters, and transcriptome profiles. Moreover, metabolites of amino acids further showed significant positive correlations with pika physiological parameters and transcriptome profiles. Our study highlights that the changes in body mass and thermogenic capacity with altitude distinctly differentiate small herbivorous mammals between summer and winter on the QTP, and that the gut microbiota may regulate host thermogenesis through its metabolites.
Collapse
Affiliation(s)
- Shien Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China.
| |
Collapse
|
9
|
Function of left ventricle mitochondria in highland deer mice and lowland mice. J Comp Physiol B 2023; 193:207-217. [PMID: 36795175 DOI: 10.1007/s00360-023-01476-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
To gain insight into the mitochondrial mechanisms of hypoxia tolerance in high-altitude natives, we examined left ventricle mitochondrial function of highland deer mice compared with lowland native deer mice and white-footed mice. Highland and lowland native deer mice (Peromyscus maniculatus) and lowland white-footed mice (P. leucopus) were first-generation born and raised in common lab conditions. Adult mice were acclimated to either normoxia or hypoxia (60 kPa) equivalent to ~ 4300 m for at least 6 weeks. Left ventricle mitochondrial physiology was assessed by determining respiration in permeabilized muscle fibers with carbohydrates, lipids, and lactate as substrates. We also measured the activities of several left ventricle metabolic enzymes. Permeabilized left ventricle muscle fibers of highland deer mice showed greater rates of respiration with lactate than either lowland deer mice or white-footed mice. This was associated with higher activities of lactate dehydrogenase in tissue and isolated mitochondria in highlanders. Normoxia-acclimated highlanders also showed higher respiratory rates with palmitoyl-carnitine than lowland mice. Maximal respiratory capacity through complexes I and II was also greater in highland deer mice but only compared with lowland deer mice. Acclimation to hypoxia had little effect on respiration rates with these substrates. In contrast, left ventricle activities of hexokinase increased in both lowland and highland deer mice after hypoxia acclimation. These data suggest that highland deer mice support an elevated cardiac function in hypoxia, in part, with high ventricle cardiomyocyte respiratory capacities supported by carbohydrates, fatty acids, and lactate.
Collapse
|
10
|
Recruitment of Muscle Genes as an Effect of Brown Adipose Tissue Ablation in Cold-Acclimated Brandt's Voles ( Lasiopodomys brandtii). Int J Mol Sci 2022; 24:ijms24010342. [PMID: 36613791 PMCID: PMC9820317 DOI: 10.3390/ijms24010342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Skeletal muscle-based nonshivering thermogenesis (NST) plays an important role in the regulation and maintenance of body temperature in birds and large mammals, which do not contain brown adipose tissue (BAT). However, the relative contribution of muscle-based NST to thermoregulation is not clearly elucidated in wild small mammals, which have evolved an obligate thermogenic organ of BAT. In this study, we investigated whether muscle would become an important site of NST when BAT function is conditionally minimized in Brandt's voles (Lasiopodomys brandtii). We surgically removed interscapular BAT (iBAT, which constitutes 52%~56% of total BAT) and exposed the voles to prolonged cold (4 °C) for 28 days. The iBAT-ablated voles were able to maintain the same levels of NST and body temperature (~37.9 °C) during the entire period of cold acclimation as sham voles. The expression of uncoupling protein 1 (UCP1) and its transcriptional regulators at both protein and mRNA levels in the iBAT of cold-acclimated voles was higher than that in the warm group. However, no difference was observed in the protein or mRNA levels of these thermogenesis-related markers except for PGC-1α in other sites of BAT (including infrascapular region, neck, and axilla) between warm and cold groups either in sham or iBAT-ablated voles. The iBAT-ablated voles showed higher UCP1 expression in white adipose tissue (WAT) than sham voles during cold acclimation. The expression of sarcolipin (SLN) and sarcoplasmic endoplasmic reticulum Ca2+-dependent adenosine triphosphatase (SERCA) in skeletal muscles was higher in cold than in warm, but no alteration in phospholamban (PLB) and phosphorylated-PLB (P-PLB) was observed. Additionally, there was increased in iBAT-ablated voles compared to that in the sham group in cold. Moreover, these iBAT-ablated voles underwent extensive remodeling of mitochondria and genes of key components related with mitochondrial metabolism. These data collectively indicate that recruitment of skeletal muscle-based thermogenesis may compensate for BAT impairment and suggest a functional interaction between the two forms of thermogenic processes of iBAT and skeletal muscle in wild small mammals for coping cold stress.
Collapse
|
11
|
Ruperto EF, Taraborelli PA, Menéndez J, Sassi PL. Behavioral plasticity in two endemic rodents from the Andes Mountains: strategies for thermal and energetic balance. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Lyons SA, McClelland GB. Thermogenesis is supported by high rates of circulatory fatty acid and triglyceride delivery in highland deer mice. J Exp Biol 2022; 225:275398. [PMID: 35552735 DOI: 10.1242/jeb.244080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Highland native deer mice (Peromyscus maniculatus) have greater rates of lipid oxidation during maximal cold challenge in hypoxia (hypoxic cold-induced V˙O2max) compared to their lowland conspecifics. Lipid oxidation is also increased in deer mice acclimated to simulated high altitude (cold hypoxia), regardless of altitude ancestry. The underlying lipid metabolic pathway traits responsible for sustaining maximal thermogenic demand in deer mice is currently unknown. The objective of this study was to characterize key steps in the lipid oxidation pathway in highland and lowland deer mice acclimated to control (23oC, 21kPa O2) or cold hypoxic (5oC, 12kPa O2) conditions. We hypothesized that capacities for lipid delivery and tissue uptake will be greater in highlanders and further increase with cold hypoxia acclimation. With the transition from rest to hypoxic cold-induced V˙O2max, both highland and lowland deer mice showed increased plasma glycerol concentrations and fatty acid availability. Interestingly, cold hypoxia acclimation led to increased plasma triglyceride concentrations at cold-induced V˙O2max, but only in highlanders. Highlanders also had significantly greater delivery rates of circulatory free fatty acids and triglycerides due to higher plasma flow rates at cold-induced V˙O2max. We found no population or acclimation differences in fatty acid translocase (FAT/CD36) abundance in the gastrocnemius or brown adipose tissue, suggesting fatty acid uptake across membranes is not limiting during thermogenesis. Our data indicate that circulatory lipid delivery plays a major role in supporting the high thermogenic rates observed in highland versus lowland deer mice.
Collapse
Affiliation(s)
- Sulayman A Lyons
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
13
|
Pramsohler S, Burtscher M, Rausch L, Netzer NC. Weight Loss and Fat Metabolism during Multi-Day High-Altitude Sojourns: A Hypothesis Based on Adipocyte Signaling. Life (Basel) 2022; 12:life12040545. [PMID: 35455035 PMCID: PMC9026814 DOI: 10.3390/life12040545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Several publications and random observations have reported weight loss in high-altitude sojourners of both sexes. This could be a result of multiple adaptations, which hypoxia and mountaineering provoke on a cellular and organic level. Several publications have discussed the effect on appetite-regulating hormones to be one of the main contributing factors. We aimed to review the available data and show the current state of knowledge regarding nutritional aspects in high altitude with a special focus on fatty dietary forms. To reach this aim we conducted a literature search via PubMed according to the PRISMA 2020 protocol to identify relevant studies. We found that very few studies cover this field with scientifically satisfying evidence. For final analysis, reviews as well as papers that were not clearly related to the topic were excluded. Six articles were included discussing hormonal influences and the impact of exercise on appetite regulation as well as genetic factors altering metabolic processes at altitude. Leptin expression seems to be the biggest contributor to appetite reduction at altitude with an initial increase followed by a decrease in the course of time at high altitude. Its expression is greatly dependent on the amount of white adipose tissue. Since the expression of leptin is associated with an increased β-oxidation of fatty acids, a high-fat diet could be advantageous at a certain time point in the course of high-altitude sojourns.
Collapse
Affiliation(s)
- Stephan Pramsohler
- Hermann Buhl Institute for Hypoxia and Sleep Medicine Research, 83043 Bad Aibling, Germany;
- Institute of Sports Science, University Innsbruck, 6020 Innsbruck, Austria; (M.B.); (L.R.)
- Department Medicine, Division of Sports Medicine and Rehabilitation, University Hospitals, 89070 Ulm, Germany
- Correspondence: ; Tel.: +49-(0)163-628-6366
| | - Martin Burtscher
- Institute of Sports Science, University Innsbruck, 6020 Innsbruck, Austria; (M.B.); (L.R.)
| | - Linda Rausch
- Institute of Sports Science, University Innsbruck, 6020 Innsbruck, Austria; (M.B.); (L.R.)
| | - Nikolaus C. Netzer
- Hermann Buhl Institute for Hypoxia and Sleep Medicine Research, 83043 Bad Aibling, Germany;
- Institute of Sports Science, University Innsbruck, 6020 Innsbruck, Austria; (M.B.); (L.R.)
- Department Medicine, Division of Sports Medicine and Rehabilitation, University Hospitals, 89070 Ulm, Germany
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bozen, Italy
| |
Collapse
|
14
|
Križančić Bombek L, Čater M. Skeletal Muscle Uncoupling Proteins in Mice Models of Obesity. Metabolites 2022; 12:metabo12030259. [PMID: 35323702 PMCID: PMC8955650 DOI: 10.3390/metabo12030259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity and accompanying type 2 diabetes are among major and increasing worldwide problems that occur fundamentally due to excessive energy intake during its expenditure. Endotherms continuously consume a certain amount of energy to maintain core body temperature via thermogenic processes, mainly in brown adipose tissue and skeletal muscle. Skeletal muscle glucose utilization and heat production are significant and directly linked to body glucose homeostasis at rest, and especially during physical activity. However, this glucose balance is impaired in diabetic and obese states in humans and mice, and manifests as glucose resistance and altered muscle cell metabolism. Uncoupling proteins have a significant role in converting electrochemical energy into thermal energy without ATP generation. Different homologs of uncoupling proteins were identified, and their roles were linked to antioxidative activity and boosting glucose and lipid metabolism. From this perspective, uncoupling proteins were studied in correlation to the pathogenesis of diabetes and obesity and their possible treatments. Mice were extensively used as model organisms to study the physiology and pathophysiology of energy homeostasis. However, we should be aware of interstrain differences in mice models of obesity regarding thermogenesis and insulin resistance in skeletal muscles. Therefore, in this review, we gathered up-to-date knowledge on skeletal muscle uncoupling proteins and their effect on insulin sensitivity in mouse models of obesity and diabetes.
Collapse
|
15
|
Hayward L, Robertson CE, McClelland GB. Phenotypic plasticity to chronic cold exposure in two species of Peromyscus from different environments. J Comp Physiol B 2022; 192:335-348. [PMID: 34988665 DOI: 10.1007/s00360-021-01423-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Effective thermoregulation is important for mammals, particularly those that remain winter-active. Adjustments in thermoregulatory capacity in response to chronic cold can improve capacities for metabolic heat production (cold-induced maximal oxygen consumption, [Formula: see text]), minimize rates of heat loss (thermal conductance), or both. This can be challenging for animals living in chronically colder habitats where necessary resources (i.e., food, O2) for metabolic heat production are limited. Here we used lowland native white-footed mice (Peromyscus leucopus) and highland deer mice (P. maniculatus) native to 4300 m, to test the hypothesis that small winter-active mammals have evolved distinct cold acclimation responses to tailor their thermal physiology based on the energetic demands of their environment. We found that both species increased their [Formula: see text] after cold acclimation, associated with increases in brown adipose tissue mass and expression of uncoupling protein 1. They also broadened their thermoneutral zone to include lower ambient temperatures. This was accompanied by an increase in basal metabolic rate but only in white-footed mice, and neither species adjusted thermal conductance. Unique to highland deer mice was a mild hypothermia as ambient temperatures decreased, which reduced the gradient for heat loss, possibly to save energy in the chronically cold high alpine. These results highlight that thermal acclimation involves coordinated plasticity of numerous traits and suggest that small, winter-active mammals may adjust different aspects of their physiology in response to changing temperatures to best suit their energetic and thermoregulatory needs.
Collapse
Affiliation(s)
- Leah Hayward
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Cayleih E Robertson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Grant B McClelland
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
16
|
Increased Reliance on Carbohydrates for Aerobic Exercise in Highland Andean Leaf-Eared Mice, but Not in Highland Lima Leaf-Eared Mice. Metabolites 2021; 11:metabo11110750. [PMID: 34822408 PMCID: PMC8618444 DOI: 10.3390/metabo11110750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Exercise is an important performance trait in mammals and variation in aerobic capacity and/or substrate allocation during submaximal exercise may be important for survival at high altitude. Comparisons between lowland and highland populations is a fruitful approach to understanding the mechanisms for altitude differences in exercise performance. However, it has only been applied in very few highland species. The leaf-eared mice (LEM, genus Phyllotis) of South America are a promising taxon to uncover the pervasiveness of hypoxia tolerance mechanisms. Here we use lowland and highland populations of Andean and Lima LEM (P. andium and P. limatus), acclimated to common laboratory conditions, to determine exercise-induced maximal oxygen consumption (V˙O2max), and submaximal exercise metabolism. Lowland and highland populations of both species showed no difference in V˙O2max running in either normoxia or hypoxia. When run at 75% of V˙O2max, highland Andean LEM had a greater reliance on carbohydrate oxidation to power exercise. In contrast, highland Lima LEM showed no difference in exercise fuel use compared to their lowland counterparts. The higher carbohydrate oxidation seen in highland Andean LEM was not explained by maximal activities of glycolytic enzymes in the gastrocnemius muscle, which were equivalent to lowlanders. This result is consistent with data on highland deer mouse populations and suggests changes in metabolic regulation may explain altitude differences in exercise performance.
Collapse
|