1
|
Kodama K, Obata M, Hirose T. Enantioseparation via Chiral Supramolecular Gels Comprising Ambidextrous Gelators Based on β-Peptide-type Primary Amines. Chempluschem 2024; 89:e202400021. [PMID: 38445837 DOI: 10.1002/cplu.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
While β-peptides have been paid attention due to their diverse secondary structures, their application to the design of low-molecular-weight gelators (LMWGs) is less explored. In this work, chiral cyclic β-amino acid-based β-peptides were developed as ambidextrous LMWGs, wherein multiple hydrogen bonds between the amide moieties led to high gelation ability. Their molecular assembly was elucidated using spectroscopies, microscopy, and X-ray analysis. Further, the supramolecular gel was used as a platform for the enantioselective extraction of (S)-naproxen from its racemate under optimized conditions. These findings have expanded the utility of β-peptides and shown the potential of supramolecular gels as a distinct dynamic medium for enantiomer separation.
Collapse
Affiliation(s)
- Koichi Kodama
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Masato Obata
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Takuji Hirose
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
2
|
Kakehashi R, Tokai N, Nakagawa M, Kawasaki K, Horiuchi S, Yamamoto A. Amidoamine Oxide Surfactants as Low-Molecular-Weight Hydrogelators: Effect of Methylene Chain Length on Aggregate Structure and Rheological Behavior. Gels 2023; 9:gels9030261. [PMID: 36975709 PMCID: PMC10048289 DOI: 10.3390/gels9030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Rheology control is an important issue in many industrial products such as cosmetics and paints. Recently, low-molecular-weight compounds have attracted considerable attention as thickeners/gelators for various solvents; however, there is still a significant need for molecular design guidelines for industrial applications. Amidoamine oxides (AAOs), which are long-chain alkylamine oxides with three amide groups, are surfactants that act as hydrogelators. Here, we show the relationship between the length of methylene chains at four different locations of AAOs, the aggregate structure, the gelation temperature Tgel, and the viscoelasticity of the formed hydrogels. As seen from the results of electron microscopic observations, the aggregate structure (ribbon-like or rod-like) can be controlled by changing the length of methylene chain in the hydrophobic part, the length of methylene chain between the amide and amine oxide groups, and the lengths of methylene chains between amide groups. Furthermore, hydrogels consisting of rod-like aggregates showed significantly higher viscoelasticity than those consisting of ribbon-like aggregates. In other words, it was shown that the gel viscoelasticity could be controlled by changing the methylene chain lengths at four different locations of the AAO.
Collapse
Affiliation(s)
- Rie Kakehashi
- Surfactant Laboratory, Osaka Research Institute of Industrial Science and Technology, Osaka 536-8553, Japan
| | - Naoji Tokai
- Surfactant Laboratory, Osaka Research Institute of Industrial Science and Technology, Osaka 536-8553, Japan
| | - Makoto Nakagawa
- Surfactant Laboratory, Osaka Research Institute of Industrial Science and Technology, Osaka 536-8553, Japan
| | - Kazunori Kawasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan
| | - Shin Horiuchi
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Atsushi Yamamoto
- Faculty of Environmental Studies, Tottori University of Environmental Studies, Tottori 689-1111, Japan
| |
Collapse
|
3
|
Tominaga Y, Kanemitsu S, Yamamoto S, Kimura T, Nishida Y, Morita K, Maruyama T. Thermally irreversible supramolecular hydrogels record thermal history. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Ghanbari E, Krishnamurthy A, Picken SJ, Klop EA, Bannenberg LJ, van Esch J. Molecular Arrangement and Thermal Properties of Bisamide Organogelators in the Solid State. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15782-15795. [PMID: 36417899 PMCID: PMC9776524 DOI: 10.1021/acs.langmuir.2c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The crystal structure and phase behavior of bisamide gelators are investigated using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and molecular modeling, aiming at a better understanding of bisamide gel systems. A homologous series of bisamide model compounds (nBAs) was prepared with the (CH2)n spacer between the two amide groups, where n varies from 5 to 10, and with two symmetric C17 alkyl tails. With increasing spacer length, the thermal properties show a clear odd-even effect, which was characterized using our newly developed analytical model DSCN(T). Using XRD, all studied nBA compounds turn out to have a layer-like structure. The XRD patterns of the odd BA series are very similar but show marked differences compared to the XRD patterns of the even series, which in turn are very similar. The odd-membered 5BA molecules are nearly perpendicular to the stacked layers, as described by a pseudo-orthorhombic unit cell, whereas the even-membered 6BA molecules are tilted at an angle with respect to the layer normal, as described by a triclinic unit cell. In both the odd and even series, the inter-layer interaction is the van der Waals interaction. The 6BA hydrogen bonding scheme is very similar to that of Nylon 6,10 α, unlike the 5BA H bonding scheme. The packing of the C17 alkyl tails in the 5BA layers is similar to polyethylene, and unlike 6BA. The slightly higher crystalline density of 6BA (1.038 g cm-3) as compared to 5BA (1.018 g cm-3) explains the higher melting point, higher enthalpy of fusion, and the observed shift of N-H stretch bands to higher wave numbers. The structural differences observed between the odd and even BA series reflect the different structure-directing effect of parallel versus antiparallel amide hydrogen bonding motifs. These differences underlie the observed odd-even effect in the thermal properties of nBA compounds.
Collapse
Affiliation(s)
- Elmira Ghanbari
- Delft
University of Technology, Delft2629 HZ, The Netherlands
| | | | | | - Enno A. Klop
- Teijin
Aramid Research and Innovation Centre, P.O. Box 5153, 6802 EDArnhem, The Netherlands
| | | | - Jan van Esch
- Delft
University of Technology, Delft2629 HZ, The Netherlands
| |
Collapse
|
5
|
Li P, Malveau C, Zhu XX, Wuest JD. Using Nuclear Magnetic Resonance Spectroscopy to Probe Hydrogels Formed by Sodium Deoxycholate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5111-5118. [PMID: 34730971 DOI: 10.1021/acs.langmuir.1c02175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogels of bile acids and their salts are promising materials for drug delivery, cellular immobilization, and other applications. However, these hydrogels are poorly understood at the molecular level, and further study is needed to allow improved materials to be created by design. We have used NMR spectroscopy to probe hydrogels formed from mixtures of formic acid and sodium deoxycholate (NaDC), a common bile acid salt. By assaying the ratio of deoxycholate molecules that are immobilized as part of the fibrillar network of the hydrogels and those that can diffuse, we have found that 65% remain free under typical conditions. The network appears to be composed of both the acid and salt forms of deoxycholate, possibly because a degree of charge inhibits excessive aggregation and precipitation of the fibrils. Spin-spin relaxation times provided a molecular-level estimate of the temperature of gel-sol transition (42 °C), which is virtually the same as the value determined by analyzing macroscopic parameters. Saturation transfer difference (STD) NMR spectroscopy established that formic acid, which is present mainly as formate, is not immobilized as part of the gelating network. In contrast, HDO interacts with the network, which presumably has a surface with exposed hydrophilic groups that form hydrogen bonds with water. Moreover, the STD NMR experiments revealed that the network is a dynamic entity, with molecules of deoxycholate associating and dissociating reversibly. This exchange appears to occur preferentially by contact of the hydrophobic edges or faces of free molecules of deoxycholate with those of molecules immobilized as components of the network. In addition, DOSY experiments revealed that gelation has little effect on the diffusion of free NaDC and HDO.
Collapse
Affiliation(s)
- Puzhen Li
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3 Canada
| | - Cédric Malveau
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3 Canada
| | - X X Zhu
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3 Canada
| | - James D Wuest
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3 Canada
| |
Collapse
|
6
|
Park JH, Kim MH, Seo ML, Lee JH, Jung JH. In Situ Supramolecular Gel Formed by Cyclohexane Diamine with Aldehyde Derivative. Polymers (Basel) 2022; 14:400. [PMID: 35160389 PMCID: PMC8840383 DOI: 10.3390/polym14030400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Low-molecular-weight gels have great potential for use in a variety of fields, including petrochemicals, healthcare, and tissue engineering. These supramolecular gels are frequently metastable, implying that their properties are kinetically controlled to some extent. Here, we report on the in situ supramolecular gel formation by mixing 1,3-cyclohexane diamine (1) and isocyanate derivative (2) without any catalysis at room temperature in various organic solvents. A mixture of building blocks 1 and 2 in various organic solvents, dichloromethane, tetrahydrofuran, chloroform, toluene, and 1,4-dioxane, resulted in the stable formation of supramolecular gel at room temperature within 60-100 s. This gel formation was caused by the generation of urea moieties, which allows for the formation of intermolecular hydrogen-bonding interactions via reactions 1 and 2. In situ supramolecular gels demonstrated a typical entangled fiber structure with a width of 600 nm and a length of several hundred μm. In addition, the supramolecular gels were thermally reversible by heating and cooling. The viscoelastic properties of supramolecular gels in strain and frequency sweets were enhanced by increasing the concentration of a mixed 1 and 2. Furthermore, the supramolecular gels displayed a thixotropic effect, indicating a thermally reversible gel.
Collapse
Affiliation(s)
- Jae-Hyeon Park
- Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.P.); (M.-H.K.)
| | - Min-Hye Kim
- Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.P.); (M.-H.K.)
| | - Moo-Lyong Seo
- Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.P.); (M.-H.K.)
| | - Ji-Ha Lee
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Jong-Hwa Jung
- Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.P.); (M.-H.K.)
| |
Collapse
|
7
|
Yamamoto S, Nishimura K, Morita K, Kanemitsu S, Nishida Y, Morimoto T, Aoi T, Tamura A, Maruyama T. Microenvironment pH-Induced Selective Cell Death for Potential Cancer Therapy Using Nanofibrous Self-Assembly of a Peptide Amphiphile. Biomacromolecules 2021; 22:2524-2531. [PMID: 33960189 DOI: 10.1021/acs.biomac.1c00267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembly of synthetic molecules has been drawing broad attention as a novel emerging approach in drug discovery. Here, we report selective cell death induced by a novel peptide amphiphile that self-assembles to form entangled nanofibers (hydrogel) based on intracellular pH (pHi). We found that a palmitoylated hexapeptide (C16-VVAEEE) formed a hydrogel below pH 7. The formation of the nanofibrous self-assembly was responsive to a small pH change around pH 7. The cytotoxicity of C16-VVAEEE was correlated with pHi of cells. Microscope observation demonstrated the self-assembly of C16-VVAEEE inside HEK293 cells. In vivo experiments revealed that the transcutaneous administration of C16-VVAEEE showed remarkable anti-tumor activity. This study proposes that distinct microenvironment inside living cells can be used as a trigger for the intracellular self-assembly of a peptide amphiphile, which provide a new clue to drug discovery.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Kanon Nishimura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Sayuki Kanemitsu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Yuki Nishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tomoyuki Morimoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
| | - Atsuo Tamura
- Graduate School of Science, Department of Chemistry, Kobe University, Nada, Kobe 657-8501, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
8
|
Quigley E, Johnson J, Liyanage W, Nilsson BL. Impact of gelation method on thixotropic properties of phenylalanine-derived supramolecular hydrogels. SOFT MATTER 2020; 16:10158-10168. [PMID: 33035281 DOI: 10.1039/d0sm01217c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supramolecular hydrogels formed by noncovalent self-assembly of low molecular weight (LMW) agents are promising next-generation biomaterials. Thixotropic shear response and mechanical stability are two emergent properties of hydrogels that are critical for biomedical applications including drug delivery and tissue engineering in which injection of the hydrogel will be necessary. Herein, we demonstrate that the emergent thixotropic properties of supramolecular phenylalanine-derived hydrogels are dependent on the conditions in which they are formulated. Specifically, hydrogels formed from fluorenylmethoxycarbonyl (Fmoc) modified phenylalanine derivatives, 3-fluorophenylalanine (Fmoc-3F-Phe) and pentafluorophenylalanine (Fmoc-F5-Phe), were characterized as a function of gelation conditions to examine how shear response and mechanical stability properties correlate to mode of gelation. Two distinct methods of gelation were compared. First, spontaneous self-assembly and gelation was triggered by a solvent exchange method in which a concentrated solution of the gelator in dimethylsulfoxide was diluted in water. Second, gelation was promoted by dissolution of the gelator in water at basic pH followed by gradual pH adjustment from basic to mildly acidic by the hydrolysis of glucono-delta-lactone. Hydrogels formed under solvent exchange conditions were mechanically unstable and poorly shear-responsive whereas hydrogels formed by gradual acidification were temporally stable and had highly shear-responsive viscoelastic character. These studies confirm that gelation environment and mechanism have a significant influence on the emergent properties of supramolecular hydrogels and offer insight into how gelation conditions can be used to tune hydrogel properties for specific applications.
Collapse
Affiliation(s)
- Elena Quigley
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | | | | | | |
Collapse
|
9
|
Maruyama T, Restu WK. Intracellular self-assembly of supramolecular gelators to selectively kill cells of interest. Polym J 2020. [DOI: 10.1038/s41428-020-0335-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Kajiki T, Komba S, Iwaura R. Supramolecular Organogelation Directed by Weak Noncovalent Interactions in Palmitoylated 1,5-Anhydro-d-Glucitol Derivatives. Chempluschem 2020; 85:701-710. [PMID: 32267103 DOI: 10.1002/cplu.202000147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Indexed: 01/11/2023]
Abstract
We synthesized a series of novel alicyclic compounds by modifying 1,5-anhydro-d-glucitol with two to four palmitoyl chains, and we explored their self-assembly and gelation behaviors in paraffin. The obtained organogels were studied by field emission scanning electron microscopy, atomic force microscopy, variable-temperature Fourier transform IR spectroscopy, X-ray diffraction analysis, polarized optical microscopy, and transmission spectroscopy. While all the palmitoylated derivatives spontaneously formed fibrous networks and gelated the paraffin, an acetylated derivative of 1,5-anhydro-d-glucitol did not gelatinize the solvent, thus indicating the importance of aliphatic chains for gelation. Interestingly, α- and β- d-glucopyranose with five palmitoyl chains neither gelatinized the solvent nor formed fibrous networks, thus suggesting that the absence of C-1 substitution in 1,5-anhydro-d-glucitol is important for gelation. Fourier transform IR spectroscopy suggested that the formation of weak hydrogen bonds between the carbonyl groups and the C-H groups was the driving force for formation of the supramolecular fibers and for gelation of the solvent.
Collapse
Affiliation(s)
- Takahito Kajiki
- SUNUS CO., LTD., 3-20 Nan-ei, Kagoshima, Kagoshima, 891-0196, Japan
| | - Shiro Komba
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Rika Iwaura
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| |
Collapse
|
11
|
|
12
|
Safiullina AS, Ziganshina SA, Lyadov NM, Klimovitskii AE, Ziganshin MA, Gorbatchuk VV. Role of water in the formation of unusual organogels with cyclo(leucyl-leucyl). SOFT MATTER 2019; 15:3595-3606. [PMID: 30964502 DOI: 10.1039/c9sm00465c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The key role of water in the formation of cyclo(leucyl-leucyl) organogels was demonstrated. The conditions required for preparation of previously unknown gels with aliphatic hydrocarbons at room temperature were determined. Cyclo(leucyl-leucyl) self-assembles to form different structures depending on the medium used. The molecular organization of gels was studied by the methods of microscopy, spectroscopy and X-ray powder diffractometry. The organogel of cyclo(leucyl-leucyl) can reversibly change volume during the heating/cooling cycle. We showed the possibility of practical application of cyclo(leucyl-leucyl) for water purification. The results obtained give a new insight into the mechanism of gelation with cyclo(dipeptide)-based low-molecular-weight gelators and may be useful for the preparation of new physical gels.
Collapse
Affiliation(s)
- Aisylu S Safiullina
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya ul. 18, Kazan, 420008, Russia.
| | | | | | | | | | | |
Collapse
|
13
|
Kodama K, Kawamata R, Hirose T. Synthesis and evaluation of chiral β-amino acid-based low-molecular-weight organogelators possessing a methyl/trifluoromethyl side chain. NEW J CHEM 2019. [DOI: 10.1039/c8nj05668d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Impacts of side-chains and chirality of organogelators derived from β-amino acids are described with their supramolecular structures.
Collapse
Affiliation(s)
- Koichi Kodama
- Department of Applied Chemistry
- Graduate School of Science and Engineering
- Saitama University
- Saitama
- Japan
| | - Ryuta Kawamata
- Department of Applied Chemistry
- Graduate School of Science and Engineering
- Saitama University
- Saitama
- Japan
| | - Takuji Hirose
- Department of Applied Chemistry
- Graduate School of Science and Engineering
- Saitama University
- Saitama
- Japan
| |
Collapse
|
14
|
Zafrani Y, Kaizerman D, Hadar M, Bigan N, Granot E, Ghosh M, Adler-Abramovich L, Patolsky F, Cohen Y. Pillararene-Based Two-Component Thixotropic Supramolecular Organogels: Complementarity and Multivalency as Prominent Motifs. Chemistry 2018; 24:15750-15755. [PMID: 29745993 DOI: 10.1002/chem.201801418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Indexed: 02/05/2023]
Abstract
Rationally designed two-component supramolecular organogels based on multiple chemical interactions between percarboxylato- and peramino-pillararenes are described. Mixing low concentration solutions (<1 % w/v) of decacarboxylato-pillar[5]arene (1) with decaamino-pillar[5]arenes (2 b-d) affords, rapidly and without heating, organogels displaying an exceptional combination of properties. These supramolecular organogels, the characteristics of which are tunable, were found to be thixotropic and thermally stable, with Tgel values in some cases exceeding the boiling point of the embedded solvent. It is demonstrated that both structural complementarity and multivalency are important determinants in the gelation process of these attractive soft materials.
Collapse
Affiliation(s)
- Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.,Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 740000, Israel
| | - Dana Kaizerman
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Nitzan Bigan
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Eran Granot
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Moumita Ghosh
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Fernando Patolsky
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
15
|
Komiyama M, Mori T, Ariga K. Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180084] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Makoto Komiyama
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577, Japan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Taizo Mori
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
16
|
Sasaki J, Suzuki M, Hanabusa K. Detection of Amine Vapors using Luminescent Xerogels from Supramolecular Metal-Containing Gelator. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Junpei Sasaki
- Faculty of Textile Science & Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Masahiro Suzuki
- Interdisciplinary Graduate School of Science & Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Kenji Hanabusa
- Interdisciplinary Graduate School of Science & Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
- Division of Frontier Fibers, Institute for Fiber Engineering, ICCER, Shinshu University, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
17
|
Sawada H, Yamanaka M. Synthesis of a Bis-Urea Dimer and Its Effects on the Physical Properties of an Amphiphilic Tris-Urea Supramolecular Hydrogel. Chem Asian J 2018; 13:929-933. [PMID: 29512335 DOI: 10.1002/asia.201800217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/01/2018] [Indexed: 12/20/2022]
Abstract
The successful development of stiff supramolecular gels is an important goal toward their practical application. One approach to stiffen supramolecular gels is to introduce covalent cross-links. The bis-urea dimer 2, having a structure similar to that of the low-molecular-weight gelator 1, was synthesized. Supramolecular hydrogels were formed from mixtures of 1 and 2 in appropriate ratios, with 2 acting as a covalent cross-linker to connect the fibrous aggregates formed by the self-assembly of 1. The introduction of these covalent cross-links greatly influenced the dynamic viscoelasticity of the supramolecular hydrogels. In the supramolecular hydrogel of 1 mixed with 5 % 2, the storage modulus was 1.35 times higher than that of the supramolecular hydrogel of 1 alone, and the crossover strain was extended from 5 % to over 20 %. The supramolecular hydrogel of 1 and 2 was free-standing and supported 13 times its own weight.
Collapse
Affiliation(s)
- Hiroki Sawada
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Masamichi Yamanaka
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| |
Collapse
|
18
|
Blasco D, López-de-Luzuriaga JM, Monge M, Olmos ME, Pascual D, Rodríguez-Castillo M. Cooperative Au(I)···Au(I) Interactions and Hydrogen Bonding as Origin of a Luminescent Adeninate Hydrogel Formed by Ultrathin Molecular Nanowires. Inorg Chem 2018; 57:3805-3817. [DOI: 10.1021/acs.inorgchem.7b03131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Blasco
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química (CISQ), Complejo Científico Tecnológico, 26004 Logroño, Spain
| | - José M. López-de-Luzuriaga
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química (CISQ), Complejo Científico Tecnológico, 26004 Logroño, Spain
| | - Miguel Monge
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química (CISQ), Complejo Científico Tecnológico, 26004 Logroño, Spain
| | - M. Elena Olmos
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química (CISQ), Complejo Científico Tecnológico, 26004 Logroño, Spain
| | - David Pascual
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química (CISQ), Complejo Científico Tecnológico, 26004 Logroño, Spain
| | - María Rodríguez-Castillo
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química (CISQ), Complejo Científico Tecnológico, 26004 Logroño, Spain
| |
Collapse
|
19
|
Liu M, Ouyang G, Niu D, Sang Y. Supramolecular gelatons: towards the design of molecular gels. Org Chem Front 2018. [DOI: 10.1039/c8qo00620b] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The concept of supramolecular gelatons for the design of gels was proposed and described.
Collapse
Affiliation(s)
- Minghua Liu
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Dian Niu
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yutao Sang
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
20
|
Ariga K, Mori T, Shrestha LK. Nanoarchitectonics from Molecular Units to Living-Creature-Like Motifs. CHEM REC 2017; 18:676-695. [PMID: 29205796 DOI: 10.1002/tcr.201700070] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
Important points for the fabrication of functional materials are the creation of nanoscale/molecular-scale units and architecting them into functional materials and systems. Recently, a new conceptual paradigm, nanoarchitectonics, has been proposed to combine nanotechnology and other methodologies including supramolecular chemistry, self-assembly and self-organization to satisfy major features of nanoscience and promote the creation of functional materials and systems. In this account article, our recent research results in materials development based on the nanoarchitectonics concept are summarized in two stories, (i) nanoarchitectonics from fullerenes as the simplest nano-units and (ii) dimension-dependent nanoarchitectonics from various structural units. The former demonstrates creativity of the nanoarchitectonics concept only with simple construction stuffs on materials fabrications, and a wide range of material applicability for the nanoarchitectonics strategy is realized in the latter ones.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-0827, Japan
| | - Taizo Mori
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Lok Kumar Shrestha
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
21
|
Matsumoto Y, Shundo A, Ohno M, Tsuruzoe N, Goto M, Tanaka K. Evolution of heterogeneity accompanying sol-gel transitions in a supramolecular hydrogel. SOFT MATTER 2017; 13:7433-7440. [PMID: 28967654 DOI: 10.1039/c7sm01612c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When a peptide amphiphile is dispersed in water, it self-assembles into a fibrous network, leading to a supramolecular hydrogel. When the gel is physically disrupted by shaking, it transforms into a sol state. After aging at room temperature for a while, it spontaneously returns to the gel state, called sol-gel transition. However, repeating the sol-gel transition often causes a change in the rheological properties of the gel. To gain a better understanding of the sol-gel transition and its reversibility, we herein examined the thermal motion of probe particles at different locations in a supramolecular hydrogel. The sol obtained by shaking the gel was heterogeneous in terms of the rheological properties and the extent decreased with increasing aging time. This time course of heterogeneity, or homogeneity, which corresponded to the sol-to-gel transition, was observed for the 1st cycle. However, this was not the case for the 2nd and 3rd cycles; the heterogeneity was preserved even after aging. Fourier-transform infrared spectroscopy, small-angle X-ray scattering, and atomic force and confocal laser scanning microscopies revealed that, although the molecular aggregation states of amphiphiles both in the gel and sol remained unchanged with the cycles, the fibril density diversified to high and low density regions even after aging. The tracking of particles with different sizes indicated that the partial mesh size in the high density region and the characteristic length scale of the density fluctuation were smaller than 50 nm and 6 μm, respectively.
Collapse
Affiliation(s)
- Yuji Matsumoto
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Komiyama M, Yoshimoto K, Sisido M, Ariga K. Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170156] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
| | - Masahiko Sisido
- Professor Emeritus, Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827
| |
Collapse
|
23
|
Wang L, Hui X, Geng H, Ye L, Zhang AY, Shao Z, Feng ZG. Synthesis and gelation capability of mono- and disubstituted cyclo(L-Glu-L-Glu) derivatives with tyramine, tyrosine and phenylalanine. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4120-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Suzuki M, Tanaka K, Kato Y, Hanabusa K. Metal Oxide/TiO₂ Hybrid Nanotubes Fabricated through the Organogel Route. Gels 2017; 3:E24. [PMID: 30920521 PMCID: PMC6318635 DOI: 10.3390/gels3030024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
Titanium dioxide (TiO₂) nanotube and its hybrid nanotubes (with various metal oxides such as Ta₂O₅, Nb₂O₅, ZrO2, and SiO₂) were fabricated by the sol-gel polymerization in the ethanol gels formed by simple l-lysine-based organogelator. The self-assembled nanofibers (gel fibers) formed by the gelator functioned as a template. The different calcination temperatures gave TiO₂ nanotubes with various crystalline structures; e.g., anatase TiO₂ nanotube was obtained by calcination at 600 °C, and rutile TiO₂ nanotube was fabricated at a calcination temperature of 750 °C. In the metal oxide/TiO₂ hybrid nanotubes, the metal oxide species were uniformly dispersed in the TiO₂ nanotube, and the percent content of metal oxide species was found to correspond closely to the feed ratio of the raw materials. This result indicated that the composition ratio of hybrid nanotubes was controllable by the feed ratio of the raw materials. It was found that the metal oxide species inhibited the crystalline phase transition of TiO₂ from anatase to rutile. Furthermore, the success of the hybridization of other metal oxides (except for TiO₂) indicated the usefulness of the organogel route as one of the fabrication methods of metal oxide nanotubes.
Collapse
Affiliation(s)
- Masahiro Suzuki
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan.
| | - Keita Tanaka
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan.
| | - Yukie Kato
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan.
| | - Kenji Hanabusa
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan.
| |
Collapse
|
25
|
Rossi B, Paciaroni A, Venuti V, Fadda GC, Melone L, Punta C, Crupi V, Majolino D, Mele A. SANS investigation of water adsorption in tunable cyclodextrin-based polymeric hydrogels. Phys Chem Chem Phys 2017; 19:6022-6029. [DOI: 10.1039/c7cp00331e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A quantitative law for the hydration-dependence of pore size in cyclodextrin-based hydrogels is provided by SANS experiments.
Collapse
Affiliation(s)
- B. Rossi
- Elettra - Sincrotrone Trieste
- 34149 Trieste
- Italy
- Department of Physics University of Trento
- 38123 Povo
| | - A. Paciaroni
- Department of Physics
- University of Perugia
- 06123 Perugia
- Italy
| | - V. Venuti
- Department of Physics and Earth Sciences
- University of Messina
- 98166 Messina
- Italy
| | - G. C. Fadda
- Laboratoire Léon Brillouin (CEA/CNRS)
- CEA Saclay
- 91191 Gif-sur-Yvette Cedex
- France
| | - L. Melone
- Department of Chemistry
- Materials and Chemical Engineering “G. Natta”
- Politecnico di Milano
- Piazza L. da Vinci 32
- Italy
| | - C. Punta
- Department of Chemistry
- Materials and Chemical Engineering “G. Natta”
- Politecnico di Milano
- Piazza L. da Vinci 32
- Italy
| | - V. Crupi
- Department of Physics and Earth Sciences
- University of Messina
- 98166 Messina
- Italy
| | - D. Majolino
- Department of Physics and Earth Sciences
- University of Messina
- 98166 Messina
- Italy
| | - A. Mele
- Department of Chemistry
- Materials and Chemical Engineering “G. Natta”
- Politecnico di Milano
- Piazza L. da Vinci 32
- Italy
| |
Collapse
|
26
|
Seki A, Funatsu Y, Funahashi M. Anomalous photovoltaic effect based on molecular chirality: influence of enantiomeric purity on the photocurrent response in π-conjugated ferroelectric liquid crystals. Phys Chem Chem Phys 2017; 19:16446-16455. [DOI: 10.1039/c7cp02624b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photovoltaic effect based on molecular chirality was observed in π-conjugated ferroelectric liquid crystals.
Collapse
Affiliation(s)
- Atsushi Seki
- Department of Advanced Materials Science
- Faculty of Engineering
- Kagawa University
- Takamatsu
- Japan
| | - Yusuke Funatsu
- Department of Advanced Materials Science
- Faculty of Engineering
- Kagawa University
- Takamatsu
- Japan
| | - Masahiro Funahashi
- Department of Advanced Materials Science
- Faculty of Engineering
- Kagawa University
- Takamatsu
- Japan
| |
Collapse
|
27
|
Ariga K, Mori T, Nakanishi W, Hill JP. Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami. Phys Chem Chem Phys 2017; 19:23658-23676. [DOI: 10.1039/c7cp02280h] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Comparisons of science and technology between these solid and liquid surfaces would be a good navigation for current-to-future developments.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
- Graduate School of Frontier Science
| | - Taizo Mori
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Waka Nakanishi
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Jonathan P. Hill
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| |
Collapse
|
28
|
Hanabusa K, Takata S, Fujisaki M, Nomura Y, Suzuki M. Fluorescent Gelators for Detection of Explosives. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|