1
|
Li H, Chen L, Xu S. Incremental Value of Shear Wave Elastography and Contrast-Enhanced Ultrasound in the Differential Diagnosis of Breast Non-Mass-Like Lesions. Int J Womens Health 2024; 16:2221-2230. [PMID: 39720676 PMCID: PMC11668051 DOI: 10.2147/ijwh.s490565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 12/26/2024] Open
Abstract
Objective To analyse the parameters of shear wave elastography (SWE) and contrast-enhanced ultrasound (CEUS) in breast non-mass-like lesions (NMLs) and to evaluate the added diagnostic value of SWE and CEUS when combined with B-mode ultrasound (US) for differentiating NMLs. Methods A total of 118 NMLs from 115 patients underwent US, SWE, and CEUS examinations. The SWE parameter with the highest areas under the receiver operating characteristic (ROC) curves (Az) and independent variables of CEUS obtained by logistic regression were used to adjust the BI-RADS-US (Breast Imaging Reporting and Data System for Ultrasound) classification. The adjusted BI-RADS risk stratification was then compared with the original classification. Additionally, the diagnostic effectiveness of US+SWE, US+CEUS, and US+SWE+CEUS combinations was calculated and compared. Results The "stiff rim sign" was used as the optimal SWE indicator for BI-RADS adjustment. CEUS diagnostic criteria for adjustment included enhancement intensity, enhancement size, and the presence of radial or penetrating vessels. The Az values of US+SWE+CEUS and US+CEUS combinations were significantly higher than that of US alone (P<0.05). However, there was no significant difference in the Az value of US+SWE and US (P = 0.072). US+SWE+CEUS combination showed significantly higher Az values compared to other combinations (P<0.05), and achieved the highest sensitivity and specificity. Conclusion Adding SWE and CEUS to conventional US enhances diagnostic accuracy for NMLs, offering a meaningful incremental value for BI-RADS classification in the assessment of NMLs.
Collapse
Affiliation(s)
- Hui Li
- Department of Ultrasound Imaging, The First Affiliated Hospital of Wenzhou Medical University, WenZhou, ZheJiang, 325000, People’s Republic of China
| | - Lixia Chen
- Department of Ultrasound Imaging, The First Affiliated Hospital of Wenzhou Medical University, WenZhou, ZheJiang, 325000, People’s Republic of China
| | - Shihao Xu
- Department of Ultrasound Imaging, The First Affiliated Hospital of Wenzhou Medical University, WenZhou, ZheJiang, 325000, People’s Republic of China
| |
Collapse
|
2
|
Mishra P, Tripathi YB. Impact of Nano Preparation of Phytoconstituents in Medulloblastoma. Methods Mol Biol 2022; 2423:115-122. [PMID: 34978694 DOI: 10.1007/978-1-0716-1952-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The conventional cancer treatment strategies from chemotherapy to surgery often lead to inadequate results which in some cases lead to relapsing of the tumor being treated. Medulloblastoma witness 30% relapse rate which is universally fatal among children. Although the treatment of primary medulloblastoma is well established including surgical excision, postsurgical irradiation, and, more recently, chemotherapy, there is no established treatment for its recurrence. Despite efforts to improve its therapy, frequent long-haul survivors have been recorded in the world's medical literature. In this book chapter, we have attempted to focus light on the nano preparation of phytoconstituents as an alternative approach as it has advantage of providing better bioavailability of the compound in terms of crossing the blood-brain barrier and an additional benefit in terms of limited adverse effects of the natural product over the traditional chemotherapeutic approaches. In recent times, biological methods or green approaches in the case of plants have received immense attention due to its safety and lack of contamination in the process. In this chapter, we will explore some plant products that have been incorporated into nanocarriers to improve their bioavailability in this tumor treatment.
Collapse
Affiliation(s)
- Priyanka Mishra
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Y B Tripathi
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
3
|
Morshedi K, Borran S, Ebrahimi MS, Masoud Khooy MJ, Seyedi ZS, Amiri A, Abbasi-Kolli M, Fallah M, Khan H, Sahebkar A, Mirzaei H. Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review. Phytother Res 2021; 35:4834-4897. [PMID: 34173992 DOI: 10.1002/ptr.7119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) cancers with a high global prevalence are a leading cause of morbidity and mortality. Accordingly, there is a great need to develop efficient therapeutic approaches. Curcumin, a naturally occurring agent, is a promising compound with documented safety and anticancer activities. Recent studies have demonstrated the activity of curcumin in the prevention and treatment of different cancers. According to systematic studies on curcumin use in various diseases, it can be particularly effective in GI cancers because of its high bioavailability in the gastrointestinal tract. Nevertheless, the clinical applications of curcumin are largely limited because of its low solubility and low chemical stability in water. These limitations may be addressed by the use of relevant analogues or novel delivery systems. Herein, we summarize the pharmacological effects of curcumin against GI cancers. Moreover, we highlight the application of curcumin's analogues and novel delivery systems in the treatment of GI cancers.
Collapse
Affiliation(s)
- Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Huang CY, Chang YJ, Wei PL, Hung CS, Wang W. Methyl gallate, gallic acid-derived compound, inhibit cell proliferation through increasing ROS production and apoptosis in hepatocellular carcinoma cells. PLoS One 2021; 16:e0248521. [PMID: 33725002 PMCID: PMC7963062 DOI: 10.1371/journal.pone.0248521] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a global health problem. Currently, there is no effective therapeutic strategy for HCC. Methyl gallate (MG), from plant-derived phenolic gallic acid, has exhibited antitumor efficacy. However, the effect of MG on HCC is unclear. In vitro growth activity was detected by a sulforhodamine assay. A zebrafish xenotransplantation was applied to evaluate the inhibitory effect of MG. Reactive oxygen species (ROS) production, autophagy, and lysosome formation were detected by specific dyes. Finally, apoptosis was examined using annexin V-FITC/PI staining and western blot was performed to determine the molecular mechanism. It was demonstrated that MG treatment inhibited the proliferation of Hep3B, Mahlavu, and HepJ5 cells. Xenotransplantation also showed that MG inhibited the growth of Hep3B and HepJ5 cells. MG treatment increased cellular levels of superoxide and oxidative stress. Increases in autophagy and lysosome formation were found after MG treatment. The western blot analysis showed that MG activated cleavage of caspase-3 and poly (SDP ribose) polymerase (PARP), modulated levels of the Bcl2, Bax, and Bad ligands, and induced apoptosis. MG induced autophagy with notable activation of beclin-1, autophagy related 5+12 (ATG5+12), and conversion of light chain 3-I (LC3-I) to II. Our study showed that MG exposure inhibited HCC proliferation both in vitro and in vivo. And blocking autophagy enhanced MG-induced cytotoxicity in HCC cells. These findings suggested MG might serve as a powerful therapeutic supplement for human HCC patients.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- * E-mail: (YJC); (WW)
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center and Translational Laboratory, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Chin-Sheng Hung
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Weu Wang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (YJC); (WW)
| |
Collapse
|
5
|
Ovais M, Hoque MZ, Khalil AT, Ayaz M, Ahmad I. Mechanisms underlying the anticancer applications of biosynthesized nanoparticles. BIOGENIC NANOPARTICLES FOR CANCER THERANOSTICS 2021:229-248. [DOI: 10.1016/b978-0-12-821467-1.00006-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
6
|
Lu G, Luo H, Zhu X. Targeting the GRP78 Pathway for Cancer Therapy. Front Med (Lausanne) 2020; 7:351. [PMID: 32850882 PMCID: PMC7409388 DOI: 10.3389/fmed.2020.00351] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
The 78-kDa glucose-regulated protein (GRP78) plays an important part in maintaining protein stability, regulating protein folding, and inducing apoptosis autophagy, which is considered as a powerful protein. Meanwhile, it also plays a role in ensuring the normal function of organs. In recent years, more and more researches have been carried out on the targeted therapy of GRP78, mainly focusing on its relevant role in tumor and its role as a major modulator and modulator of subordinate pathways. The ability of GRP78 to respond to endoplasmic reticulum stress (ERS) determines whether tumor cells survive and whether the changes in expression level of GRP78 regulated by endoplasmic reticulum (ER) caused by various factors will directly or indirectly affect cell proliferation, apoptosis, and injury, or reduce the body's defense ability, or have protective effects on various organs.
Collapse
Affiliation(s)
- Guanhua Lu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.,The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.,The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
7
|
Tao R, Wang C, Lu Y, Zhang C, Zhou H, Chen H, Li W. Characterization and Cytotoxicity of Polyprenol Lipid and Vitamin E-TPGS Hybrid Nanoparticles for Betulinic Acid and Low-Substituted Hydroxyl Fullerenol in MHCC97H and L02 Cells. Int J Nanomedicine 2020; 15:2733-2749. [PMID: 32368052 PMCID: PMC7184125 DOI: 10.2147/ijn.s249773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background This study demonstrated an innovative formulation including the polyprenol (GBP) lipid and vitamin E-TPGS hybrid nanoparticles (NPs) which was aimed to control the transfer of betulinic acid (BA) and low-substituted hydroxyl fullerenol (C60(OH)n). Additionally, it developed BA-C60(OH)n-GBP-TPGS-NPs delivery system and researched the anti-hepatocellular carcinoma (HCC) effects. Materials and Methods The NPs were prepared by nanoprecipitation with ultrasonic-assisted emulsification (UAE) method. It was characterized by scanning electronic microscopy (SEM), transmission electron microscopy (TEM), FTIR spectrum, size distribution and zeta potential. Physical and chemical properties were evaluated through measurement of drug release, stability studies, drug loading efficiency (DE) and encapsulation efficiency (EE). Biological activities were evaluated through measurement of MTT assay, lactate dehydrogenase leakage assay (LDH), cell proliferation assays, cell apoptosis analysis, comet assay, wound healing assay, cell invasion and Western blot analysis. Results and Conclusions The NPs exhibited clear distribution characteristics, improved solubility and stability. BA and C60(OH)n for the NPs displayed a biphasic release pattern with sustained drug release properties. The mixture of C60(OH)n with different hydroxyl groups may have a certain effect on the stability of the NPs system itself. The NPs could effectively inhibit MHCC97H cell proliferation, migration and invasion in vitro. Combined use of C60(OH)n and BA in GBP lipids may improve the inhibit effect of C60(OH)n or BA against HCC cells and reduce cytotoxicity and genotoxicity of C60(OH)n for normal cells. We concluded that one of the important mechanisms of BA-C60(OH)n-GBP-TPGS-NPs inhibiting MHCC97H cells is achieved by up-regulating the expression of Caspase-3, Caspase-8 and Caspase-9.
Collapse
Affiliation(s)
- Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China.,Research Institute of Forestry New Technology, CAF, Beijing 100091, People's Republic of China
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China.,Research Institute of Forestry New Technology, CAF, Beijing 100091, People's Republic of China
| | - Yin Lu
- General Hospital of Eastern Theater Command, Nanjing, Jiangsu Province 210002, People's Republic of China
| | - Changwei Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China
| | - Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China.,Research Institute of Forestry New Technology, CAF, Beijing 100091, People's Republic of China
| | - Hongxia Chen
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China
| | - WenJun Li
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China
| |
Collapse
|
8
|
Ratan ZA, Haidere MF, Nurunnabi M, Shahriar SM, Ahammad AS, Shim YY, Reaney MJ, Cho JY. Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects. Cancers (Basel) 2020; 12:E855. [PMID: 32244822 PMCID: PMC7226404 DOI: 10.3390/cancers12040855] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
Nanobiotechnology has grown rapidly and become an integral part of modern disease diagnosis and treatment. Biosynthesized silver nanoparticles (AgNPs) are a class of eco-friendly, cost-effective and biocompatible agents that have attracted attention for their possible biomedical and bioengineering applications. Like many other inorganic and organic nanoparticles, such as AuNPs, iron oxide and quantum dots, AgNPs have also been widely studied as components of advanced anticancer agents in order to better manage cancer in the clinic. AgNPs are typically produced by the action of reducing reagents on silver ions. In addition to numerous laboratory-based methods for reduction of silver ions, living organisms and natural products can be effective and superior source for synthesis of AgNPs precursors. Currently, plants, bacteria and fungi can afford biogenic AgNPs precursors with diverse geometries and surface properties. In this review, we summarized the recent progress and achievements in biogenic AgNPs synthesis and their potential uses as anticancer agents.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (Z.A.R.); (Y.Y.S.)
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | - Mohammad Faisal Haidere
- Department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka 1000, Bangladesh;
| | - Md. Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA;
| | - Sadi Md. Shahriar
- Department of Materials Science and Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh;
| | | | - Youn Young Shim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (Z.A.R.); (Y.Y.S.)
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Martin J.T. Reaney
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (Z.A.R.); (Y.Y.S.)
| |
Collapse
|
9
|
Nag S, Bagchi D, Chattopadhyay D, Bhattacharyya M, Pal SK. Protein assembled nano-vehicle entrapping photosensitizer molecules for efficient lung carcinoma therapy. Int J Pharm 2020; 580:119192. [PMID: 32126250 DOI: 10.1016/j.ijpharm.2020.119192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 01/10/2023]
Abstract
The efficiency of drug depends not only on its potency but also on its ability to reach the target sites in preference to non-target sites. In this regard, protein assembled nanocarrier is the most promising strategy for intracellular anti-cancer drug delivery. The key motive of this study is to fabricate biocompatible protein assembled nanocarrier conjugated photosensitizer system for stimuli-responsive treatment of lung carcinoma. Here, we have synthesized a unique nanohybrid of protein assembled gold nanoparticles (AuNPs), attaching a model photosensitizer, Protoporphyrin IX (PpIX) to the protein shell of the nanoparticles (NPs) imparting an ideal drug-carrier nature. Photo-induced alteration in hydrodynamic diameter suggests structural perturbation of the nanohybrid which in terms signifies on-demand drug delivery. The drug release profile has been further confirmed by using steady-state fluorescence experiments. AuNP-PpIX showed excellent anti-cancer efficiency upon green light irradiation on lung adenocarcinoma cell line (A549) through intracellular reactive oxygen species (ROS) generation. The cellular morphological changes upon PDT and internalization of nanohybrid were monitored using confocal laser scanning microscope. This anti-cancer effect of nanohybrid was associated with apoptotic pathway which was confirmed in the flow cytometric platform. The developed nanomedicine is expected to find relevance in clinical anti-cancer PDT models in the near future.
Collapse
Affiliation(s)
- Sudip Nag
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Damayanti Bagchi
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | | | - Maitree Bhattacharyya
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India; Jagadis Bose National Science Talent Search, 1300 Rajdanga Main Road, Kolkata 700107, India.
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
10
|
|
11
|
Lee WH, Chen LC, Lee CJ, Huang CC, Ho YS, Yang PS, Ho CT, Chang HL, Lin IH, Chang HW, Liu YR, Wu CH, Tu SH. DNA primase polypeptide 1 (PRIM1) involves in estrogen-induced breast cancer formation through activation of the G2/M cell cycle checkpoint. Int J Cancer 2018; 144:615-630. [PMID: 30097999 DOI: 10.1002/ijc.31788] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
Abstract
The DNA primase polypeptide 1 (PRIM1) is responsible for synthesizing small RNA primers for Okazaki fragments generated during discontinuous DNA replication. PRIM1 mRNA expression levels in breast tumor samples were detected by real-time PCR analysis. Xenografted tumor model was established to study the carcinogenic role of PRIM1 and its potential therapeutic applications. The average PRIM1 mRNA (copy number × 103 /μg) expression was 4.7-fold higher in tumors than in normal tissue (*p = 0.005, n = 254). PRIM1 was detected preferentially at a higher level (>40-fold) in poorly differentiated tumor tissues (n = 46) compared with more highly differentiated tumors tissues (n = 10) (*p = 0.005). Poor overall survival rate was correlated to the estrogen receptor positive (ER+, n = 20) patients with higher PRIM1 expression when compare to the ER- (n = 10) patients (Chi Square test, p = 0.03). Stable expression of PRIM1-siRNA in the ER+ BT-474 cells-xenograft tumors significantly reduced tumor volume in SCID mice (*p = 0.005). The anti-tumoral effects of inotilone isolated from Phellinus linteus was tested and had significant effects on the inhibition of PRIM1 protein expression in ER+ breast cancer cells. In vivo study was performed by administering inotilone (10 mg/kg, twice a week for 6 weeks), which resulted in significantly reduced BT-474-xenografted tumor growth volume compared with control (n =5 per group, *p < 0.05). This study provides evidences for the prognostic effects of PRIM1 with poor overall survival rate in the ER+ patients and will be valuable to test for therapeutic purpose.
Collapse
Affiliation(s)
- Wei-Hwa Lee
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Li-Ching Chen
- Breast Medical Center, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Jung Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Cheng Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.,Department of Surgery, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Po-Sheng Yang
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Hang-Lung Chang
- Department of General Surgery, En Chu Kong Hospital, New Taipei City, Taiwan
| | - I-Hsuan Lin
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Wen Chang
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yun-Ru Liu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hsiung Wu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of General Surgery, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Shih-Hsin Tu
- Breast Medical Center, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
12
|
Liang HH, Huang CY, Chou CW, Makondi PT, Huang MT, Wei PL, Chang YJ. Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation. Life Sci 2018; 209:43-51. [PMID: 30056019 DOI: 10.1016/j.lfs.2018.07.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 01/14/2023]
Abstract
The problem of therapeutic resistance and chemotherapeutic efficacy is tricky and critical in the management of colorectal cancer (CRC). Curcumin is a promising anti-cancer agent. Heat shock protein 27 (HSP27) is correlated with CRC progression and is said to affect CRC response to different therapies. However, the role of HSP27 on the therapeutic efficacy of curcumin remains unknown. HSP27 was silenced using small hairpin RNA (shRNA) technique. The cytotoxic and apoptotic effects of curcumin were assessed by sulforhodamine B (SRB) colorimetric assay, flow cytometric cell cycle analysis, and annexin V/propidium iodide (PI) double-labeling assays. Total reactive oxygen species (ROS)/superoxide and autophagy detection were performed, and the levels of apoptosis-related proteins were examined by Western blotting. It was found that the silencing of HSP27 (HSP27-KD) resulted in increased treatment resistance to curcumin in CRC cells. In addition, cell cycle analysis showed that the curcumin treatment caused cell cycle arrest at the G2/M phase in the control group, and apoptosis was reduced in the HSP27-KD group. Curcumin treatment also resulted in a decrease in anti-apoptotic proteins, p-Akt, Akt, Bcl-2 and p-Bad, and increase in pro-apoptotic proteins Bad and c-PARP levels in the control cells but not in the HSP27-KD cells. This was also followed by low reactive oxygen/nitrogen species (ROS/RNS), superoxide and autophagy induction levels in the HSP27-KD cells as compared to the control cells. Therefore, as silencing of HSP27 increases curcumin resistance by reducing apoptosis and reactive oxidative stress production, HSP27 is a potential selective target for curcumin treatment in CRC.
Collapse
Affiliation(s)
- Hung-Hua Liang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chien-Yu Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Ching-Wen Chou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Precious Takondwa Makondi
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Te Huang
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Ovais M, Raza A, Naz S, Islam NU, Khalil AT, Ali S, Khan MA, Shinwari ZK. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl Microbiol Biotechnol 2017; 101:3551-3565. [DOI: 10.1007/s00253-017-8250-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
|
14
|
Ovais M, Khalil AT, Raza A, Khan MA, Ahmad I, Islam NU, Saravanan M, Ubaid MF, Ali M, Shinwari ZK. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine (Lond) 2016; 11:3157-3177. [DOI: 10.2217/nnm-2016-0279] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
With the development of the latest technologies, scientists are looking to design novel strategies for the treatment and diagnosis of cancer. Advances in medicinal plant research and nanotechnology have attracted many researchers to the green synthesis of metallic nanoparticles due to its several advantages over conventional synthesis (simple, fast, energy efficient, one pot processes, safer, economical and biocompatibility). Medicinally active plants have proven to be the best reservoirs of diverse phytochemicals for the synthesis of biogenic silver nanoparticles (AgNPs). In this review, we discuss mechanistic advances in the synthesis and optimization of AgNPs from plant extracts. Moreover, we have thoroughly discussed the recent developments and milestones achieved in the use of biogenic AgNPs as cancer theranostic agents and their proposed mechanism of action. Anticipating all of the challenges, we hope that biogenic AgNPs may become a potential cancer theranostic agent in the near future.
Collapse
Affiliation(s)
- Muhammad Ovais
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Talha Khalil
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abida Raza
- National Institute for Lasers & Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
| | - Muhammad Adeeb Khan
- Department of Zoology, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Irshad Ahmad
- Department of Life sciences, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Nazar Ul Islam
- Department of Pharmacy, Sarhad University of Science & Information Technology, Peshawar, Pakistan
| | - Muthupandian Saravanan
- Department of Medical Microbiology & Immunology, Institute of Biomedical Sciences, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | | | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
15
|
Aali N, Motalleb G. The effect of nicotine on the expressions of the α7 nicotinic receptor gene and Bax and Bcl-2 proteins in the mammary gland epithelial-7 breast cancer cell line and its relationship to drug resistance. Cell Mol Biol Lett 2016; 20:948-64. [PMID: 26812869 DOI: 10.1515/cmble-2015-0056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023] Open
Abstract
The binding of nicotine with nicotinic acetylcholine receptors (nAChRs) stimulates cell division and increases drug resistance in cancer. Experiments with specific inhibitors such as RNAi, hexamethonium, and α-bungarotoxin showed that α7 nicotinic receptor plays a key role in the pro-proliferation activity of nicotine. However, the mechanism of nicotine in the progress of breast cancer, the commonest malignancy in women, remains unknown. This study focuses on the effect of nicotine on the expressions of the α7 nicotinic receptor gene and Bax and Bcl-2 proteins in mammary gland epithelial-7 (MCF-7) breast cancer cells and its relationship to drug resistance. To evaluate the effect on drug resistance, human mammary gland epithelial adenocarcinomas from the MCF-7 line were exposed to 100 μl of nicotine at a concentration of 9.2 mg/ml for varying periods of time. Then, the cells were treated with 1, 2, 3 or 5 μl/ml of doxorubicin, either with or without the continued presence of nicotine. Cell viability was determined using the MTT assay. The biochemical parameters of apoptosis, including the expressions of Bax, Bcl-2 and α7 nicotinic receptor proteins were determined via western blotting, and the α7 nicotinic receptor gene expression level was assessed via real-time qPCR using the 2(-ΔΔCt) method. Differences in the target gene expression levels were evaluated with ANOVA with p ≤ 0.05 considered significant. We found a novel and effective signaling pathway of nicotine in the MCF-7 breast cancer cell line. The levels of α7 nicotinic receptor and Bcl-2 protein increased but the Bax protein levels decreased, while the α7 nicotinic receptor gene expression level was not significantly different compared with the control.
Collapse
|
16
|
Fu WM, Lu YF, Hu BG, Liang WC, Zhu X, Yang HD, Li G, Zhang JF. Long noncoding RNA Hotair mediated angiogenesis in nasopharyngeal carcinoma by direct and indirect signaling pathways. Oncotarget 2016; 7:4712-23. [PMID: 26717040 PMCID: PMC4826237 DOI: 10.18632/oncotarget.6731] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC), as a unique head and neck cancer type, is particularly prevalent in certain geographic areas such as eastern Asia. Until now, the therapeutic options have been restricted mainly to radiotherapy or chemotherapy. However, the clinical treatment effect remains unsatisfactory even if the combined radio-chemotherapies. Therefore, it is urgently needed to develop effective novel therapies against NPC. In this study, we discovered that lncRNA Hotair was extremely abundant in NPC cells and clinical NPC samples. Further studies showed that Hotair knockdown significantly attenuated both in vitro and in vivo tumor cell growth and angiogenesis. Our study also demonstrated that Hotair promoted angiogenesis through directly activating the transcription of angiogenic factor VEGFA as well as through GRP78-mediated upregulation of VEGFA and Ang2 expression. Therefore, Hotair may serve as a promising diagnostic marker and therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Wei-Ming Fu
- Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, P.R. China
| | - Ying-Fei Lu
- Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, P.R. China.,Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China
| | - Bao-Guang Hu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, P.R. China
| | - Wei-Cheng Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Xiao Zhu
- Guangdong Province Key Laboratory of Medical Molecular Diagnosis, Guangdong Medical College, Dong guan, 523808, P.R. China
| | - Hai-di Yang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Gang Li
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, P.R. China
| | - Jin-Fang Zhang
- School of Medicine, South China University of Technology, Guangzhou 511458, P.R. China.,Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, P.R. China
| |
Collapse
|
17
|
Subramaniyan B, Polachi N, Mathan G. Isocoreopsin: An active constituent of n-butanol extract of Butea monosperma flowers against colorectal cancer (CRC). J Pharm Anal 2016; 6:318-325. [PMID: 29403999 PMCID: PMC5762627 DOI: 10.1016/j.jpha.2016.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/19/2023] Open
Abstract
The herb Butea monosperma constitutes several human health beneficial components, which are mostly studied for their anticancer effects. In this study, the activity of n-butanol fractions of B. monosperma floral extract was examined on inhibiting aberrant crypt foci (ACF) formation in azoxymethane induced Wistar albino rats. The n-butanol extracts (150 mg/kg) decreased the ACF formation (per rat) by 92% and 78% in short- and long-term in vivo treatments, respectively. All the compounds in the n-butanol extract were isolated and purified using column and reverse-phase high pressure liquid chromatography (HPLC). Their structures were characterized using UV-visible spectroscopy, nuclear magnetic resonance (NMR) and electrospray-ionisation mass spectrometry (ESI-MS) to determine important flavonoids, namely isocoreopsin, butrin and isobutrin. These compounds were studied for their free radical scavenging and anticancer activities. The compound isocoreopsin showed significantly greater efficacy in cell death on human colon and liver cancer cell lines (50 μg/mL in HT-29 and 100 μg/mL in HepG2) than butrin (100 μg/mL in HT-29 and 500 μg/mL in HepG2) and isobutrin (80 μg/mL in HT-29 and 150 μg/mL in HepG2). These results suggest that isocoreopsin, butrin and isobutrin are the important key compounds for the chemoprevention of colon cancer and isocoreopsin can be considered as a promising novel drug.
Collapse
Affiliation(s)
| | | | - Ganeshan Mathan
- Department of Biomedical Science, School of Basic Medical Science, Bharathidasan University, Tiruchirappalli 620 024, TN, India
| |
Collapse
|
18
|
Chen H, Chen L, Wang L, Zhou X, Chan JYW, Li J, Cui G, Lee SMY. Synergistic effect of fenretinide and curcumin for treatment of non-small cell lung cancer. Cancer Biol Ther 2016; 17:1022-1029. [PMID: 27628049 DOI: 10.1080/15384047.2016.1219810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Curcumin and fenretinide are 2 well-known and promising chemotherapeutic compounds via various molecular mechanisms. However, the anticancer capacity of either curcumin or fenretinide is limited. This prompted us to examine the combined anticancer effects of curcumin and fenretinide. Our results demonstrate for the first time that there is synergistic anticancer effect of combined treatment with these 2 agents, leading to enhanced cytotoxicity and enhanced expression level of pro-apoptotic protein cleaved PARP in non-small cell lung cancer (NSCLC) cells while showed little toxicity to rat cardiomyoblast normal cells. The combination treatment was also demonstrated to inhibit lung carcinoma growth in vivo. Furthermore, we show that fenretinide or the ER stress inhibitor 4-PBA decreased curcumin-induced Glucose-regulated protein 78 (GRP78) upregulation, and produced a similar enhanced cytotoxic effect. In addition, GRP78 knockdown by siRNA also enhanced the cytotoxic effect of curcumin in A549 and H1299 cells. Our findings suggest that the 2 small molecules, when used in combination, can potentially be effective therapeutic agents for treating NSCLC, at least in part, by regulating endoplasmic reticulum (ER) chaperone protein GRP78.
Collapse
Affiliation(s)
- Huanxian Chen
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Linmin Chen
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Liang Wang
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Xinhua Zhou
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Judy Yuet-Wa Chan
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Jingjing Li
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Macau , China
| | - Guozhen Cui
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Macau , China.,b Department of Bioengineering, Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine , Zhuhai Campus of Zunyi Medical College , Zhuhai , China
| | - Simon Ming-Yuen Lee
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Macau , China
| |
Collapse
|
19
|
Tu CC, Huang CY, Cheng WL, Hung CS, Chang YJ, Wei PL. Silencing A7-nAChR levels increases the sensitivity of gastric cancer cells to ixabepilone treatment. Tumour Biol 2016; 37:9493-501. [PMID: 26790437 DOI: 10.1007/s13277-015-4751-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/29/2015] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer is an important health issue worldwide. Currently, improving the therapeutic efficacy of chemotherapy drugs is an important goal of cancer research. Alpha-7 nicotine acetylcholine receptor (A7-nAChR) is the key molecule that mediates gastric cancer progression, metastasis, and therapy responses; however, the role of A7-nAChR in the therapeutic efficacy of ixabepilone remains unclear. A7-nAChR expression was silenced by small interfering RNA (siRNA) technology. The cytotoxicity of ixabepilone was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and ixabepilone-induced apoptosis was analyzed by flow cytometry and annexin V/propidium iodide (PI) apoptotic assay. The expression patterns of anti-apoptotic proteins (AKT, phospho-AKT, Mcl-1, and Bcl-2) and pro-apoptotic proteins (Bad and Bax) were determined by western blot. Our study found that A7-nAChR knockdown (A7-nAChR-KD) AGS cells were more sensitive to ixabepilone administration than scrambled control AGS cells. We found that A7-nAChR knockdown enhanced ixabepilone-induced cell death as evidenced by the increased number of annexin V-positive (apoptotic) cells. After scrambled control and A7-nAChR-KD cells were treated with ixabepilone, we found that pAKT and AKT levels were significantly reduced in both groups of cells. The levels of Bcl-2 and the anti-apoptotic Mcl-1 isoform increased dramatically after ixabepilone treatment in scrambled control cells but not in A7-nAChR-KD cells. Bad and Bax levels did not change between the treatment group and vehicle group in both A7-nAChR-KD and scrambled control cells, whereas cleaved PARP levels dramatically increased in ixabepilone-treated A7-nAChR-KD cells. Our results demonstrated that knockdown of A7-nAChR enhanced the sensitivity of gastric cancer cells to ixabepilone administration. Thus, the A7-nAChR expression level in patients with gastric cancer may be a good indicator of ixabepilone sensitivity.
Collapse
Affiliation(s)
- Chao-Chiang Tu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, New Taipei Hospital, Taipei, Taiwan
| | - Chien-Yu Huang
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Sheng Hung
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, 250 Wu-Xin Street, Taipei City, 110, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, 250 Wu-Xin Street, Taipei City, 110, Taiwan.
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
- Cancer Research Center, Taipei Medical University Hospital, Taipei Medical University, 250 Wu-Xin Street, Taipei City, 110, Taiwan.
| |
Collapse
|
20
|
A Catalog of Proteins Expressed in the AG Secreted Fluid during the Mature Phase of the Chinese Mitten Crabs (Eriocheir sinensis). PLoS One 2015; 10:e0136266. [PMID: 26305468 PMCID: PMC4549300 DOI: 10.1371/journal.pone.0136266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/03/2015] [Indexed: 11/19/2022] Open
Abstract
The accessory gland (AG) is an important component of the male reproductive system of arthropods, its secretions enhance fertility, some AG proteins bind to the spermatozoa and affect its function and properties. Here we report the first comprehensive catalog of the AG secreted fluid during the mature phase of the Chinese mitten crab (Eriocheir sinensis). AG proteins were separated by one-dimensional gel electrophoresis and analyzed by reverse phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Altogether, the mass spectra of 1173 peptides were detected (1067 without decoy and contaminants) which allowed for the identification of 486 different proteins annotated upon the NCBI database (http://www.ncbi.nlm.nih.gov/) and our transcritptome dataset. The mass spectrometry proteomics data have been deposited at the ProteomeXchange with identifier PXD000700. An extensive description of the AG proteome will help provide the basis for a better understanding of a number of reproductive mechanisms, including potentially spermatophore breakdown, dynamic functional and morphological changes in sperm cells and sperm acrosin enzyme vitality. Thus, the comprehensive catalog of proteins presented here can serve as a valuable reference for future studies of sperm maturation and regulatory mechanisms involved in crustacean reproduction.
Collapse
|
21
|
Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 53:298-309. [PMID: 26042718 DOI: 10.1016/j.msec.2015.04.048] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/17/2015] [Accepted: 04/29/2015] [Indexed: 12/23/2022]
Abstract
In the present article, we demonstrate the delivery of anti-cancer drug to the cancer cells using biosynthesized gold and silver nanoparticles (b-AuNP & b-AgNP). The nanoparticles synthesized by using Butea monosperma (BM) leaf extract are thoroughly characterized by various analytical techniques. Both b-AuNP and b-AgNP are stable in biological buffers and biocompatible towards normal endothelial cells (HUVEC, ECV-304) as well as cancer cell lines (B16F10, MCF-7, HNGC2 & A549). Administration of nanoparticle based drug delivery systems (DDSs) using doxorubicin (DOX) [b-Au-500-DOX and b-Ag-750-DOX] shows significant inhibition of cancer cell proliferation (B16F10, MCF-7) compared to pristine drug. Therefore, we strongly believe that biosynthesized nanoparticles will be useful for the development of cancer therapy using nanomedicine approach in near future.
Collapse
Affiliation(s)
- Sujata Patra
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Sudip Mukherjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Ayan Kumar Barui
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Anirban Ganguly
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Bojja Sreedhar
- Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Chitta Ranjan Patra
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India.
| |
Collapse
|
22
|
Yu B, Wen L, Xiao B, Han F, Shi Y. Single Prolonged Stress induces ATF6 alpha-dependent Endoplasmic reticulum stress and the apoptotic process in medial Frontal Cortex neurons. BMC Neurosci 2014; 15:115. [PMID: 25331812 PMCID: PMC4224694 DOI: 10.1186/s12868-014-0115-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/03/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In our previous researches, we have found that apoptosis was induced in the medial prefrontal cortex (mPFC) of post-traumatic stress disorder (PTSD) rats. Endoplasmic reticulum (ER) stress-induced apoptosis has been implicated in the development of several disorder diseases. The aim of this study was to investigate whether endoplasmic reticulum-related pathway is involved in single-prolonged stress (SPS) induced apoptosis in the mPFC of PTSD rats by examining the expression levels of ATF6 alpha (ATF6α), two important downstream molecular chaperones of ATF6α in the ER stress: Glucose-regulated protein (GRP) 78 and ERP57, and apoptotic factors caspase 12, caspase 9, and caspase 3. RESULTS Our results of Morris Water Maze (MWM) test showed that after SPS exposure, a striking increase of the escape latency was observed in SPS rats at day 1 through day 6, and SPS rats had much less time spent in target quadrant compared to control rats ( P < 0.01). And From immunofluorescence assays, we found that there was a gradual increase on the protein expression of ATF6α in response to SPS, which indicated ATF6α was activated by SPS. And additionally, immunohistochemistry assays, western blotting and reverse transcription-polymerase chain reaction (RT-PCR) showed that the immunoreactivity, protein and mRNA expression of GRP78 and ERP57 increased on 1, 4 days, and peaked on 7 days after SPS exposure, which revealed that SPS triggered inductions of GRP78 and ERP57 in the mPFC neurons. Moreover, RT-PCR assays demonstrated that there were up-regulations in the transcripts levels of caspase 12, caspase 9, and caspase 3 in response to SPS, which were according with the proteins changes of these apoptotic factors and indicated that ER stress and the activation of caspases contributed to SPS. CONCLUSION Current data in this study highlight that SPS induced ATF6α-dependent Endoplasmic reticulum stress and ER-related apoptosis in the mPFC neurons, which indicated that the endoplasmic reticulum pathway may be involved in PTSD-induced apoptosis.
Collapse
|
23
|
GRP78 mediates the therapeutic efficacy of curcumin on colon cancer. Tumour Biol 2014; 36:633-41. [PMID: 25277658 DOI: 10.1007/s13277-014-2640-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/15/2014] [Indexed: 12/12/2022] Open
|
24
|
Effect of glucose-regulated protein 94 and endoplasmic reticulum modulator caspase-12 in medial prefrontal cortex in a rat model of posttraumatic stress disorder. J Mol Neurosci 2014; 54:147-55. [PMID: 24610447 DOI: 10.1007/s12031-014-0263-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
Posttraumatic stress disorder (PTSD) is an anxiety disorder caused by a life-threatening traumatic experience, which affects a patient's quality of life and social stability. The objective of this study was to investigate the change of the glucose-regulated protein (GRP) 94 and apoptosis-related caspase-12 expression in medial prefrontal cortex (mPFC) in rats to determine whether endoplasmic reticulum apoptosis pathway plays an important role in single-prolonged stress (SPS), a well-established PTSD animal model, and therefore to provide experimental evidence to reveal PTSD pathogenesis. A total of 120 healthy male Wistar rats were selected for this study, randomly divided into a normal control group and SPS groups of 1, 4, 7, 14, and 28 days. Behavioral studies of the learning and memory capabilities of rats were observed by using Morris water maze. Morphological changes were detected using transmission electron microscopy (TEM). Immunohistochemistry, Western blot, and reverse transcription polymerase chain reaction (RT-PCR) were used to detect the expressions of caspase-12 and GRP94 expressions in mPFC. Our results showed that compared with control groups, after the SPS exposure, the average escape latency was prolonged in place navigation test (P < 0.05), and swimming time in the third quadrant in spatial probe test shortened. The morphological change of mPFC in each SPS group bears typical apoptotic characteristics. The expressions of GRP94 and caspase-12 gradually increased on 1 and 4 days, peaked on 7 days after the SPS exposure, and then decreased. These results suggest that SPS exposure can induce apoptotic neurons and a change of caspase-12 and GRP94 expression in the mPFC, which may be one of the pathogenesis of mPFC abnormal function in PTSD.
Collapse
|
25
|
Park S, Mathis KW, Lee IK. The physiological roles of apolipoprotein J/clusterin in metabolic and cardiovascular diseases. Rev Endocr Metab Disord 2014; 15:45-53. [PMID: 24097125 DOI: 10.1007/s11154-013-9275-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several isoforms of apolipoprotein J/clusterin (CLU) are encoded from a single gene located on chromosome 8 in humans. These isoforms are ubiquitously expressed in the tissues, and have been implicated in aging, neurodegenerative disorders, cancer progression, and metabolic/cardiovascular diseases including dyslipidemia, diabetes, atherosclerosis and myocardial infarction. The conventional secreted form of CLU (sCLU) is thought to be a component of high density lipoprotein-cholesterol. sCLU functions as a chaperone for misfolded proteins and it is thought to promote survival by reducing oxidative stress. Nuclear CLU, a truncated CLU formed by alternative splicing, is responsible for promoting apoptosis via a Bax-dependent pathway. There are putative regulatory sites in the promoter regions of CLU, which are occupied by transcription factors such as transforming growth factor (TGF)-β inhibitory element, activator protein-1, CLU-specific elements, and carbohydrate response element. However, the molecular mechanisms underlying the distinct roles of CLU in a variety of conditions remain unclear. Although the function of CLU in cancer or neurological disease has been studied intensively for three decades, physiological roles of CLU seem unexplored in the cardiovascular system and metabolic diseases. In this review, we will discuss general characteristics and regulations of CLU based on previous literature and assess the recent findings associated with its physiological roles in different tissues including the vasculature, heart, liver, kidney, adipose tissue, and brain.
Collapse
Affiliation(s)
- S Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | | | | |
Collapse
|
26
|
Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S, B V, Bhadra MP, Sreedhar B, Patra CR. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 2014; 4:316-35. [PMID: 24505239 PMCID: PMC3915094 DOI: 10.7150/thno.7819] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/16/2013] [Indexed: 12/22/2022] Open
Abstract
In this report, we have designed a simple and efficient green chemistry approach for the synthesis of colloidal silver nanoparticles (b-AgNPs) that is formed by the reduction of silver nitrate (AgNO3) solution using Olax scandens leaf extract. The colloidal b-AgNPs, characterized by various physico-chemical techniques exhibit multifunctional biological activities (4-in-1 system). Firstly, bio-synthesized silver nanoparticles (b-AgNPs) shows enhanced antibacterial activity compared to chemically synthesize silver nanoparticles (c-AgNPs). Secondly, b-AgNPs show anti-cancer activities to different cancer cells (A549: human lung cancer cell lines, B16: mouse melanoma cell line & MCF7: human breast cancer cells) (anti-cancer). Thirdly, these nanoparticles are biocompatible to rat cardiomyoblast normal cell line (H9C2), human umbilical vein endothelial cells (HUVEC) and Chinese hamster ovary cells (CHO) which indicates the future application of b-AgNPs as drug delivery vehicle. Finally, the bio-synthesized AgNPs show bright red fluorescence inside the cells that could be utilized to detect the localization of drug molecules inside the cancer cells (a diagnostic approach). All results together demonstrate the multifunctional biological activities of bio-synthesized AgNPs (4-in-1 system) that could be applied as (i) anti-bacterial & (ii) anti-cancer agent, (iii) drug delivery vehicle, and (iv) imaging facilitator. To the best of our knowledge, there is not a single report of biosynthesized AgNPs that demonstrates the versatile applications (4-in-1 system) towards various biomedical applications. Additionally, a plausible mechanistic approach has been explored for the synthesis of b-AgNPs and its anti-bacterial as well as anti-cancer activity. We strongly believe that bio-synthesized AgNPs will open a new direction towards various biomedical applications in near future.
Collapse
Affiliation(s)
- Sudip Mukherjee
- 1. Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| | - Debabrata Chowdhury
- 2. Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| | - Rajesh Kotcherlakota
- 1. Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| | - Sujata Patra
- 1. Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| | - Vinothkumar B
- 1. Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| | - Manika Pal Bhadra
- 2. Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| | - Bojja Sreedhar
- 3. Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| | - Chitta Ranjan Patra
- 1. Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, AP, India
| |
Collapse
|
27
|
Gayathri T, Barui AK, Prashanthi S, Patra CR, Singh SP. meso-Substituted BODIPY fluorescent probes for cellular bio-imaging and anticancer activity. RSC Adv 2014. [DOI: 10.1039/c4ra07424f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2013; 66:222-307. [PMID: 24368738 DOI: 10.1124/pr.110.004044] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review addresses the oncopharmacological properties of curcumin at the molecular level. First, the interactions between curcumin and its molecular targets are addressed on the basis of curcumin's distinct chemical properties, which include H-bond donating and accepting capacity of the β-dicarbonyl moiety and the phenylic hydroxyl groups, H-bond accepting capacity of the methoxy ethers, multivalent metal and nonmetal cation binding properties, high partition coefficient, rotamerization around multiple C-C bonds, and the ability to act as a Michael acceptor. Next, the in vitro chemical stability of curcumin is elaborated in the context of its susceptibility to photochemical and chemical modification and degradation (e.g., alkaline hydrolysis). Specific modification and degradatory pathways are provided, which mainly entail radical-based intermediates, and the in vitro catabolites are identified. The implications of curcumin's (photo)chemical instability are addressed in light of pharmaceutical curcumin preparations, the use of curcumin analogues, and implementation of nanoparticulate drug delivery systems. Furthermore, the pharmacokinetics of curcumin and its most important degradation products are detailed in light of curcumin's poor bioavailability. Particular emphasis is placed on xenobiotic phase I and II metabolism as well as excretion of curcumin in the intestines (first pass), the liver (second pass), and other organs in addition to the pharmacokinetics of curcumin metabolites and their systemic clearance. Lastly, a summary is provided of the clinical pharmacodynamics of curcumin followed by a detailed account of curcumin's direct molecular targets, whereby the phenotypical/biological changes induced in cancer cells upon completion of the curcumin-triggered signaling cascade(s) are addressed in the framework of the hallmarks of cancer. The direct molecular targets include the ErbB family of receptors, protein kinase C, enzymes involved in prostaglandin synthesis, vitamin D receptor, and DNA.
Collapse
Affiliation(s)
- Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
29
|
Wei PL, Tu CC, Chen CH, Ho YS, Wu CT, Su HY, Chen WY, Liu JJ, Chang YJ. Shikonin suppresses the migratory ability of hepatocellular carcinoma cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8191-8197. [PMID: 23899086 DOI: 10.1021/jf4009586] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Shikonin is a traditional Oriental medical herb extracted from Lithospermum erythrorhizon. Many studies have shown that shikonin possesses anticancer ability against many different cancers, including hepatocellular carcinoma (HCC). Recently, tumor metastasis has been become an important clinical obstacle. However, the effect of shikonin on metastasis by HCC is unknown. The 50% inhibitory concentration (IC50) of shikonin on HCC cells was determined by an MTT assay and the xCELLigence biosensor system. The migratory ability of HCC cells was detected by a transwell migration assay and the xCELLigence biosensor system. Matrix metalloproteinase-2 and -9 (MMP-2 and -9) expression levels were determined by Western blotting, and the activities of MMP-2 and -9 were determined by gelatin zymography. We found that IC50 values of HepJ5 and Mahlavu cells to shikonin treatment were around 2 μM. Exposure to a low dose of shikonin (0-0.4 μM) did not influence the survival of HCC cells. Interestingly, exposure to a low dose of shikonin inhibited the migratory ability on HepJ5 and Mahlavu cells. To further dissect the mechanism, we found that treatment with a low dose of shikonin reduced the activities and expression levels of MMP-2 and -9, which were correlated with the decreased cell migratory ability of HCC cells. In addition, we found a decrease of vimnetin expression, but no influence on the expression levels of N-cadherin, TWIST, or GRP78. In mechanism dissecting, we found that shikonin treatment may suppress the phosphorylation of AKT and then reduce the NF-κB (NF = nuclear factor) levels, but has no influence on the levels of c-Fos and c-Jun. Furthermore, we also found that shikonin may also reduce the phosphorylation of IκB. We concluded that a low dose of shikonin can suppress the migratory ability of HCC cells through downregulation of expression levels of vimentin and MMP-2 and -9. Our findings suggest that shikonin may be a new compound to prevent the migration of HCC cells.
Collapse
Affiliation(s)
- Po-Li Wei
- Department of Surgery, College of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liang HH, Wei PL, Hung CS, Wu CT, Wang W, Huang MT, Chang YJ. MicroRNA-200a/b influenced the therapeutic effects of curcumin in hepatocellular carcinoma (HCC) cells. Tumour Biol 2013; 34:3209-18. [PMID: 23760980 DOI: 10.1007/s13277-013-0891-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/27/2013] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) play an essential role in regulating gene expression in normal and malignant cells. Expression of the microRNA-200 (miR-200) family has been correlated with malignancy in cancers. However, whether miR-200a/b plays a role in curcumin-mediated treatment of hepatocellular carcinoma (HCC) is unknown. We performed miRNA array analyses in two different HCC cell lines (HepG2 and HepJ5). The expression patterns of miR-200 family members were assessed with real-time PCR. We overexpressed miR-200 family members using a lentiviral system and selected stably transduced clones with antibiotics. The anticancer effects of curcumin on J5-200a, J5-200b, and J5-control cells were assessed by MTT assay, flow cytometry cell cycle analysis, and TUNEL assay. We found that HepG2 cells, which were more resistant to curcumin treatment than HepJ5 cells, expressed higher levels of miR-200a/b. The MTT assay revealed that the overexpression of miR-200a/b in HepJ5 cells conferred enhanced resistance to curcumin treatment compared with the control cells. By cell cycle analysis and TUNEL assay, we found that apoptosis was increased dramatically in J5-control cells compared with J5-200a and J5-200b cells after curcumin treatment. Finally, we evaluated the levels of Bcl-2, Bax, and Bad, and found a decrease of Bcl-2 levels and increase of Bad levels in the J5-control cells treated with curcumin. The expression levels of miR-200a/b might determine the therapeutic efficacy of curcumin on HCC cells.
Collapse
Affiliation(s)
- Hung-Hua Liang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
31
|
Kuo LJ, Hung CS, Chen WY, Chang YJ, Wei PL. Glucose-regulated protein 78 silencing down-regulates vascular endothelial growth factor/vascular endothelial growth factor receptor 2 pathway to suppress human colon cancer tumor growth. J Surg Res 2013; 185:264-72. [PMID: 23759331 DOI: 10.1016/j.jss.2013.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/09/2013] [Accepted: 05/03/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND Up to 20% of colorectal cancer (CRC) is diagnosed with distant metastasis. The combination of chemotherapy with anti-vascular endothelial growth factor (VEGF) antibody can improve patient survival. Glucose-regulated protein 78 (GRP78) has an important role in cancer progression, but little is known about its role in VEGF production in CRC. The aim of this study was to explore the mechanism of GRP78 in two human colon cancer cell lines. METHODS We first checked the expression of GRP78 in human normal and colon cancer tissues and two colon cancer cell lines. Glucose-regulated protein 78 was knocked down using GRP78 small interfering RNA (siRNA) in HT29 and DLD-1 cells. We examined knockdown cells by the cell growth kinetics in vitro and tumor growth rate in vivo, respectively. We also investigated the effect of GRP78 siRNA on the expression of hypoxia inducible factor (HIF-1α), VEGF, and VEGF receptor 2 (VEGFR2). RESULTS Compared with their adjacent normal tissue, we detected high expression levels of GRP78 of surgically removed colon cancer tissues. Using GRP78 siRNA, we reduced the expression of GRP78 in HT29 and DLD-1 cells. The GRP78 knockdown cells had a lower proliferation rate with fewer colony-forming units in vitro and produced smaller tumors in vivo. In dissecting the mechanism underlying the reduced cell growth, we found that the down-regulation of GRP78 decreased the production of HIF-1α, VEGF, and VEGFR2 and suppressed angiogenesis. CONCLUSIONS Silencing GRP78 not only inhibits tumor, but also decreases the expression of VEGF and VEGFR2. Collectively, therapy targeting for GRP78 may inhibit the formation of colon cancer tumors via the HIF-1α/VEGF/VEGFR2 pathway.
Collapse
Affiliation(s)
- Li-Jen Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China; Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
32
|
Wang C, Jiang K, Gao D, Kang X, Sun C, Zhang Q, Li Y, Sun L, Zhang S, Guo K, Liu Y. Clusterin protects hepatocellular carcinoma cells from endoplasmic reticulum stress induced apoptosis through GRP78. PLoS One 2013; 8:e55981. [PMID: 23457489 PMCID: PMC3573055 DOI: 10.1371/journal.pone.0055981] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/03/2013] [Indexed: 01/26/2023] Open
Abstract
Clusterin (CLU) is a stress-activated chaperone, which plays an important role in cancer development and progression through promoting cell survival. However, the exact mechanism of how CLU exerts its cell protective role under ER stress condition is still unclear. Therefore, in order to explore the molecular mechanisms by which CLU inhibited ER stress-induced apoptosis, HCC cell lines were treated with tunicamycin (TN), an ER stress inducer. We found that the expressions of both CLU and GRP78 were increased after TN treatment. Knockdown of CLU expression in SMMC7721 and HCCLM3 cells inhibited GRP78 expression after TN treatment and enhanced ER stress-induced apoptosis, whereas over-expression of CLU in HepG2 cells increased GRP78 expression after TN induction and abolished the effect of TN on cell apoptosis. Furthermore, knockdown of GRP78 expression in CLU-HepG2 cells abrogated the protective role of CLU under ER stress condition. Co-immunoprecipitation (co-IP) and confocal microscopy experiments confirmed the direct interaction between CLU and GRP78 under ER stress condition. The effect of CLU knockdown on GRP78 expression and cell apoptosis in HCC tumors were further determined in orthotopic xenograft tumor model. Knockdown of CLU expression in HCCLM3 cells inhibited GRP78 expression in tumor tissues, accompanied with increased number of apoptotic cancer cells. Moreover, the correlation between CLU and GRP78 expression was further determined in clinical HCC specimens. Taken together, these findings reveal that CLU protects HCC cells from ER stress induced apoptosis at least partially through interacting with GRP78.
Collapse
Affiliation(s)
- Cun Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kai Jiang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiaonan Kang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chun Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qinle Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Lu Sun
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- * E-mail: (YL); (KG)
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail: (YL); (KG)
| |
Collapse
|
33
|
Wu CH, Uen YH, Ho CT, Tseng YT, Liu TZ, Chiou JF, Leung SW. Constitutive Overexpression of Bcl-2, Survivin and ER Stress Chaperone GRP-78 Confers Intrinsic Radioresistance in Human Hepatocellular Carcinoma Cells: Insight into the Mechanistic Pathways Involved. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.42a048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Hung CS, Liu HH, Huang MT, Cheng CW, Kuo LJ, Ho YS, Wu CH, Chen CM, Wei PL, Chang YJ. Knockdown survivin expression reduces the efficacy of curcumin treatment in hepatocellular carcinoma cells. Ann Surg Oncol 2012; 19:3547-3555. [PMID: 22711176 DOI: 10.1245/s10434-012-2393-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Indexed: 01/04/2025]
Abstract
BACKGROUND Survivin is a potential therapeutic target for cancer. Increased survivin expression promotes cell survival and therapeutic resistance. However, there is little information regarding whether the expression level of survivin affects curcumin treatment in hepatocellular carcinoma (HCC). METHODS Survivin expression was suppressed in HCC cells using a short interfering RNA (siRNA) technique. The anticancer effects of curcumin were examined using a biosensor system, MTT assay, TUNEL assay, and cell cycle analysis. RESULTS Curcumin resistance developed in cells with suppressed survivin, in contrast to the parental cells, as determined by survival assays. Cell cycle analysis and TUNEL assays revealed that the apoptotic cell population was increased in the scrambled-siRNA cells treated with curcumin compared with the survivin-siRNA cells. Suppression of survivin expression resulted in curcumin resistance via the modulation of Bcl-2 and Bax expression. CONCLUSIONS We conclude that the expression levels of survivin may mediate the therapeutic efficacy of curcumin in HCC cells.
Collapse
Affiliation(s)
- Chin-Sheng Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hung CS, Lin SF, Liu HH, Kuo LJ, Li LT, Su HY, Liew PL, Lin FY, Wei PL, Liu DZ, Chang YJ. Survivin-mediated therapeutic efficacy of gemcitabine through glucose-regulated protein 78 in hepatocellular carcinoma. Ann Surg Oncol 2012; 19:2744-52. [PMID: 22258814 DOI: 10.1245/s10434-011-2188-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Survivin is an antiapoptotic molecule that is widely expressed in cancers, including hepatocellular carcinoma (HCC). Survivin has become a general therapeutic target for cancers because of its selective overexpression in a majority of tumors. However, little is known regarding the effect of survivin expression in combination with gemcitabine on HCC. METHODS We generated survivin knockdown cells (survivin-KD) via a short interfering RNA (siRNA) technique. The antiproliferation effects of gemcitabine were determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) assay, and cell cycle evaluation. RESULTS According to the MTT assay, we found that survivin-KD cells were more sensitive than parental cells and scrambled control cells to gemcitabine treatment. The apoptotic cell population increased in survivin-KD cells that were treated with gemcitabine in comparison to scrambled control cells, as observed by the cell cycle distribution and TUNEL assays. We found that survivin knockdown resulted in a reduction of glucose-regulated protein 78 (GRP78), which may be responsible for the observed increased survivin-KD cell sensitivity to gemcitabine. CONCLUSIONS We conclude that survivin knockdown may contribute to a therapeutic effect of gemcitabine through GRP78 on HCC cells.
Collapse
Affiliation(s)
- Chin-Sheng Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hung CS, Peng YJ, Wei PL, Lee CH, Su HY, Ho YS, Lin SY, Wu CH, Chang YJ. The alpha9 Nicotinic Acetylcholine Receptor is the Key Mediator in Nicotine-enhanced Cancer Metastasis in Breast Cancer Cells. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.jecm.2011.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Wang W, Chin-Sheng H, Kuo LJ, Wei PL, Lien YC, Lin FY, Liu HH, Ho YS, Wu CH, Chang YJ. NNK enhances cell migration through α7-nicotinic acetylcholine receptor accompanied by increased of fibronectin expression in gastric cancer. Ann Surg Oncol 2011; 19 Suppl 3:S580-8. [PMID: 21969082 DOI: 10.1245/s10434-011-2064-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND In this study, we intended to dissect the mechanism of 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-enhanced migration of gastric cancer. Smoking has been defined as a risk factor for gastric cancer. Tobacco-specific carcinogen, NNK, was reported to enhance cancer progression in gastric cancer. Currently, metastasis is the major issue for clinical cancer therapy, but the influence of NNK on the migration of gastric cancer remains to be determined. METHODS The expression of nicotinic receptor in gastric cancer cells was identified by real-time polymerase chain reaction and Western blotting. The influence of NNK on migration of gastric cancer cells was evaluated by the transwell migration assay system. Receptor-mediated migration was studied by both inhibitor and small interfering RNA. RESULTS Alpha7 nicotinic acetylcholine receptor, alpha7-nicotinic acetylcholine receptor (nAChR), was identified higher than alpha9-nAChR in gastric cancer cell lines, AGS cells. NNK enhanced significantly gastric cancer cell migration in transwell assay. We used inhibitor and siRNA to demonstrate that alpha7-nAChR mediated NNK-enhanced gastric cancer cell migration and upregulation of fibronectin were involved in NNK-enhanced migration of gastric cancer cells. Finally, we found that silenced fibronectin expression level inhibited the migratory ability in AGS cells. CONCLUSIONS NNK enhanced gastric cancer metastasis through alpha7-nAChR and fibronectin-one of the hallmarks of epithelial mesenchymal transition.
Collapse
Affiliation(s)
- Weu Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|