1
|
Guo S, Guo Y, Chen Y, Cui S, Zhang C, Chen D. The role of CEMIP in cancers and its transcriptional and post-transcriptional regulation. PeerJ 2024; 12:e16930. [PMID: 38390387 PMCID: PMC10883155 DOI: 10.7717/peerj.16930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
CEMIP is a protein known for inducing cell migration and binding to hyaluronic acid. Functioning as a hyaluronidase, CEMIP primarily facilitates the breakdown of the extracellular matrix component, hyaluronic acid, thereby regulating various signaling pathways. Recent evidence has highlighted the significant role of CEMIP in different cancers, associating it with diverse pathological states. While identified as a biomarker for several diseases, CEMIP's mechanism in cancer seems distinct. Accumulating data suggests that CEMIP expression is triggered by chemical modifications to itself and other influencing factors. Transcriptionally, chemical alterations to the CEMIP promoter and involvement of transcription factors such as AP-1, HIF, and NF-κB regulate CEMIP levels. Similarly, specific miRNAs have been found to post-transcriptionally regulate CEMIP. This review provides a comprehensive summary of CEMIP's role in various cancers and explores how both transcriptional and post-transcriptional mechanisms control its expression.
Collapse
Affiliation(s)
- Song Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yunfei Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yuanyuan Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Shuaishuai Cui
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Chunmei Zhang
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Dahu Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| |
Collapse
|
2
|
Liu Y, Hu G, Li Y, Kong X, Yang K, Li Z, Lao W, Li J, Zhong J, Zhang S, Leng Y, Bi C, Zhai A. Research on the biological mechanism and potential application of CEMIP. Front Immunol 2023; 14:1222425. [PMID: 37662915 PMCID: PMC10471826 DOI: 10.3389/fimmu.2023.1222425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Cell migration-inducing protein (CEMIP), also known as KIAA1199 and hyaluronan-binding protein involved in hyaluronan depolymerization, is a new member of the hyaluronidase family that degrades hyaluronic acid (HA) and remodels the extracellular matrix. In recent years, some studies have reported that CEMIP can promote the proliferation, invasion, and adhesion of various tumor cells and can play an important role in bacterial infection and arthritis. This review focuses on the pathological mechanism of CEMIP in a variety of diseases and expounds the function of CEMIP from the aspects of inhibiting cell apoptosis, promoting HA degradation, inducing inflammatory responses and related phosphorylation, adjusting cellular microenvironment, and regulating tissue fibrosis. The diagnosis and treatment strategies targeting CEMIP are also summarized. The various functions of CEMIP show its great potential application value.
Collapse
Affiliation(s)
- Yang Liu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Gang Hu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuetong Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinyi Kong
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kaming Yang
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhenlin Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wanwen Lao
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiaxin Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jianhua Zhong
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shitong Zhang
- Department of General Practice, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuxin Leng
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Changlong Bi
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Spataro S, Guerra C, Cavalli A, Sgrignani J, Sleeman J, Poulain L, Boland A, Scapozza L, Moll S, Prunotto M. CEMIP (HYBID, KIAA1199): structure, function and expression in health and disease. FEBS J 2023; 290:3946-3962. [PMID: 35997767 DOI: 10.1111/febs.16600] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022]
Abstract
CEMIP (cell migration-inducing protein), also known as KIAA1199 or HYBID, is a protein involved in the depolymerisation of hyaluronic acid (HA), a major glycosaminoglycan component of the extracellular matrix. CEMIP was originally described in patients affected by nonsyndromic hearing loss and has subsequently been shown to play a key role in tumour initiation and progression, as well as arthritis, atherosclerosis and idiopathic pulmonary fibrosis. Despite the vast literature associating CEMIP with these diseases, its biology remains elusive. The present review article summarises all the major scientific evidence regarding its structure, function, role and expression, and attempts to cast light on a protein that modulates EMT, fibrosis and tissue inflammation, an unmet key aspect in several inflammatory disease conditions.
Collapse
Affiliation(s)
- Sofia Spataro
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Jonathan Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS - BIP), Karlsruhe Institute for Technology (KIT), Germany
| | - Lina Poulain
- Department of Molecular Biology, University of Geneva, Switzerland
| | - Andreas Boland
- Department of Molecular Biology, University of Geneva, Switzerland
| | - Leonardo Scapozza
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| | - Solange Moll
- Department of Pathology, University Hospital of Geneva, Switzerland
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| |
Collapse
|
4
|
Liu M, Xie L, Zhang Y, Chen J, Zhang X, Chen Y, Huang W, Cai M, Liang L, Lai M, Huang J, Guo Y, Lin L, Zhu K. Inhibition of CEMIP potentiates the effect of sorafenib on metastatic hepatocellular carcinoma by reducing the stiffness of lung metastases. Cell Death Dis 2023; 14:25. [PMID: 36639658 PMCID: PMC9839779 DOI: 10.1038/s41419-023-05550-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Hepatocellular carcinoma (HCC) with lung metastasis is associated with poor prognosis and poor therapeutic outcomes. Studies have demonstrated that stiffened stroma can promote metastasis in various tumors. However, how the lung mechanical microenvironment favors circulating tumor cells remains unclear in metastatic HCC. Here, we found that the expression of cell migration-inducing hyaluronan-binding protein (CEMIP) was closely associated with lung metastasis and can promote pre-metastatic niche formation by increasing lung matrix stiffness. Furthermore, upregulated serum CEMIP was indicative of lung fibrotic changes severity in patients with HCC lung metastasis. By directly targeting CEMIP, pirfenidone can inhibit CEMIP/TGF-β1/Smad signaling pathway and reduce lung metastases stiffening, demonstrating promising antitumor activity. Pirfenidone in combination with sorafenib can more effectively suppress the incidence of lung metastasis compared with sorafenib alone. This study is the first attempt to modulate the mechanical microenvironment for HCC therapy and highlights CEMIP as a potential target for the prevention and treatment of HCC lung metastasis. CEMIP mediating an HCC-permissive microenvironment through controlling matrix stiffness. Meanwhile, Pirfenidone could reduce metastasis stiffness and increases the anti-angiogenic effect of Sorafenib by directly targeting CEMIP.
Collapse
Affiliation(s)
- Mingyu Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Lulu Xie
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Yuying Zhang
- Central Laboratory, Shenzhen Longhua Maternity and Child Healthcare Hospital, 518109, Shenzhen, China
| | - Jianning Chen
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, 510630, Guangzhou, China
| | - Xiang Zhang
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and The Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ye Chen
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Wensou Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Mingyue Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Licong Liang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Miaoling Lai
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Jingjun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Yongjian Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, Guangdong, China.
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, Guangdong, China.
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Weng J, Zhang Y, Liang W, Xie Y, Wang K, Xu Q, Ding Y, Li Y. Downregulation of CEMIP enhances radiosensitivity by promoting DNA damage and apoptosis in colorectal cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:73. [PMID: 36607478 DOI: 10.1007/s12032-022-01940-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
Colorectal cancer (CRC) is the third leading malignancy worldwide in both new cases and deaths. Neoadjuvant radiotherapy is the standard preoperative regimens for locally advanced patients. However, approximately 50% of patients develop recurrence and metastasis after radiotherapy, which is largely due to the radiation resistance properties of the tumor, and the internal mechanism has not been elucidated. Here we found that CEMIP expression is up-regulated in a variety of tumor types, particularly in CRC. Public databases and clinical samples revealed that CEMIP expression is significantly higher in tumor tissues than in adjacent normal tissues in patients with locally advanced CRC who received neoadjuvant chemoradiotherapy, and it is closely related to the poor prognosis. Functional characterization uncovered that downregulation of CEMIP expression can enhance the radiosensitivity of CRC cells, which is confirmed to be achieved by promoting DNA damage and apoptosis. In vivo studies further verified that CEMIP knockdown can significantly improve the radiosensitivity of subcutaneously implanted colorectal tumors in mice, suggesting that CEMIP may be a radiation-resistant gene in CRC. Mechanistically, EGFR/PI3K/Akt signaling pathway is hypothesized to play a key role in CEMIP mediating radiation resistance. These results provide a potential new strategy targeting CEMIP gene for the comprehensive treatment of locally advanced CRC patients.
Collapse
Affiliation(s)
- Jiawen Weng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuqin Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weijie Liang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuwen Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qian Xu
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yi Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Chen H, Wang Q, Liu J, Chen Y, Zhang Q, Chai L, Wang Y, Li D, Qiu Y, Li M. CEMIP as a prognostic biomarker for cancers: a meta- and bioinformatic analysis. Expert Rev Mol Diagn 2022; 22:1107-1115. [PMID: 36631437 DOI: 10.1080/14737159.2022.2168191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Cell migration-inducing and hyaluronan-binding protein (CEMIP) is overexpressed in several cancers and is related to prognosis in cancer patients. Here, we conducted a meta-analysis to explore the prognostic effects of CEMIP in cancer patients. METHODS Relevant published studies were systematically searched in four databases. The role of CEMIP was evaluated using pooled hazard ratios (HRs), odd ratios (ORs), and 95% confidence intervals (95% CIs). The Cancer Genome Atlas (TCGA) was used to investigate the prognostic value of CEMIP in various cancers. RESULTS 11 literatures with 1355 patients were included in this meta-analysis. The results showed that overexpression of CEMIP was significantly associated with poor OS (HR = 3.03; 95% CI: 2.00-4.59; p < 0.001), DFS (HR = 3.38; 95% CI: 2.41-4.74; p < 0.001). Elevated CEMIP expression is associated with advanced clinical stage, lymph node metastasis, and poor histological grade. In addition, TCGA datasets were used to verify that CEMIP was found highly expressed in multiple cancers and was associated with poorer survival. CONCLUSION The results demonstrated that CEMIP could be a novel prognostic biomarker for cancer patients. However, because the included studies mainly focused on Asian populations, further research is needed to verify its applicability.
Collapse
Affiliation(s)
- Huan Chen
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qingting Wang
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Liu
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuqian Chen
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qianqian Zhang
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Limin Chai
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Wang
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Danyang Li
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuanjie Qiu
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Manxiang Li
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Domanegg K, Sleeman JP, Schmaus A. CEMIP, a Promising Biomarker That Promotes the Progression and Metastasis of Colorectal and Other Types of Cancer. Cancers (Basel) 2022; 14:cancers14205093. [PMID: 36291875 PMCID: PMC9600181 DOI: 10.3390/cancers14205093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary CEMIP (cell migration-inducing and hyaluronan-binding protein) has been implicated in the pathogenesis of numerous diseases, including colorectal and other forms of cancer. The molecular functions of CEMIP are currently under investigation and include the degradation of the extracellular matrix component hyaluronic acid (HA), as well as the regulation of a number of signaling pathways. In this review, we survey our current understanding of how CEMIP contributes to tumor growth and metastasis, focusing particularly on colorectal cancer, for which it serves as a promising biomarker. Abstract Originally discovered as a hypothetical protein with unknown function, CEMIP (cell migration-inducing and hyaluronan-binding protein) has been implicated in the pathogenesis of numerous diseases, including deafness, arthritis, atherosclerosis, idiopathic pulmonary fibrosis, and cancer. Although a comprehensive definition of its molecular functions is still in progress, major functions ascribed to CEMIP include the depolymerization of the extracellular matrix component hyaluronic acid (HA) and the regulation of a number of signaling pathways. CEMIP is a promising biomarker for colorectal cancer. Its expression is associated with poor prognosis for patients suffering from colorectal and other types of cancer and functionally contributes to tumor progression and metastasis. Here, we review our current understanding of how CEMIP is able to foster the process of tumor growth and metastasis, focusing particularly on colorectal cancer. Studies in cancer cells suggest that CEMIP exerts its pro-tumorigenic and pro-metastatic activities through stimulating migration and invasion, suppressing cell death and promoting survival, degrading HA, regulating pro-metastatic signaling pathways, inducing the epithelial–mesenchymal transition (EMT) program, and contributing to the metabolic reprogramming and pre-metastatic conditioning of future metastatic microenvironments. There is also increasing evidence indicating that CEMIP may be expressed in cells within the tumor microenvironment that promote tumorigenesis and metastasis formation, although this remains in an early stage of investigation. CEMIP expression and activity can be therapeutically targeted at a number of levels, and preliminary findings in animal models show encouraging results in terms of reduced tumor growth and metastasis, as well as combating therapy resistance. Taken together, CEMIP represents an exciting new player in the progression of colorectal and other types of cancer that holds promise as a therapeutic target and biomarker.
Collapse
Affiliation(s)
- Kevin Domanegg
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Jonathan P. Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence:
| | - Anja Schmaus
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Cheng J, Zhang Y, Wan R, Zhou J, Wu X, Fan Q, He J, Tan W, Deng Y. CEMIP Promotes Osteosarcoma Progression and Metastasis Through Activating Notch Signaling Pathway. Front Oncol 2022; 12:919108. [PMID: 35957875 PMCID: PMC9361750 DOI: 10.3389/fonc.2022.919108] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/22/2022] [Indexed: 12/17/2022] Open
Abstract
Cell migration inducing protein (CEMIP) has been linked to carcinogenesis in several types of cancers. However, the role and mechanism of CEMIP in osteosarcoma remain unclear. This study investigated the role of CEMIP in the progression and metastasis of osteosarcoma, CEMIP was found to be overexpressed in osteosarcoma tissues when compared to adjacent non-tumor tissues, and its expression was positively associated with a poor prognosis in osteosarcoma patients. Silencing CEMIP decreased osteosarcoma cells proliferation, migration, and invasion, but enhanced apoptosis in vitro, and suppressed tumor growth and metastasis in vivo. Mechanistically, CEMIP promoted osteosarcoma cells growth and metastasis through activating Notch signaling pathway, silencing CEMIP would reduce the protein expression and activation of Notch/Jagged1/Hes1 signaling pathway in vitro and in vivo, activation of Notch signaling pathway could partially reversed cell proliferation and migration in shCEMIP osteosarcoma cells. In conclusion, our study demonstrated that CEMIP plays a substantial role in the progression of osteosarcoma via Notch signaling pathway, providing a promising therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Jun Cheng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Rongjun Wan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhou
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qizhi Fan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingpeng He
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Youwen Deng,
| |
Collapse
|
9
|
CircCEMIP promotes anoikis-resistance by enhancing protective autophagy in prostate cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:188. [PMID: 35655258 PMCID: PMC9161511 DOI: 10.1186/s13046-022-02381-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023]
Abstract
Background Circular RNAs (circRNAs) are essential participants in the development and progression of various malignant tumors. Previous studies have shown that cell migration-inducing protein (CEMIP) accelerates prostate cancer (PCa) anoikis resistance (AR) by activating autophagy. This study focused on the effect of circCEMIP on PCa metastasis. Methods This study gradually revealed the role of circ_0004585 in PCa anoikis resistance via quantitative real-time PCR (qRT-PCR) analysis, western blotting, pull-down assays, and dual fluorescence reporter assays. Results Functionally, circ_0004585 promoted PCa cells invasion and metastasis both in vitro and in vivo. Mechanistically, circ_0004585 directly interacted with miR-1248 to upregulate target gene expression. Furthermore, target prediction and dual-luciferase reporter assays identified transmembrane 9 superfamily member 4 (TM9SF4) as a potential miR-1248 target. Pathway analysis revealed that TM9SF4 activated autophagy to promote PCa cells anoikis resistance via mTOR phosphorylation. Conclusions These results demonstrated that circ_0004585 played an oncogenic role during PCa invasion and metastasis by targeting the miR-1248/TM9SF4 axis while providing new insight into therapeutic strategy development for metastatic PCa. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02381-7.
Collapse
|
10
|
ATF4/CEMIP/PKCα promotes anoikis resistance by enhancing protective autophagy in prostate cancer cells. Cell Death Dis 2022; 13:46. [PMID: 35013120 PMCID: PMC8748688 DOI: 10.1038/s41419-021-04494-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
The survival of cancer cells after detaching from the extracellular matrix (ECM) is essential for the metastatic cascade. The programmed cell death after detachment is known as anoikis, acting as a metastasis barrier. However, the most aggressive cancer cells escape anoikis and other cell death patterns to initiate the metastatic cascade. This study revealed the role of cell migration-inducing protein (CEMIP) in autophagy modulation and anoikis resistance during ECM detachment. CEMIP amplification during ECM detachment resulted in protective autophagy induction via a mechanism dependent on the dissociation of the B-cell lymphoma-2 (Bcl-2)/Beclin1 complex. Additional investigation revealed that acting transcription factor 4 (ATF4) triggered CEMIP transcription and enhanced protein kinase C alpha (PKCα) membrane translocation, which regulated the serine70 phosphorylation of Bcl-2, while the subsequent dissociation of the Bcl-2/Beclin1 complex led to autophagy. Therefore, CEMIP antagonization attenuated metastasis formation in vivo. In conclusion, inhibiting CEMIP-mediated protective autophagy may provide a therapeutic strategy for metastatic prostate cancer (PCa). This study delineates a novel role of CEMIP in anoikis resistance and provides new insight into seeking therapeutic strategies for metastatic PCa.
Collapse
|
11
|
Periyasamy L, Muruganantham B, Park WY, Muthusami S. Phyto-targeting the CEMIP Expression as a Strategy to Prevent Pancreatic Cancer Metastasis. Curr Pharm Des 2022; 28:922-946. [PMID: 35236267 DOI: 10.2174/1381612828666220302153201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Metastasis of primary pancreatic cancer (PC) to adjacent or distant organs is responsible for the poor survival rate of affected individuals. Chemotherapy, radiotherapy, and immunotherapy are currently being prescribed to treat PC in addition to surgical resection. Surgical resection is the preferred treatment for PC that leads to 20% of 5-year survival, but only less than 20% of patients are eligible for surgical resection because of the poor prognosis. To improve the prognosis and clinical outcome, early diagnostic markers need to be identified, and targeting them would be of immense benefit to increase the efficiency of the treatment. Cell migration-inducing hyaluronan-binding protein (CEMIP) is identified as an important risk factor for the metastasis of various cancers, including PC. Emerging studies have pointed out the crucial role of CEMIP in the regulation of various signaling mechanisms, leading to enhanced migration and metastasis of PC. METHODS The published findings on PC metastasis, phytoconstituents, and CEMIP were retrieved from Pubmed, ScienceDirect, and Cochrane Library. Computational tools, such as gene expression profiling interactive analysis (GEPIA) and Kaplan-Meier (KM) plotter, were used to study the relationship between CEMIP expression and survival of PC individuals. RESULTS Gene expression analysis using the GEPIA database identified a stupendous increase in the CEMIP transcript in PC compared to adjacent normal tissues. KM plotter analysis revealed the impact of CEMIP on the overall survival (OS) and disease-free survival (DFS) among PC patients. Subsequently, several risk factors associated with PC development were screened, and their ability to regulate CEMIP gene expression was analyzed using computational tools. CONCLUSION The current review is focused on gathering information regarding the regulatory role of phytocomponents in PC migration and exploring their possible impact on the CEMIP expression.
Collapse
Affiliation(s)
- Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Bharathi Muruganantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Woo-Yoon Park
- Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| |
Collapse
|
12
|
Chen Y, Zhou H, Jiang WJ, Wang JF, Tian Y, Jiang Y, Xia BR. The role of CEMIP in tumors: An update based on cellular and molecular insights. Biomed Pharmacother 2021; 146:112504. [PMID: 34922110 DOI: 10.1016/j.biopha.2021.112504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/17/2023] Open
Abstract
CEMIP was initially identified as an inner-ear specific protein in which three-point mutations cause folding changes in protein structure associated with non-syndromic hearing loss. CEMIP was also involved in other cellular activities, such as hyaluronan depolymerization independent of CD44 and other hyaluronidases. Growing evidence has demonstrated that CEMIP is involved in the progression of various tumors. However, whether the oncogenic effects of CEMIP relies on its enzymatic activity remain elusive. CEMIP is significantly related to metastasis and poor prognosis in patients with various tumors, suggesting that CEMIP is a potential, highly specific diagnostic tumor marker. Most preclinical experiments have shown that the overexpression of CEMIP in tumors mainly affects the adhesion, metastasis, and invasion of tumor cells and EMT. Other studies have also demonstrated that CEMIP can promote a variety of tumor processes by affecting tumor proliferation, dedifferentiation, and the tumor microenvironment. In terms of molecular mechanisms, existing research has shown that CEMIP mainly affects the WNT and EGFR signaling pathways. In addition, a variety of miRNAs have been shown to inhibit CEMIP in tumors. This paper elaborates on the clinical characteristics and regulatory dysfunction of CEMIP in different cancers. CEMIP provides a new potential target for therapy of multiple tumors, which is worthy of further study.
Collapse
Affiliation(s)
- Yu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life, Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Hu Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life, Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Wen-Jing Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life, Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Jia-Fei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life, Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Yuan Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life, Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Yan Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life, Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Bai-Rong Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life, Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China.
| |
Collapse
|
13
|
Chen CH, Ke GM, Lin PC, Lin KD. Therapeutic DNA vaccine encoding CEMIP (KIAA1199) ameliorates kidney fibrosis in obesity through inhibiting the Wnt/β-catenin pathway. Biochim Biophys Acta Gen Subj 2021; 1865:130019. [PMID: 34582938 DOI: 10.1016/j.bbagen.2021.130019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND CEMIP is a novel risk factor of various cancers through activating Wnt/β-catenin /epithelial-mesenchymal transition between epithelial cells and stroma. The chronic fibrosis commonly contributes renal carcinogenesis in patients with obesity. As there have very few choices of medicines targeting CEMIP. This study intended to design therapeutic DNA vaccines for nephropathy in obesity, through diminishing the CEMIP/Wnt1/β-catenin pathway. METHOD In an 8-week experiment, plasmid-encoding CEMIP was vaccinated into high-fat diet (HFD) or obesity mice in the first 4 weeks, and then vaccination was stopped for at least 4 weeks. Then, plasma and spleens were harvested to evaluate anti-CEMIP antibody synthesis and T-helper type 1 and 2 activation after vaccination. Kidneys were collected to investigate efficacy of CEMIP DNA vaccine on inhibiting HFD and obesity-induced fibrosis and Wnt1/β-catenin pathway. To confirm that CEMIP crucially contributed towards fibrotic formation, CEMIP gene or siRNA transfection was performed in HK-2 cells under VLDL stimulation, or not. RESULTS At the end point, anti-CEMIP antibody was successfully produced in the pcDNA 3.1-CEMIP vaccinated group, while Wnt1/β-catenin signaling and fibrosis was inactive. Through VLDL stimulation and CEMIP overexpression, Wnt1/β-catenin signaling and fibrosis significantly presented in vitro. Otherwise, anti-sera of CEMIP-vaccinated mice could inhibit the VLDL-induced Wnt1/β-catenin/fibrosis pathway in HK-2 cells. Similarly, the silencing of CEMIP by siRNA ameliorated the Wnt1/β-catenin pathway and fibrogenesis under VLDL stimulation. CONCLUSION DNA vaccine targeting CEMIP/Wnt1/β-catenin pathway plays a novel strategy in nephropathy. GENERAL SIGNIFICANCE Immune therapy might provide a new therapeutic option on nephropathy of obesity.
Collapse
Affiliation(s)
- Chao-Hung Chen
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan; Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pi-Chen Lin
- Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kun-Der Lin
- Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan..
| |
Collapse
|
14
|
Hypoxia increases KIAA1199/CEMIP expression and enhances cell migration in pancreatic cancer. Sci Rep 2021; 11:18193. [PMID: 34521918 PMCID: PMC8440617 DOI: 10.1038/s41598-021-97752-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by dense desmoplasia and hypoxic microenvironment. Our previous reports demonstrated that hyaluronan (HA), especially low-molecular-weight HA, provides a favourable microenvironment for PDAC progression. However, the effect of hypoxia on HA metabolism remains unknown. Using quantitative real-time RT-PCR and western blot analysis, we analysed the changes in the expression of HA-synthesizing enzymes (HAS2 and HAS3) and HA-degrading enzymes (HYAL1, KIAA1199/CEMIP) in PDAC cell lines under hypoxic conditions. Hypoxia increased the mRNA and protein expression of KIAA1199, whereas it decreased HYAL1 expression. The expression of HAS3 was increased and HAS2 remained unchanged in response to hypoxia. The effect of KIAA1199 on hypoxia-induced cell migration was determined using a transwell migration assay and small-interfering RNA (siRNA). Hypoxia enhanced the migratory ability of PDAC cells, which was inhibited by KIAA1199 knockdown. We also used immunohistochemistry to analyse the protein expression of hypoxia inducible factor (HIF) 1α and KIAA1199 in PDAC tissues. There was a significant immunohistochemically positive correlation between KIAA1199 and HIF1α. These findings suggest that hypoxia-induced KIAA1199 expression may contribute to enhanced motility in PDAC.
Collapse
|
15
|
Sindelar M, Jilkova J, Kubala L, Velebny V, Turkova K. Hyaluronidases and hyaluronate lyases: From humans to bacteriophages. Colloids Surf B Biointerfaces 2021; 208:112095. [PMID: 34507069 DOI: 10.1016/j.colsurfb.2021.112095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/05/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022]
Abstract
Hyaluronan is a non-sulfated negatively-charged linear polymer distributed in most parts of the human body, where it is located around cells in the extracellular matrix of connective tissues and plays an essential role in the organization of tissue architecture. Moreover, hyaluronan is involved in many biological processes and used in many clinical, cosmetic, pharmaceutic, and biotechnological applications worldwide. As interest in hyaluronan applications increases, so does interest in hyaluronidases and hyaluronate lyases, as these enzymes play a major part in hyaluronan degradation. Many hyaluronidases and hyaluronate lyases produced by eukaryotic cells, bacteria, and bacteriophages have so far been described and annotated, and their ability to cleave hyaluronan has been experimentally proven. These enzymes belong to several carbohydrate-active enzyme families, share very low sequence identity, and differ in their cleaving mechanisms and in their structural and functional properties. This review presents a summary of annotated and characterized hyaluronidases and hyaluronate lyases isolated from different sources belonging to distinct protein families, with a main focus on the binding and catalytic residues of the discussed enzymes in the context of their biochemical properties. In addition, the application potential of individual groups of hyaluronidases and hyaluronate lyases is evaluated.
Collapse
Affiliation(s)
- Martin Sindelar
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jana Jilkova
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Lukas Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691, Brno, Czech Republic
| | - Vladimir Velebny
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| | - Kristyna Turkova
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691, Brno, Czech Republic.
| |
Collapse
|
16
|
Guo H, Yang J, Liu S, Qin T, Zhao Q, Hou X, Ren L. Prognostic marker identification based on weighted gene co-expression network analysis and associated in vitro confirmation in gastric cancer. Bioengineered 2021; 12:4666-4680. [PMID: 34338150 PMCID: PMC8806585 DOI: 10.1080/21655979.2021.1957645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to explore the potential molecular mechanisms of Gastric cancer (GC) and identify new prognostic markers for GC. RNA sequencing data were downloaded from the Gene Expression Omnibus database, and 418 differentially expressed genes (DEGs) were screened. Weighted correlation network analysis (WGCNA) was performed to identify six hub modules related to the clinical features of GC. Cytoscape software was used to identify five hub genes in the co-expression network, including CST1, CEMIP, COL8A1, PMEPA1, and MSLN. The TCGA database was used to verify hub gene expression in GC. The overall survival in the high CEMIP expression group was significantly lower than that of patients in the low CEMIP expression group. CEMIP expression was also found to be negatively correlated with B cell and CD4 + T cell infiltration. Further, associated in vitro experiments confirmed that CEMIP downregulation suppressed the proliferation and migration of GC cells and impaired the chemoresistance of GC cells to 5-fluorouracil. Our study effectively identified and validated prognostic biomarkers for GC, laying a new foundation for the therapeutic target, occurrence, and development of gastric cancer.
Collapse
Affiliation(s)
- Haonan Guo
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guangxi, Guilin, China
| | - Jun Yang
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guangxi, Guilin, China
| | - Shanshan Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guangxi, Guilin, China
| | - Tao Qin
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guangxi, Guilin, China
| | - Qianwen Zhao
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guangxi, Guilin, China
| | - Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Lei Ren
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guangxi, Guilin, China
| |
Collapse
|
17
|
Ito K, Nishida Y, Ikuta K, Urakawa H, Koike H, Sakai T, Zhang J, Shimoyama Y, Imagama S. Overexpression of KIAA1199, a novel strong hyaluronidase, is a poor prognostic factor in patients with osteosarcoma. J Orthop Surg Res 2021; 16:439. [PMID: 34233709 PMCID: PMC8262042 DOI: 10.1186/s13018-021-02590-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023] Open
Abstract
Background Hyaluronan (HA) has been shown to play important roles in the growth, invasion, and metastasis of malignant tumors. KIAA1199, which has potent HA-degrading activity, has been reported to be expressed in various malignancies and associated with patient prognosis. However, there are no reports on the expression of KIAA1199 in osteosarcoma. The aim of this study was to investigate the impact of KIAA1199 and HA expression in osteosarcoma tissues on the prognosis and other clinical characteristics of osteosarcoma patients. Methods From 2003 to 2013, we included 49 patients with osteosarcoma at our institution, whose FFPE (formalin fixed paraffin embedded) tissue was available at the time of biopsy. The expressions of KIAA1199 and HA in each sample were assessed by immunohistochemistry using the primary antibody for KIAA1199 and HA-binding protein (HABP), respectively. For evaluation of the positivity of KIAA1199 staining, we divided the samples into two groups: High group with more than 75% positive staining and Low group with less than 75% positive staining. In the HABP staining, those with more than and less than 60% were assigned to a High group, and Low group respectively. Various clinical features were correlated with staining positivity. Prognostic factors including positivity of the staining were analyzed. Levels of mRNA expression for enzymes related to HA metabolism were assessed in two osteosarcoma cell lines using real-time RT-PCR. Results In KIAA1199 staining, high positivity was significantly correlated with occurrence of distant metastases (P = 0.002). The necrosis rate after preoperative chemotherapy was significantly lower in the High positivity group (59%), compared to that in the Low group (84.8%) (P = 0.003). HABP positivity was not correlated with any demographic variables, although the Low positivity group had a significantly better overall survival than the High group with KIAA1199 and HABP staining (P = 0.026 and P = 0.029, respectively). In multivariable analysis, KIAA1199 (P = 0.036) and HABP staining (P = 0.002), location (P = 0.001), and distant metastasis at initial diagnosis (P < 0.001) were identified as significant prognostic factors. KIAA1199 and hyaluronan synthase mRNA were expressed at different levels in the two osteosarcoma cell lines. Conclusions Our results showed that high expression of KIAA1199 and HA are both poor prognostic factors in osteosarcoma. KIAA1199 may be a useful marker for distant metastasis and chemoresistance.
Collapse
Affiliation(s)
- Kan Ito
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan. .,Department of Rehabilitation, Nagoya University Hospital, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan.
| | - Kunihiro Ikuta
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Hiroshi Urakawa
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Hiroshi Koike
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Tomohisa Sakai
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Jiarui Zhang
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Yoshie Shimoyama
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
18
|
Liu J, Yan W, Han P, Tian D. The emerging role of KIAA1199 in cancer development and therapy. Biomed Pharmacother 2021; 138:111507. [PMID: 33773462 DOI: 10.1016/j.biopha.2021.111507] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
KIAA1199, also known as CEMIP or HYBID, is an important member of the Human Unidentified Gene-Encoded (HUGE) database. Accumulated evidence has revealed that KIAA1199 is associated with tumor progression and metastasis in numerous malignancies, including colorectal, liver, gastric, pancreatic, breast, lung, prostate, ovarian and papillary thyroid cancers. As an oncogene, it plays crucial role in the proliferation, apoptosis, invasion and migration of various tumor cells. In addition, KIAA1199 is also involved in the regulation of multiple signal pathways such as epithelial-mesenchymal transition (EMT), Wnt/ β-catenin, MEK/ERK and PI3K/Akt. In this review, we summarized up to date advancement on the role of KIAA1199 in human cancer development, progression, and metastasis. We also addressed KIAA1199 as a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Jingmei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
19
|
Benkafadar N, Janesick A, Scheibinger M, Ling AH, Jan TA, Heller S. Transcriptomic characterization of dying hair cells in the avian cochlea. Cell Rep 2021; 34:108902. [PMID: 33761357 DOI: 10.1016/j.celrep.2021.108902] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/11/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
Sensory hair cells are prone to apoptosis caused by various drugs including aminoglycoside antibiotics. In mammals, this vulnerability results in permanent hearing loss because lost hair cells are not regenerated. Conversely, hair cells regenerate in birds, making the avian inner ear an exquisite model for studying ototoxicity and regeneration. Here, we use single-cell RNA sequencing and trajectory analysis on control and dying hair cells after aminoglycoside treatment. Interestingly, the two major subtypes of avian cochlear hair cells, tall and short hair cells, respond differently. Dying short hair cells show a noticeable transient upregulation of many more genes than tall hair cells. The most prominent gene group identified is associated with potassium ion conductances, suggesting distinct physiological differences. Moreover, the dynamic characterization of >15,000 genes expressed in tall and short avian hair cells during their apoptotic demise comprises a resource for further investigations toward mammalian hair cell protection and hair cell regeneration.
Collapse
Affiliation(s)
- Nesrine Benkafadar
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Amanda Janesick
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mirko Scheibinger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Angela H Ling
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Taha A Jan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stefan Heller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Wang D, Lu S, Zhang X, Huang L, Zhao H. Co-expression of KIAA1199 and hypoxia-inducible factor 1α is a biomarker for an unfavorable prognosis in hepatocellular carcinoma. Medicine (Baltimore) 2020; 99:e23369. [PMID: 33327261 PMCID: PMC7738140 DOI: 10.1097/md.0000000000023369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Advanced studies demonstrated that hypoxic stress induced KIAA1199 expression leading to enhanced cell migration. KIAA1199 is a protein related with cancer metastasis. Hypoxia inducible factor 1α (HIF-1α) is a transcriptional factor that maintains oxygen homeostasis. Both KIAA1199 and HIF-1α were upregulated in many human cancers. In the present study, co-expression of KIAA1199 and HIF-1α was evaluated for the clinicopathological characteristics and survival in hepatocellular carcinoma (HCC). Clinical-pathological information and follow-up data were collected from 152 HCC patients. KIAA1199 and HIF-1α expression were scored based on the percentage and intensity of immunohistochemical staining in pathological slide. Correlations between clinical features and the expression of KIAA1199 and HIF-1α were evaluated by Chi-square test, Kaplan-Meier curves and multivariate Cox regression analysis. The frequency of KIAA1199 high expression was higher in HCC than adjacent tissue. KIAA1199(H)/HIF-1α(H) tumors were more frequently of TNM (P = .011), tumor size (P = .021), vascular invasion (P = .002) and HBV (P = .001). In survival analysis, KIAA1199(H)/HIF-1α(H) patients had the worst prognosis. Using the combination of the two parameters increased the prognostic value (P < .01 vs P = .03). KIAA1199 in combination with HIF-1α expression tends to indicate a more accurate prognosis.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Special Environmental Medicine, Nantong University
- Department of Clinical Biobank
| | - Shu Lu
- Department of Intensive Care Unit
| | | | - Linlin Huang
- Institute of Special Environmental Medicine, Nantong University
| | - Hui Zhao
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
21
|
Zhai X, Wang W, Ma Y, Zeng Y, Dou D, Fan H, Song J, Yu X, Xin D, Du G, Jiang Z, Zhang H, Zhang X, Jin B. Serum KIAA1199 is an advanced-stage prognostic biomarker and metastatic oncogene in cholangiocarcinoma. Aging (Albany NY) 2020; 12:23761-23777. [PMID: 33197891 PMCID: PMC7762501 DOI: 10.18632/aging.103964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cell proliferation and migration are the determinants of malignant tumor progression, and a better understanding of related genes will lead to the identification of new targets aimed at preventing the spread of cancer. Some studies have shown that KIAA1199 (CEMIP) is a transmembrane protein expressed in many types of noncancerous cells and cancer cells. However, the potential role of KIAA1199 in the progression of cholangiocarcinoma (CCA) remains unclear. RESULTS Analysis of cancer-related databases showed that KIAA1199 is overexpressed in CCA. ELISA, immunohistochemistry, Western blotting and qPCR indicated high expression levels of KIAA1199 in serum, CCA tissues and CCA cell lines. In the serum (n = 41) and large sample validation (n = 177) cohorts, higher KIAA1199 expression was associated with shorter overall survival and disease-free survival times. At the cellular level, KIAA1199 overexpression (OE) promoted CCA growth and metastasis. Subcutaneous tumor xenograft experiments showed that KIAA1199 enhances CCA cell proliferation. Additionally, the expression levels of components in the EMT-related TGF-β pathway changed significantly after KIAA1199 upregulation and silencing. CONCLUSION KIAA1199 is a promising new diagnostic molecule and therapeutic target in CCA. The serum KIAA1199 level can be used as a promising clinical tool for predicting the overall postoperative outcomes of patients with CCA. METHODS CCA-related KIAA1199 data were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. To assess the prognostic impact of KIAA1199, an enzyme-linked immunosorbent assay (ELISA) was used to measure the serum level of KIAA1199 in 41 patients who underwent surgical resection. Immunohistochemical staining, Western blotting and qPCR were used to verify and retrospectively review the expression levels of KIAA1199 in cancer tissue specimens from 177 CCA patients. The effect of KIAA1199 on CCA was evaluated by cell-based functional assays and subcutaneous tumor xenograft experiments. The expression levels of proteins associated with epithelial-mesenchymal transition (EMT) and activation of relevant signaling pathways were measured via Western blotting.
Collapse
Affiliation(s)
- Xiangyu Zhai
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Wang
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunlong Ma
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yijia Zeng
- Radiology Department, Qilu Hospital of Shandong University, Jinan, China
| | - Dandan Dou
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Haoning Fan
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jianping Song
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Yu
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Danqing Xin
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Gang Du
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhengchen Jiang
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hao Zhang
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Bin Jin
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
22
|
Wang J, Li Q, Cheng X, Zhang B, Lin J, Tang Y, Li F, Yang CS, Wang TC, Tu S. Bone Marrow-Derived Myofibroblasts Promote Gastric Cancer Metastasis by Activating TGF-β1 and IL-6/STAT3 Signalling Loop. Onco Targets Ther 2020; 13:10567-10580. [PMID: 33116635 PMCID: PMC7585554 DOI: 10.2147/ott.s266506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background Murine bone marrow-derived myofibroblasts (BMFs) have previously been shown to promote gastric cancer growth. However, whether BMFs promote gastric cancer cell metastasis remains largely unknown. Methods Wound healing assay, Transwell invasion and migration assay and 3D organotypic co-culture systems were conducted to study the effects of BMFs on invasion and migration of gastric cancer cells and the invasion and migration ability of gastric cancer stem cell-like cells (CSC-LCs) induced by BMFs. We employed two animal model to study the role of BMFs on the in vivo metastasis of gastric cancer cells and the metastatic ability of gastric BMF-induced CSC-LCs. A human gastric cancer tissue microarray and TCGA gastric cancer database were analysed to study the relationship between the expression of IL-6 and TGF-β1 and clinicopathological characteristics and survival in gastric cancer. Results We found that BMFs promoted the in vitro migration and invasion of gastric cancer cells. BMFs promoted liver, lung, subcutaneous, and splenic metastases of MKN28 cells in the spleen injection liver metastasis model and co-injection of caudal vein (IOCV) mouse model. BMFs reprogrammed non-gastric cancer stem cell (CSC) to CSC-LCs and enhanced CSC-LC migration and metastasis. BMF-derived IL-6 and gastric cancer cell-secreted TGF-β1 mediated the interaction between BMFs and gastric cancer cells, promoting tumour metastasis. BMFs enhanced the expressions of STAT3 and p-STAT3 in co-cultured gastric cancer cells. A combination of Napabucasin and Galunisertib exhibited the strongest inhibition of cell migration compared to when administered alone. Gastric cancer tissue array and TCGA database indicated that the overexpression of IL-6 and TGF-β1 was associated with gastric cancer metastasis. Conclusion Our results demonstrated that BMFs promote gastric cancer metastasis through the activation of the TGF-β1 and IL-6/STAT3 signalling pathways. Targeting the inhibition of these interactions may be a potent therapeutic strategy for addressing gastric cancer metastasis.
Collapse
Affiliation(s)
- Jianzheng Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| | - Qingli Li
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| | - Xiaojiao Cheng
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| | - Baiwen Zhang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| | - Jiacheng Lin
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| | - Yao Tang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| | - Fuli Li
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Timothy C Wang
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Shuiping Tu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| |
Collapse
|
23
|
Huang M, Liao F, Song Y, Zuo G, Tan G, Chu L, Wang T. Overexpression of KIAA1199 is an independent prognostic marker in laryngeal squamous cell carcinoma. PeerJ 2020; 8:e9637. [PMID: 33194340 PMCID: PMC7482636 DOI: 10.7717/peerj.9637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/09/2020] [Indexed: 01/10/2023] Open
Abstract
Background KIAA1199 is a recently identified novel gene that is upregulated in various human cancers with poor survival, but its role and the underlying mechanisms in laryngeal squamous cell carcinoma (LSCC) remain unknown. Here, we collected tissues from 105 cases of LSCC to investigate the relationships between KIAA1199 protein expression and clinical factors. Methods Western blotting and real-time quantitative PCR (RT-PCR) were used for detect the protein and mRNA expression of KIAA1199 in LSCC tissue. Immunohistochemistry (IHC) staining was used to detect the expression of KIAA1199. Patient clinical information, for instance sex, age, pathological differentiation, clinical region, T stage, N stage, clinical stage, operation type, neck lymph dissection, smoking status, and drinking status were recorded. Kaplan–Meier survival analysis and Cox analysis were applied to identify the relationship between KIAA1199 and LSCC. Results Western blotting results showed KIAA1199 protein was significantly higher in tumor tissues vs. adjacent non-cancerous tissues (0.9385 ± 0.1363 vs. 1.838 ± 0.3209, P = 0.04). The KIAA1199 mRNA expression was considerably higher in tumor tissues (P < 0.001) than in adjacent non-cancerous tissues by RT-PCR. IHC results showed up-regulated KIAA1199 expression was related with some severe clinicopathological parameters: pathologic differentiation (P = 0.002), T stage (P < 0.001), N stage (P < 0.001), clinical stage (P < 0.001), survival time (P = 0.008) and survival status (P < 0.001). Kaplan–Meier survival analysis showed that patients with high KIAA1199 protein expression had poor overall survival (OS) (P < 0.05). Cox analysis suggested that the KIAA1199 protein expression constituted an independent prognostic marker for LSCC patients (P < 0.001). Conclusion Our findings revealed that KIAA1199 protein expression may be used to predict LSCC patient outcome.
Collapse
Affiliation(s)
- Meixiang Huang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feifei Liao
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, Chian
| | - Yexun Song
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gang Zuo
- Ministry of Education (Central South University), Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Changsha, Hunan, China
| | - Guolin Tan
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Chu
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, Chian
| | - Tiansheng Wang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Koike H, Nishida Y, Shinomura T, Zhuo L, Hamada S, Ikuta K, Ito K, Kimata K, Ushida T, Ishiguro N. Forced expression of KIAA1199, a novel hyaluronidase, inhibits tumorigenicity of low-grade chondrosarcoma. J Orthop Res 2020; 38:1942-1951. [PMID: 32068299 DOI: 10.1002/jor.24629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 02/04/2023]
Abstract
Hyaluronan (HA) has been shown to play crucial roles in the tumorigenicity of malignant tumors. Chondrosarcoma, particularly when low-grade, is characterized by the formation of an extracellular matrix (ECM) containing abundant HA, and its drug/radiation resistance has become a clinically relevant problem. This study aimed to evaluate the effects of a novel hyaluronidase, KIAA1199, on ECM formation as well as antitumor effects on chondrosarcoma. To clarify the roles of KIAA1199 in chondrosarcoma, mouse KIAA1199 was stably transfected to Swarm rat chondrosarcoma (RCS) cells (histologically grade 1). We investigated the effects of KIAA1199 on RCS cells in vitro and an autografted model in vivo. HA binding protein (HABP) stainability and ECM formation in KIAA1199-RCS was markedly suppressed compared with that of control cells. No significant changes in messenger RNA expression of Has1, Has2, Has3, Hyal1, or Hyal2 were observed. KIAA1199 expression did not affect proliferation or apoptosis but inhibited migration and invasion of RCS cells. In contrast, the expression of KIAA1199 significantly inhibited the growth of grafted tumors and suppressed the stainability of alcian blue in tumor tissues. Although there was no direct inhibitory effect on proliferation in vitro, induction of KIAA1199 showed the antitumor effects in grafted tumor growth in vivo possibly due to changes in the tumor microenvironment such as inhibition of ECM formation. Forced expression of KIAA1199 exhibits antitumor effects on low-grade chondrosarcoma, which has chemo- and radio-therapy resistant features. Together, KIAA1199 could be a novel promising therapeutic tool for low-grade chondrosarcoma, mediated by the degradation of HA.
Collapse
Affiliation(s)
- Hiroshi Koike
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Rehabilitation Medicine, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Tamayuki Shinomura
- Department of Hard Tissue Engineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Lisheng Zhuo
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shunsuke Hamada
- Department of Orthopedic Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Kunihiro Ikuta
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kan Ito
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Koji Kimata
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi, Japan
| | - Takahiro Ushida
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
25
|
Xue Q, Wang X, Deng X, Huang Y, Tian W. CEMIP regulates the proliferation and migration of vascular smooth muscle cells in atherosclerosis through the WNT–beta-catenin signaling pathway. Biochem Cell Biol 2020; 98:249-257. [PMID: 32207314 DOI: 10.1139/bcb-2019-0249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this study we investigated the regulatory role of cell-migration-inducing and hyaluronan-binding protein (CEMIP) in the proliferation and migration of vascular smooth muscle cells (VSMCs). The mRNA and protein levels of CEMIP were upregulated in the plasma samples from patients with atherosclerosis, and in VSMCs stimulated with platelet-derived growth factor-BB (PDGF-BB), compared with plasma from healthy subjects and untreated VSMCs. Silencing CEMIP suppressed PDGF-BB-induced cell migration and proliferation in VSMCs, as determined using a Cell Counting Kit-8 assays, 5-ethynyl-2′-deocyuridine (EDU) assays, flow cytometry, wound healing assays, and Transwell assays. Overexpression of CEMIP promoted the proliferation and migration of VSMCs via activation of the Wnt–β-catenin signaling pathway and the upregulation of its target genes, including matrix metalloproteinase-2, matrix metalloproteinase-7, cyclin D1, and c-myc, whereas CEMIP deficiency showed the opposite effects. The knockdown of CEMIP in ApoE−/− mice by intravenous injection of lentiviral vector expressing si-CEMIP protected against high-fat-diet-induced atherosclerosis, as shown by the reduced aortic lesion areas, aortic sinus lesion areas, and the concentration of blood lipids compared with mice normally expressing CEMIP. These results demonstrated that CEMIP regulates the proliferation and migration of VSMCs in atherosclerosis by activating the WNT–β-catenin signaling pathway, which suggests the therapeutic potential of CEMIP for the management of atherosclerosis.
Collapse
Affiliation(s)
- Qiang Xue
- Department of Geriatrics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xiaoli Wang
- Department of Pharmacy, Liaocheng People’s Hospital, Liaocheng, Shandong Province 252000, China
| | - Xiaohui Deng
- Department of Geriatrics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yue Huang
- International Exchang Center, China Association for Pharmaceuticals and Medical Devices Technology Exchange, Beijing 100036, China
| | - Wei Tian
- Department of Geriatrics, Beijing Jishuitan Hospital, Beijing 100035, China
| |
Collapse
|
26
|
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Farkhondeh T, Samarghandian S. Wnt-regulating microRNAs role in gastric cancer malignancy. Life Sci 2020; 250:117547. [PMID: 32173311 DOI: 10.1016/j.lfs.2020.117547] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is responsible for high morbidity and mortality worldwide. This cancer claims fifth place among other cancers. There are a number of factors associated with GC development such as alcohol consumption and tobacco smoking. It seems that genetic factors play significant role in GC malignancy and progression. MicroRNAs (miRs) are short non-coding RNA molecules with negative impact on the expression of target genes. A variety of studies have elucidated the potential role of miRs in GC growth. Investigation of molecular pathways has revealed that miRs function as upstream modulators of Wnt signaling pathway. This signaling pathway involves in important biological processes such as cell proliferation and differentiation, and its dysregulation is associated with GC invasion. At the present review, we demonstrate that how miRs regulate Wnt signaling pathway in GC malignancy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Rafiei
- Department of Biology, Faculty of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
27
|
Ding QH, Qi YY, Li XM, Chen WP, Wang XH, Ji XW. Knockdown of KIAA1199 suppresses IL-1β-induced cartilage degradation and inflammatory responses in human chondrocytes through the Wnt/β-catenin signalling pathway. Int Immunopharmacol 2019; 73:203-211. [PMID: 31103876 DOI: 10.1016/j.intimp.2019.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 12/29/2022]
|
28
|
Wang XD, Lu J, Lin YS, Gao C, Qi F. Functional role of long non-coding RNA CASC19/miR-140-5p/CEMIP axis in colorectal cancer progression in vitro. World J Gastroenterol 2019; 25:1697-1714. [PMID: 31011255 PMCID: PMC6465939 DOI: 10.3748/wjg.v25.i14.1697] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are widely involved in tumor regulation. Nevertheless, the role of the lncRNA cancer susceptibility 19 (CASC19) in colorectal cancer (CRC) has yet to be fully clarified. AIM To explore the effect of CASC19 on proliferation and metastasizing ability of CRC cells. METHODS CASC19 expression in human CRC tissues, pair-matched adjacent normal colon tissues, and CRC cells was detected using quantitative real-time PCR (qRT-PCR). CASC19 expression, as well as its relation to overall survival, was extrapolated by Kaplan-Meier survival analysis together with multivariable Cox regression assay. In vitro experiments were performed to confirm whether CASC19 regulates CRC cell invasion, migration, proliferation, and apoptosis. RESULTS CASC19 expression was markedly upregulated in CRC tissues and CRC cell lines (P < 0.05). qRT-PCR revealed that CASC19 expression was higher in 25 tissue samples from patients with aggressive CRC compared with the 27 tissue samples from patients with nonaggressive CRC (P < 0.05). Higher CASC19 expression was associated with poorer patient prognoses. Furthermore, in vitro experiments demonstrated that CASC19 overexpression enhanced CRC cell invasion, migration, and proliferation. CASC19 overexpression enhanced the expression of cell migration inducing hyaluronidase 1 (CEMIP) and epithelial-mesenchymal transition markers. MiR-140-5p was found to be able to bind directly to CASC19 and CEMIP. Overexpression of miR-140-5p reversed the effect of CASC19 on cell proliferation and tumor migration, as well as suppressed CASC19-induced CEMIP expression. CONCLUSION CASC19 positively regulates CEMIP expression through targeting miR-140-5p. CASC19 may possess an oncogenic function in CRC progression, highlighting its potential as an essential biomarker in CRC diagnosis and therapy.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jian Lu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yun-Shou Lin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chao Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
29
|
Xu Y, Xu H, Li M, Wu H, Guo Y, Chen J, Shan J, Chen X, Shen J, Ma Q, Liu J, Wang M, Zhao W, Hong J, Qi Y, Yao C, Zhang Q, Yang Z, Qian C, Li J. KIAA1199 promotes sorafenib tolerance and the metastasis of hepatocellular carcinoma by activating the EGF/EGFR-dependent epithelial-mesenchymal transition program. Cancer Lett 2019; 454:78-89. [PMID: 30980868 DOI: 10.1016/j.canlet.2019.03.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/27/2019] [Accepted: 03/30/2019] [Indexed: 12/21/2022]
Abstract
Patients with advanced hepatocellular carcinoma (HCC) will almost always develop acquired tolerance after sorafenib therapy, and the molecular mechanism of sorafenib tolerance remains poorly characterized. Here, using our established sorafenib-resistant HCC cell and xenograft models, we identified a novel gene, KIAA1199, which was markedly elevated among the differentially expressed genes involved in sorafenib tolerance. Moreover, elevated expression of KIAA1199 was positively correlated with a high risk of recurrence and metastasis and advanced TNM stage in HCC patients. Functionally, loss- and gain-of-function studies showed that KIAA1199 promoted the migration, invasion, and metastasis of sorafenib-resistant HCC cells. Mechanistically, KIAA1199 is required for EGF-induced epithelial-mesenchymal transition (EMT) in sorafenib-resistant HCC cells by aiding in EGFR phosphorylation. In summary, our data uncover KIAA1199 as a novel sorafenib-tolerant promoting gene that plays an indispensable role in maintaining sorafenib-resistant HCC cell metastasis.
Collapse
Affiliation(s)
- Yanmin Xu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Huailong Xu
- Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Mingyuan Li
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Yanhe Guo
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Chen
- Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Juanjuan Shan
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuejiao Chen
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junjie Shen
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qinghua Ma
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingxia Liu
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Meiling Wang
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenxu Zhao
- Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Juan Hong
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yanan Qi
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chao Yao
- Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Qianzhen Zhang
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhi Yang
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Cheng Qian
- Center of Biological Therapy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Jianming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China.
| |
Collapse
|
30
|
The miR-29c-KIAA1199 axis regulates gastric cancer migration by binding with WBP11 and PTP4A3. Oncogene 2019; 38:3134-3150. [PMID: 30626935 DOI: 10.1038/s41388-018-0642-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022]
Abstract
Gastric cancer (GC) is the second leading cause of death among patients with cancer in China. The primary reason of GC treatment failure is metastasis. Therefore, identifying metastatic biomarkers and clarifying the regulatory mechanisms involved in the GC metastatic process are important. Here, we found that KIAA1199, a cell migration-inducing protein, was significantly overexpressed in GC and correlated with lymph node metastasis and poorer patient survival. Additionally, the introduction of KIAA1199 dramatically promoted GC cell proliferation and migration in vitro and in vivo, and the inhibition of KIAA1199 suppressed GC cell growth and migration and induced GC cell apoptosis. Cell migration is a functional consequence of the epithelial-mesenchymal transition (EMT). In this study, we found that KIAA1199 inhibition or overexpression regulated the expression of E-cadherin and N-cadherin through KIAA1199 binding to WW domain binding protein 11 (WBP11) and protein tyrosine phosphatase type IVA, member 3 (PTP4A3) and through the subsequent activation of the FGFR4/Wnt/β-catenin and EGFR signaling pathways. More importantly, ectopic expression of WBP11 or PTP4A3 blocked the stimulatory effects of KIAA1199 on GC cell proliferation and migration. Meanwhile, we illustrated that KIAA1199 was a target gene of miR-29c-3p and that miR-29c-3p overexpression led to decreased migration of GC cells in vitro and in vivo by suppressing the expression of KIAA1199 and several key proteins in the Wnt/β-catenin and EGFR signaling pathways (e.g., WBP11, FGFR4, and PTP4A3). Taken together, these data demonstrate that KIAA1199 promotes GC metastasis by activating EMT-related signaling pathways and that miR-29c-3p regulates GC cell migration in vitro and in vivo by regulating KIAA1199 expression and activating the FGFR4/Wnt/β-catenin and EGFR signaling pathways. These findings provide a new understanding of GC development and progression and may provide novel therapeutic strategies for GC.
Collapse
|
31
|
Jiang Z, Zhai X, Shi B, Luo D, Jin B. KIAA1199 overexpression is associated with abnormal expression of EMT markers and is a novel independent prognostic biomarker for hepatocellular carcinoma. Onco Targets Ther 2018; 11:8341-8348. [PMID: 30538502 PMCID: PMC6260188 DOI: 10.2147/ott.s187389] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Purpose To determined KIAA1199 expression and investigate its correlation with the clinicopathologic data and prognosis of hepatocellular carcinoma (HCC), as well as markers of epithelial-mesenchymal transition (EMT); N-cadherin, E-cadherin and vimentin. Materials and methods Western blot, quantitative real-time PCR, and immunohistochemical staining were used to measure KIAA1199 expression in human HCC specimens. Subsequently, the correlation between KIAA1199 expression and the pathological characteristics of HCC patients was analyzed. Univariate and multivariate analyses were used to explore the risk factors associated with disease-free survival (DFS) and overall survival (OS). Results KIAA1199 expression was remarkably increased in hepatocellular carcinoma tissues compared to paracarcinomatous tissues. This phenomenon was accompanied by aberrant expression of EMT-associated markers. In addition, high KIAA1199 expression was associated with severe pathological symptoms, low DFS, and low OS. Results of the multivariate analysis showed that KIAA1199 expression may be an independent predictor of low disease-free survival and OS of HCC patients. Conclusion KIAA1199 overexpression in HCC patients is associated with aberrant expression of EMT-associated markers and severe clinicopathological symptoms, and thus may function as a marker of poor prognosis in HCC.
Collapse
Affiliation(s)
- Zhengchen Jiang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinnan, China,
| | - Xiangyu Zhai
- Department of General Surgery, Qilu Hospital of Shandong University, Jinnan, China,
| | - Binyao Shi
- Department of General Surgery, Qilu Hospital of Shandong University, Jinnan, China,
| | - Dan Luo
- School of Basic Medical Science, Shandong University, Jinnan, China
| | - Bin Jin
- Department of General Surgery, Qilu Hospital of Shandong University, Jinnan, China,
| |
Collapse
|
32
|
Knockdown of KIAA1199 attenuates growth and metastasis of hepatocellular carcinoma. Cell Death Discov 2018; 4:102. [PMID: 30455988 PMCID: PMC6232158 DOI: 10.1038/s41420-018-0099-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/31/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence indicates that KIAA1199 plays a vital role in tumor progression. However, the role of KIAA1199 in hepatocellular carcinoma (HCC) still remains unknown. In this study, we found that KIAA1199 was upregulated in human HCC tissues and in highly metastatic HCC cell lines. Furthermore, the expression of KIAA1199 was significantly correlated with tumor size and metastasis in HCC. Knockdown of KIAA1199 inhibited cell proliferation and migration in vitro, and suppressed tumorigenicity and lung metastasis in vivo. In addition, silencing of KIAA1199 induced G1 phase arrest by reducing cyclinD1 expression. Moreover, KIAA1199 knockdown induced apoptosis by activating endoplasmic reticulum (ER) stress, which was based on the upregulation of ER stress markers, activating transcription factor 4 (ATF4) and CAAT/enhancer-binding protein homologous protein (CHOP). In conclusion, our data demonstrated that KIAA1199 knockdown inhibited the growth and metastasis of HCC.
Collapse
|
33
|
KIAA1199 promotes metastasis of colorectal cancer cells via microtubule destabilization regulated by a PP2A/stathmin pathway. Oncogene 2018; 38:935-949. [PMID: 30202098 DOI: 10.1038/s41388-018-0493-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 12/29/2022]
Abstract
Tumor metastasis is the main cause of death in advanced colorectal cancer. Our previous research showed that upregulation of KIAA1199 predicted poorer outcomes, and promoted cell motility and tumor metastasis in colorectal cancer, with the mechanisms not being fully elucidated. Here, we demonstrate that silencing of KIAA1199 results in reduced tumor metastasis in the orthotopic transplantation tumor model of colorectal cancer. Importantly, we find that KIAA1199 interacts with protein phosphatase 2A (PP2A) through the C-terminal domain and increases phosphatase activity of PP2A, which is essential for KIAA1199-mediated cell motility. Moreover, we identify stathmin, a microtubule-destabilizing protein, as a downstream of KIAA1199-PP2A complex. KIAA1199-induced dephosphorylation of stathmin results in microtubule destabilization and leads to enhanced cell motility. Furthermore, a microtubule-stabilizing drug paclitaxel could prevent KIAA1199-induced microtubule destabilization, and inhibit cell migration and invasion in vitro and tumor metastasis in vivo in colorectal cancer. Collectively, our study reveals that KIAA1199 promotes metastasis of colorectal cancer cells via microtubule destabilization regulated by a PP2A/stathmin pathway, and suggests that KIAA1199 may be a promising target for preventing metastasis in colorectal cancer.
Collapse
|
34
|
Targeted deletion of HYBID (hyaluronan binding protein involved in hyaluronan depolymerization/ KIAA1199/CEMIP) decreases dendritic spine density in the dentate gyrus through hyaluronan accumulation. Biochem Biophys Res Commun 2018; 503:1934-1940. [DOI: 10.1016/j.bbrc.2018.07.138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 11/20/2022]
|
35
|
Selim ZI, El-Hakeim EH, Omran EAH, Idriss NK, Gaber MA, Ross SV. KIAA1199 Biomarker and Ultrasonographic Findings in Rheumatoid
Arthritis Patients and their Correlation with Disease Activity. AKTUEL RHEUMATOL 2018. [DOI: 10.1055/a-0629-8340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Abstract
Introduction Rheumatoid arthritis (RA) is an autoimmune disease that
affects multiple joints causing joint destruction. KIAA1199 is a novel
angiogenic biomarker derived from fibroblast-like synoviocytes (FLS) it has a
role in acceleration and proliferation of FLS and activation of angiogenic
signaling pathways leading to erosion of cartilage and bone. Musculoskeletal
ultrasound (MUSU) and Power Doppler (PDUS) directly visualizing the synovial
membrane vessels, which is important in providing very early information on the
changes in synovitis activity during the course of the inflammatory joint
disease
Objective To assess the serum level of angiogenic biomarker KIAA1199 in
RA patients and its correlation with MSUS, PDUS findings, and the disease
activity Patients and methods: Fifty RA patients and 40 healthy control persons
age and sex-matched were recruited in this study, KIAA1199 was assessed in the
serum of patients and controls, MSUS and PDUS were done for the wrist, elbow,
and knee joints for all RA patients
Results Serum KIAA1199 level was significantly higher among RA patients
4.36±1.22 ng/dl compared to control group
2.87±0.51 ng/dl (p<0.001). There was a highly
significant correlation between KIAA1199 level and DAS28 (p=0.004), and
there was a significant correlation between the PDUS with KIAA1199 level and
DAS28 (p=0.001, 0.002 respectively) in wrist joints
Conclusion KIAA1199 is a new pathway that enhancing cell proliferation
and angiogenesis. Serum KIAA1199 level may be a useful biomarker for RA
activity, and therapeutic target in RA. PDUS correlates significantly with
clinical findings and novel angiogenic biomarker in RA patients.
Collapse
Affiliation(s)
- Zahraa Ibrahim Selim
- Faculty of medicine Assuit university, rhematology and rehabilitation,
Assuit, Egypt
| | - Eman H El-Hakeim
- Rheumatology and Rehablitation Department, Assiut, Assiut University
Hospital, Egypt
| | - Eman Ahmed Hamed Omran
- Faculty of Medicine, Rheumatology, Rehabilitation and Physical
Medicine, Assiut University, Assiut, Egypt
| | | | | | - Sylvia V Ross
- Rheumatology, Rehabilitation, Physical Medicine, Assuit university,
Assuit, Egypt
| |
Collapse
|
36
|
Sun J, Hu J, Wang G, Yang Z, Zhao C, Zhang X, Wang J. LncRNA TUG1 promoted KIAA1199 expression via miR-600 to accelerate cell metastasis and epithelial-mesenchymal transition in colorectal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:106. [PMID: 29776371 PMCID: PMC5960095 DOI: 10.1186/s13046-018-0771-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND LncRNA TUG1 has been reported to be highly expressed in CRC samples and cells and promoted metastasis by affecting EMT, indicating a poor prognosis for colorectal cancer (CRC). In this study, we determined the underlying mechanism for tumor oncogenesis of lncRNA TUG1 in CRC metastasis. METHODS The expressions of miR-600 and KIAA1199 in 76 CRC patients and CRC cells and CRC metastatic tissues were determined using qRT-PCR. Epithelial-mesenchymal transition (EMT)-related proteins were determined using western blot. CRC cell metastasis was assessed by colony formation, wound healing and transwell assay. Luciferase reporter gene assay was used to confirm miR-600 binding to KIAA1199 3'UTR. RESULTS Our data showed that lncRNA TUG1 was upregulated in CRC cells, miR-600 was downregulated in CRC tissues, cell lines and CRC metastatic tissues, and low miR-600 expression predicted a poor clinical prognosis. Overexpression of miR-600 suppressed CRC cell migration/invasion and EMT-related proteins in vitro, inhibited tumor volume and weight, and decreased the number of CRC liver metastasis in vivo. KIAA1199 was upregulated in CRC tissues, and was negatively regulated by miR-600. KIAA1199 overexpression promoted CRC cell migration and invasion, which reversed the inhibition effect of miR-600 mimic on migration and invasion of CRC cells. Moreover, TUG1 negatively regulated miR-600, and inhibition of TUG1 suppressed CRC cell migration and invasion and EMT-related proteins via regulating miR-600. CONCLUSION Our study proved that TUG1 promoted KIAA1199 expression to accelerate EMT and metastasis of CRC cell through inhibition of miR-600 expression.
Collapse
Affiliation(s)
- Junfeng Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East, Zhengzhou, 450052, China.
| | - Jiyi Hu
- Colorectal Cancer Center, Fudan University, Shanghai, China
| | - Guojun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East, Zhengzhou, 450052, China
| | - Zhen Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East, Zhengzhou, 450052, China
| | - Chunlin Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East, Zhengzhou, 450052, China
| | - Xiefu Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East, Zhengzhou, 450052, China
| | - Jiaxiang Wang
- Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Yamaguchi Y, Yamamoto H, Tobisawa Y, Irie F. TMEM2: A missing link in hyaluronan catabolism identified? Matrix Biol 2018; 78-79:139-146. [PMID: 29601864 DOI: 10.1016/j.matbio.2018.03.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/17/2018] [Accepted: 03/25/2018] [Indexed: 12/20/2022]
Abstract
Hyaluronan (HA) is a glycosaminoglycan (GAG) composed of repeating disaccharide units of glucuronic acid and N-acetylglucosamine. HA is an extremely long, unbranched polymer, which often exceeds 106 Da and sometimes reaches 107 Da. A feature that epitomizes HA is its rapid turnover; one-third of the total body HA is turned over daily. The current model of HA catabolism postulates that high-molecular weight HA in the extracellular space is first cleaved into smaller fragments by a hyaluronidase(s) that resides at the cell surface, followed by internalization of fragments and their degradation into monosaccharides in lysosomes. Over the last decade, considerable research has shown that the HYAL family of hyaluronidases plays significant roles in HA catabolism. Nonetheless, the identity of a hyaluronidase responsible for the initial step of HA cleavage on the cell surface remains elusive, as biochemical and enzymological properties of HYAL proteins are not entirely consistent with those expected of cell surface hyaluronidases. Recent identification of transmembrane 2 (TMEM2) as a cell surface protein that possesses potent hyaluronidase activity suggests that it may be the "missing" cell surface hyaluronidase, and that novel models of HA catabolism should include this protein.
Collapse
Affiliation(s)
- Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Hayato Yamamoto
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yuki Tobisawa
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fumitoshi Irie
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
38
|
Zhang P, Song Y, Sun Y, Li X, Chen L, Yang L, Xing Y. AMPK/GSK3β/β‐catenin cascade‐triggered overexpression of CEMIP promotes migration and invasion in anoikis‐resistant prostate cancer cells by enhancing metabolic reprogramming. FASEB J 2018; 32:3924-3935. [DOI: 10.1096/fj.201701078r] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peng Zhang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yarong Song
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yadong Sun
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuechao Li
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lifeng Chen
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Likun Yang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yifei Xing
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
39
|
Lee HS, Jang CY, Kim SA, Park SB, Jung DE, Kim BO, Kim HY, Chung MJ, Park JY, Bang S, Park SW, Song SY. Combined use of CEMIP and CA 19-9 enhances diagnostic accuracy for pancreatic cancer. Sci Rep 2018; 8:3383. [PMID: 29467409 PMCID: PMC5821821 DOI: 10.1038/s41598-018-21823-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022] Open
Abstract
Carbohydrate antigen (CA) 19-9 is the only diagnostic marker used in pancreatic cancer despite its limitations. Here, we aimed to identify the diagnostic role of CEMIP (also called KIAA1199) combined with CA 19-9 in patients with pancreatic cancer. A retrospective analysis of prospectively collected patient samples was performed to determine the benefit of diagnostic markers in the diagnosis of pancreatic cancer. We investigated CEMIP and CA 19-9 levels in 324 patients with pancreatic cancer and 49 normal controls using serum enzyme-linked immunosorbent assay. Median CA 19-9 and CEMIP levels were 410.5 U/ml (40.8-3342.5) and 0.67 ng/ml (0.40-1.08), respectively, in patients with pancreatic cancer. The AUROC for CA 19-9 and CEMIP were 0.847 (95% confidence interval [CI]: 0.806-0.888) and 0.760 (95% CI: 0.689-0.831), respectively. Combination of CA 19-9 with CEMIP showed markedly improved AUROC over CA 19-9 alone in pancreatic cancer diagnosis (0.94 vs. 0.89; P < 0.0001). CEMIP showed a diagnostic yield of 86.1% (68/79) in CA 19-9 negative pancreatic cancer. Combined use with CEMIP showed significantly improved diagnostic value compared with CA 19-9 alone in pancreatic cancer. Especially, CEMIP may be a complementary marker in pancreatic cancer patients with normal CA 19-9 levels.
Collapse
Affiliation(s)
- Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Young Jang
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sun A Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Been Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dawoon E Jung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Ok Kim
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Ha Yan Kim
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Youp Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Woo Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
40
|
Silencing of CEMIP suppresses Wnt/β-catenin/Snail signaling transduction and inhibits EMT program of colorectal cancer cells. Acta Histochem 2018; 120:56-63. [PMID: 29173982 DOI: 10.1016/j.acthis.2017.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
Cell migration inducing hyaluronan binding protein (CEMIP) is a hyaluronic acid binding protein, the abnormal elevation of which is suggested as a contributor in the carcinogenesis of colorectal cancer (CRC). Cancer cells lose their adhesive properties and acquire an enhanced mobility by undergoing epithelial-mesenchymal transition (EMT). This study is performed to investigate whether and how CEMIP orchestrates the EMT process of CRC cells. To avoid the unexpected off-target effects possibly caused by one single shRNA, two shRNAs targeting different mRNA regions of CEMIP gene were used to knock down the mRNA and protein expression of CEMIP. Our data showed that the proliferation, migration and invasion of two CRC cell lines, HCT116 and SW480 cells, were inhibited by CEMIP shRNA. We here defined EMT as the complete or partial loss of E-cadherin and zona occludens protein 1 (ZO-1) (epithelial markers) and the gain of Vimentin and N-cadherin (mesenchymal markers), and found that the EMT process was attenuated in CEMIP-silenced SW480 cells. Snail, a direct target of β-catenin/T cell factor complex, is known to activate the EMT program during cancer metastasis. CEMIP shRNA was further found to suppress the Wnt/β-catenin/Snail signaling transduction in CRC cells as manifested by the decreased nuclear β-catenin and Snail. Collectively, our work demonstrates that CEMIP contributes to metastatic phenotype of CRC cells in vitro.
Collapse
|
41
|
Kohi S, Sato N, Koga A, Matayoshi N, Hirata K. KIAA1199 is induced by inflammation and enhances malignant phenotype in pancreatic cancer. Oncotarget 2017; 8:17156-17163. [PMID: 28179576 PMCID: PMC5370030 DOI: 10.18632/oncotarget.15052] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent evidence suggests a critical role of hyaluronan (HA), especially low-molecular-weight HA (LMW-HA), in the aggressive tumor phenotype. Increased expression of KIAA1199, a newly identified protein involved in HA degradation, has been reported in various cancers, including pancreatic ductal adenocarcinoma (PDAC). However, little is known about the functional significance of KIAA1199 in PDAC. METHODS Using siRNA knockdown and forced expression models, we investigated the effects of KIAA1199 expression on malignant behaviors (proliferation, migration, and invasion) of PDAC cells. We also examined the effect of inflammation on the transcriptional regulation of KIAA1199 using a pro-inflammatory cytokine and anti-inflammatory agent. RESULTS Knockdown of KIAA1199 expression using siRNA resulted in decreased cell migration and proliferation. On the other hand, forced expression of KIAA1199 using gene transduction significantly enhanced the migration and invasion. Importantly, increased KIAA1199 expression was associated with an increased level of LMW-HA in the conditioned medium. Exposure to a pro-inflammatory cytokine, interleukin-1ß, increased the KIAA1199 transcription and enhanced the migration. In contrast, treatment with NS-398, a cyclooxygenase-2 inhibitor, decreased the KIAA1199 expression and inhibited the migration. CONCLUSIONS These findings suggest that increased KIAA1199 expression may contribute to the aggressive phenotype partly through increasing the LMW-HA concentration. Our present results also suggest a possible link between inflammation, induced KIAA1199 expression, and enhanced migration during PDAC progression.
Collapse
Affiliation(s)
- Shiro Kohi
- Department of Surgery 1, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Norihiro Sato
- Department of Surgery 1, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Atsuhiro Koga
- Department of Surgery 1, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Nobutaka Matayoshi
- Department of Surgery 1, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Keiji Hirata
- Department of Surgery 1, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
42
|
Li L, Yan LH, Manoj S, Li Y, Lu L. Central Role of CEMIP in Tumorigenesis and Its Potential as Therapeutic Target. J Cancer 2017; 8:2238-2246. [PMID: 28819426 PMCID: PMC5560141 DOI: 10.7150/jca.19295] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/25/2017] [Indexed: 02/06/2023] Open
Abstract
CEMIP (KIAA1199) was identified as migratory indicator protein which had been crudely studied in the last decade. Firstly its mutation site was reported to cause hearing loss due to the folding change of protein structure, meanwhile the over-expression of CEMIP referred to dreadful invasion and uncontrolled proliferation of tumor with distant metastasis, dedifferentiation, and limited survival opportunity of patients. Especially, over-expressed CEMIP also protected malignant tumor from strict microenvironment in hypoxia, low glucose and cracked barrier, leading to enhanced adaptability of tumor by stimulating the Wnt, EGFR, FGFR pathway. Here, we intend to elaborate the clinical function and dysregulation of CEMIP under the tumorous circumstance since CEMIP plays an important role in cytokine pathway and its over-expression in tumors provide a novel target for individual therapy. Targeting CEMIP would thereby dysregulate the cytokine pathway which would in turn, decide the growth and death of the vicious tumour cells.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lin-Hai Yan
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shwetha Manoj
- Quality Assurance Department, Bristol Laboratories Limited, 5 Traynor Way, Whitehouse Business Park, Peterlee, County Durham, SR8 2RU, United Kingdom
| | - Ying Li
- Department of Pharmacy, Guangxi Bone Hospital, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lu Lu
- Department of Research, Nanning Children Rehabilitation Center, Nanning, 530003, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
43
|
Boerboom A, Reusch C, Pieltain A, Chariot A, Franzen R. KIAA1199: A novel regulator of MEK/ERK-induced Schwann cell dedifferentiation. Glia 2017; 65:1682-1696. [PMID: 28699206 DOI: 10.1002/glia.23188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/14/2022]
Abstract
The molecular mechanisms that regulate Schwann cell (SC) plasticity and the role of the Nrg1/ErbB-induced MEK1/ERK1/2 signalling pathway in SC dedifferentiation or in myelination remain unclear. It is currently believed that different levels of MEK1/ERK1/2 activation define the state of SC differentiation. Thus, the identification of new regulators of MEK1/ERK1/2 signalling could help to decipher the context-specific aspects driving the effects of this pathway on SC plasticity. In this perspective, we have investigated the potential role of KIAA1199, a protein that promotes ErbB and MEK1/ERK1/2 signalling in cancer cells, in SC plasticity. We depleted KIAA1199 in the SC-derived MSC80 cell line with RNA-interference-based strategy and also generated Tamoxifen-inducible and conditional mouse models in which KIAA1199 is inactivated through homologous recombination, using the Cre-lox technology. We show that the invalidation of KIAA1199 in SC decreases the expression of cJun and other negative regulators of myelination and elevates Krox20, driving them towards a pro-myelinating phenotype. We further show that in dedifferentiation conditions, SC invalidated for KIAA1199 exhibit lower myelin clearance as well as increased myelination capacity. Finally, the Nrg1-induced activation of the MEK/ERK/1/2 pathway is severely reduced when KIAA1199 is absent, indicating that KIAA1199 promotes Nrg1-dependent MEK1 and ERK1/2 activation in SCs. In conclusion, this work identifies KIAA1199 as a novel regulator of MEK/ERK-induced SC dedifferentiation and contributes to a better understanding of the molecular control of SC dedifferentiation.
Collapse
Affiliation(s)
| | - Céline Reusch
- GIGA-Molecular Biology of Diseases, University of Liège, Belgium
| | | | - Alain Chariot
- GIGA-Molecular Biology of Diseases, University of Liège, Belgium.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Wavre, Belgium
| | | |
Collapse
|
44
|
Jia S, Qu T, Wang X, Feng M, Yang Y, Feng X, Ma R, Li W, Hu Y, Feng Y, Ji K, Li Z, Jiang W, Ji J. KIAA1199 promotes migration and invasion by Wnt/β-catenin pathway and MMPs mediated EMT progression and serves as a poor prognosis marker in gastric cancer. PLoS One 2017; 12:e0175058. [PMID: 28422983 PMCID: PMC5397282 DOI: 10.1371/journal.pone.0175058] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/20/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND KIAA1199 was upregulated in diverse cancers, but the association of KIAA1199 with gastric cancer (GC), the biological role of KIAA1199 in GC cells and the related molecular mechanisms remain to be elucidated. METHODS KIAA1199 expression was analysed by reverse transcription-polymerase chain reaction assay (RT-PCR) and immunohistochemistry (IHC) in GC patient tissue. The small hairpin RNA (shRNA) was applied for the knockdown of endogenous KIAA1199 in NCI-N87 and AGS cells. MTT, colony formation, scratch wounding migration, transwell chamber migration and invasion assays were employed respectively to investigate the role of KIAA1199 in GC cells. The potential signaling pathway of KIAA1199 induced migration and invasion was detected. RESULTS KIAA1199 was upregulated in GC tissue and was an essential independent marker for poor prognosis. Knockdown KIAA1199 suppressed the proliferation, migration and invasion in GC cells. KIAA1199 stimulated the Wnt/β-catenin signaling pathway and the enzymatic activity of matrix metalloproteinase (MMP) family members and thus accelerated the epithelial-to-mesenchymal transition (EMT) progression in GC cells. CONCLUSION These findings demonstrated that KIAA1199 was upregulated in GC tissue and associated with worse clinical outcomes in GC, and KIAA1199 acted as an oncogene by promoting migration and invasion through the enhancement of Wnt/β-catenin signaling pathway and MMPs mediated EMT progression in GC cells.
Collapse
Affiliation(s)
- Shuqin Jia
- Laboratory of Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Center for Molecular Diagnosis, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Tingting Qu
- Center for Molecular Diagnosis, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaohong Wang
- Tissue Bank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Mengmeng Feng
- Laboratory of Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yang Yang
- Laboratory of Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xuemin Feng
- Laboratory of Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ruiting Ma
- Laboratory of Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wenmei Li
- Center for Molecular Diagnosis, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ying Hu
- Tissue Bank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yi Feng
- Center for Molecular Diagnosis, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ke Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ziyu Li
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenguo Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
45
|
Shimoda M, Yoshida H, Mizuno S, Hirozane T, Horiuchi K, Yoshino Y, Hara H, Kanai Y, Inoue S, Ishijima M, Okada Y. Hyaluronan-Binding Protein Involved in Hyaluronan Depolymerization Controls Endochondral Ossification through Hyaluronan Metabolism. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1162-1176. [PMID: 28284715 DOI: 10.1016/j.ajpath.2017.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/25/2016] [Accepted: 01/11/2017] [Indexed: 11/18/2022]
Abstract
Hyaluronan (HA) plays an important role in the development and maintenance of tissues, and its degradation is implicated in many pathologic conditions. We recently reported that HA-binding protein involved in HA depolymerization (CEMIP; alias HYBID/KIAA1199) is a key molecule in HA depolymerization, but its developmental and pathologic functions remain elusive. We generated Hybid-deficient mice using the Cre/locus of crossover in P1 (loxP) system and analyzed their phenotypes. Hybid-deficient mice were viable and fertile, but their adult long bones were shorter than those of wild-type animals. Hybid-deficient mice showed lengthening of hypertrophic zone in the growth plate until 4 weeks after birth. There were fewer capillaries and osteoclasts at the chondroosseous junction in the Hybid-deficient mice compared with the wild-type mice. In situ hybridization demonstrated that Hybid was expressed by hypertrophic chondrocytes at the chondroosseous junction. Cultured primary chondrocytes expressed higher levels of Hybid than did osteoblasts or osteoclasts, and the Hybid expression in the chondrocytes was up-regulated after maturation to hypertrophic chondrocytes. High-molecular-weight HA was accumulated in the lengthened hypertrophic zone in Hybid-deficient mice. In addition, high-molecular-weight HA significantly reduced cell growth and tube formation in vascular endothelial growth factor-stimulated or -nonstimulated endothelial cells. HA metabolism by HYBID is involved in endochondral ossification during postnatal development by modulation of angiogenesis and osteoclast recruitment at the chondroosseous junction.
Collapse
Affiliation(s)
- Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.
| | | | - Sakiko Mizuno
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Toru Hirozane
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Horiuchi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Yoshino
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Inoue
- Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Muneaki Ishijima
- Department of Orthopaedic Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan; Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
46
|
Yamamoto H, Tobisawa Y, Inubushi T, Irie F, Ohyama C, Yamaguchi Y. A mammalian homolog of the zebrafish transmembrane protein 2 (TMEM2) is the long-sought-after cell-surface hyaluronidase. J Biol Chem 2017; 292:7304-7313. [PMID: 28246172 DOI: 10.1074/jbc.m116.770149] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/27/2017] [Indexed: 12/31/2022] Open
Abstract
Hyaluronan (HA) is an extremely large polysaccharide (glycosaminoglycan) involved in many cellular functions. HA catabolism is thought to involve the initial cleavage of extracellular high-molecular-weight (HMW) HA into intermediate-size HA by an extracellular or cell-surface hyaluronidase, internalization of intermediate-size HA, and complete degradation into monosaccharides in lysosomes. Despite considerable research, the identity of the hyaluronidase responsible for the initial HA cleavage in the extracellular space remains elusive. HYAL1 and HYAL2 have properties more consistent with lysosomal hyaluronidases, whereas CEMIP/KIAA1199, a recently identified HA-binding molecule that has HA-degrading activity, requires the participation of the clathrin-coated pit pathway of live cells for HA degradation. Here we show that transmembrane protein 2 (TMEM2), a mammalian homolog of a protein playing a role in zebrafish endocardial cushion development, is a cell-surface hyaluronidase. Live immunostaining and surface biotinylation assays confirmed that mouse TMEM2 is expressed on the cell surface in a type II transmembrane topology. TMEM2 degraded HMW-HA into ∼5-kDa fragments but did not cleave chondroitin sulfate or dermatan sulfate, indicating its specificity to HA. The hyaluronidase activity of TMEM2 was Ca2+-dependent; the enzyme's pH optimum is around 6-7, and unlike CEMIP/KIAA1199, TMEM2 does not require the participation of live cells for its hyaluronidase activity. Moreover, TMEM2-expressing cells could eliminate HA immobilized on a glass surface in a contact-dependent manner. Together, these data suggest that TMEM2 is the long-sought-after hyaluronidase that cleaves extracellular HMW-HA into intermediate-size fragments before internalization and degradation in the lysosome.
Collapse
Affiliation(s)
- Hayato Yamamoto
- From the Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| | - Yuki Tobisawa
- From the Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| | - Toshihiro Inubushi
- From the Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| | - Fumitoshi Irie
- From the Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| | - Chikara Ohyama
- the Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Yu Yamaguchi
- From the Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and
| |
Collapse
|
47
|
KIAA1199/CEMIP/HYBID overexpression predicts poor prognosis in pancreatic ductal adenocarcinoma. Pancreatology 2016; 17:115-122. [PMID: 28012880 DOI: 10.1016/j.pan.2016.12.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/09/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND KIAA1199 (also known as CEMIP or HYBID), a newly identified protein involved in hyaluronan degradation, has been suggested to play a critical role in cancer progression. The aim of this study was to investigate the expression and functional significance of KIAA1199 in pancreatic ductal adenocarcinoma (PDAC). METHODS Using quantitative real-time RT-PCR, we analyzed KIAA1199 mRNA expression in 6 PDAC cell lines and frozen tissues from 14 patients with PDAC. We also used immunohistochemistry to analyze KIAA1199 protein expression in formalin-fixed, paraffin-embedded tissues from 98 patients with PDAC. The KIAA1199 expression pattern was then correlated with clinicopathological variables and patient outcome. The effect of KIAA1199 on migratory ability of PDAC cells was determined by KIAA1199 knockdown with small-interfering RNA (siRNA). RESULTS The KIAA1199 mRNA expression was significantly higher in PDAC tissues than in the corresponding non-tumor tissues (P < 0.0001). Immunohistochemical analysis revealed high expression of KIAA1199 in 26 (26.5%) of 98 PDAC tissues. The overall survival was significantly shorter in patients with high KIAA1199 expression than in patients with low KIAA1199 expression (P = 0.0001). In multivariate analysis, high KIAA1199 expression (P = 0.003) and UICC stage (P = 0.003) were independent factors predicting poor prognosis. Furthermore, the KIAA1199 mRNA expression was higher in most PDAC cell lines and siRNA knockdown of KIAA1199 resulted in decreased migration. CONCLUSION These findings suggest that overexpression of KIAA1199 may contribute to increased migration of PDAC cells and predict shorter survival after surgical resection.
Collapse
|
48
|
Identification of KIAA1199 as a Biomarker for Pancreatic Intraepithelial Neoplasia. Sci Rep 2016; 6:38273. [PMID: 27922049 PMCID: PMC5138641 DOI: 10.1038/srep38273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 10/06/2016] [Indexed: 02/03/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive cancers and has an extremely poor prognosis. Despite recent progress in both basic and clinical research, most pancreatic cancers are detected at an incurable stage owing to the absence of disease-specific symptoms. Thus, developing novel approaches for detecting pancreatic cancer at an early stage is imperative. Our in silico and immunohistochemical analyses showed that KIAA1199 is specifically expressed in human pancreatic cancer cells and pancreatic intraepithelial neoplasia, the early lesion of pancreatic cancer, in a genetically engineered mouse model and in human patient samples. We also detected secreted KIAA1199 protein in blood samples obtained from pancreatic cancer mouse models, but not in normal mice. Furthermore, we found that assessing KIAA1199 autoantibody increased the sensitivity of detecting pancreatic cancer. These results indicate the potential benefits of using KIAA1199 as a biomarker for early-stage pancreatic cancer.
Collapse
|
49
|
Abstract
Adenocarcinoma is a histologic diagnosis based on subjective findings. Transcriptional profiles have been used to differentiate normal tissue from disease and could provide a means of identifying malignancy. The goal of this study was to generate and test transcriptomic profiles that differentiate normal from adenocarcinomatous rectum. Comparisons were made between cDNA microarrays derived from normal epithelium and rectal adenocarcinoma. Results were filtered according to standard deviation to retain only highly dysregulated genes. Genes differentially expressed between cancer and normal tissue on two-groups t test (P < 0.05, Bonferroni P value adjustment) were further analyzed. Genes were rank ordered in terms of descending fold change. For each comparison (tumor versus normal epithelium), those 5 genes with the greatest positive fold change were grouped in a classifier. Five separate tests were applied to evaluate the discriminatory capacity of each classifier. Genetic classifiers derived comparing normal epithelium with malignant rectal epithelium from pooled stages had a mean sensitivity and specificity of 99.6% and 98.2%, respectively. The classifiers derived from comparing normal and stage I cancer had comparable mean sensitivities and specificities (97% and 98%, respectively). Areas under the summary receiver-operator characteristic curves for each classifier were 0.981 and 0.972, respectively. One gene was common to both classifiers. Classifiers were tested in an independent Gene Expression Omnibus-derived dataset. Both classifiers retained their predictive properties. Transcriptomic profiles comprising as few as 5 genes are highly accurate in differentiating normal from adenocarcinomatous rectal epithelium, including early-stage disease.
Collapse
|
50
|
Induction of KIAA1199/CEMIP is associated with colon cancer phenotype and poor patient survival. Oncotarget 2016; 6:30500-15. [PMID: 26437221 PMCID: PMC4741547 DOI: 10.18632/oncotarget.5921] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 12/23/2022] Open
Abstract
Genes induced in colon cancer provide novel candidate biomarkers of tumor phenotype and aggressiveness. We originally identified KIAA1199 (now officially called CEMIP) as a transcript highly induced in colon cancer: initially designating the transcript as Colon Cancer Secreted Protein 1. We molecularly characterized CEMIP expression both at the mRNA and protein level and found it is a secreted protein induced an average of 54-fold in colon cancer. Knockout of CEMIPreduced the ability of human colon cancer cells to form xenograft tumors in athymic mice. Tumors that did grow had increased deposition of hyaluronan, linking CEMIP participation in hyaluronan degradation to the modulation of tumor phenotype. We find CEMIP mRNA overexpression correlates with poorer patient survival. In stage III only (n = 31) or in combined stage II plus stage III colon cancer cases (n = 73), 5-year overall survival was significantly better (p = 0.004 and p = 0.0003, respectively) among patients with low CEMIP expressing tumors than those with high CEMIP expressing tumors. These results demonstrate that CEMIP directly facilitates colon tumor growth, and high CEMIP expression correlates with poor outcome in stage III and in stages II+III combined cohorts. We present CEMIP as a candidate prognostic marker for colon cancer and a potential therapeutic target.
Collapse
|