1
|
Akyol B, Çokluk EM, Ayhan MM, Tuncel Kostakoğlu S, Gürek AG. Tuning the Photophysical Properties of BODIPY Dyes and Studying Their Self-Assembly via Hydrogen Bonding. ACS OMEGA 2025; 10:1716-1726. [PMID: 39829528 PMCID: PMC11740828 DOI: 10.1021/acsomega.4c09745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Here, BODIPY derivatives were functionalized with barbituric acid, which has multiple hydrogen bonding abilities that are directional, to have highly ordered hydrogen bond-mediated self-assembled structures to tune BODIPY's photophysical properties. The synthesis of barbituric acid-functionalized BODIPY derivatives via Vilsmeier and Knoevenagel reactions was achieved, and the resulting compounds were characterized with FT-IR, 1H NMR, 13C NMR spectroscopy, and mass spectrometry. Hydrogen bond-mediated self-assembled structures were investigated through UV-vis and fluorescence spectrophotometry, 1H NMR spectroscopy, and a dynamic light scattering method in solution. Moreover, SEM, HR-TEM, and PXRD were used to study the self-assembly of compounds in bulk.
Collapse
Affiliation(s)
- Büşra Akyol
- Department of Chemistry Gebze Technical University, Gebze Kocaeli 41400, Turkey
| | - Eylül Merve Çokluk
- Department of Chemistry Gebze Technical University, Gebze Kocaeli 41400, Turkey
| | - Mehmet Menaf Ayhan
- Department of Chemistry Gebze Technical University, Gebze Kocaeli 41400, Turkey
| | | | - Ayşe Gül Gürek
- Department of Chemistry Gebze Technical University, Gebze Kocaeli 41400, Turkey
| |
Collapse
|
2
|
Sherudillo AS, Kalyagin AA, Antina LA, Berezin MB, Antina EV. Aggregation Behavior of CHR-bis(BODIPY) Bichromophores in THF-water Mixtures: Effect of Linking Positions and Aryl-spacer Substituents. J Fluoresc 2024:10.1007/s10895-024-03980-7. [PMID: 39354188 DOI: 10.1007/s10895-024-03980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
Aggregation-caused quenching effect (ACQ) greatly limits the practical use of many organic luminophores in biomedicine, optics and electronics. The comparative analysis of aggregation characteristics of CHR-bis(BODIPY) bichromophores 1-6 with R = H, Ph, MeOPh and various linking positions (α,α-; α,β-; β,β- and β',β'-) in THF-water mixtures with different water fractions or dye concentrations is first presented in this article. Both the linking style 1-4 and the arylation of the spacer with phenyl (Ph-) 5 or methoxyphenyl (MeOPh-) 6 substituents strongly affect the formation of luminophore aggregated forms in binary THF-water mixtures. The α,α-and β,β-isomers (1 and 3) form non-fluorescent H-type aggregates in THF-water mixtures with fw > 70%. The α,β-; β',β'-isomers (2, 4) and the MeOPh-substituted β,β-bichromophore 6 are characterized by predominant formation fluorescent aggregates. All bichromophores are characterized by the presence of residual amounts of non-aggregated forms in binary mixtures with maximum water content. The results are useful for controlling the aggregation behavior and spectral characteristics of CHR-bis(BODIPY) bichromophores in aqueous-organic media, which is important in the development of biomarkers and PDT agents.
Collapse
Affiliation(s)
- Artem S Sherudillo
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045, Ivanovo, Russia
| | - Alexander A Kalyagin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045, Ivanovo, Russia
| | - Lubov A Antina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045, Ivanovo, Russia.
| | - Mikhail B Berezin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045, Ivanovo, Russia
| | - Elena V Antina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045, Ivanovo, Russia
| |
Collapse
|
3
|
Marques BDS, de Andrade KN, Peixoto BP, Dos Santos FM, Pedrosa LF, Fiorot RG, Costa de Souza M. Sequential nucleophilic aromatic substitutions on cyanuric chloride: synthesis of BODIPY derivatives and mechanistic insights. Org Biomol Chem 2024; 22:5987-5998. [PMID: 38989906 DOI: 10.1039/d4ob00683f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Herein we report a study on the sequential substitution of different nucleophiles on cyanuric chloride to obtain potential candidates for metal sensors (5a-c). The set of nucleophiles on the 1,3,5-triazine ring includes a phenolic BODIPY, an aminoalkyl pyridine and aminoalkyl phosphoramidates, each one designed to play a specific role in the final fluoroionophore. Three new triazine triads were synthesized in similar yields: 5a (45%), 5b (43%) and 5c (52%) after a methodical sequential combination of the nucleophiles via thermodependent nucleophilic aromatic substitution of the three chlorine atoms of cyanuric chloride. To ratify the synthetic results we simulated the reaction mechanisms for the different nucleophiles, aiming to address the distinctive orthogonality and temperature control inherent in this process, identifying and providing a sound rationale for any preferential sequence of nucleophiles inserted into the triazine core. According to our experimental and computational analysis (thermo- and kinetic preferences), we have identified the following preferential order for the sequential substitution: p-hydroxybenzaldehyde > 2-(pyridin-2-yl)ethanamine > aminoalkyl phosphoramidate, indicating that all steps follow a single-step process (concerted) in two stages, where nucleophilic addition precedes leaving group dissociation. The Meisenheimer σ-complex was identified as a transition state structure, with insufficient stability to exist as an intermediate. We observed a consistent and progressive increase in barrier height: 2-8 kcal mol-1 for the first step, 9-15 kcal mol-1 for the second step, and >15 kcal mol-1 for the third substitution. These findings align with the experimental observation of thermodependency in the sequential substitution.
Collapse
Affiliation(s)
- Bruno da Silva Marques
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Karine Nascimento de Andrade
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Bárbara Pereira Peixoto
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Fernando Martins Dos Santos
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Leandro Ferreira Pedrosa
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Fluminense, 27213-145, Volta Redonda, RJ, Brazil
| | - Rodolfo Goetze Fiorot
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Marcos Costa de Souza
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| |
Collapse
|
4
|
Veedu RM, Fernández Z, Bäumer N, Albers A, Fernández G. Pathway-dependent supramolecular polymerization by planarity breaking. Chem Sci 2024; 15:10745-10752. [PMID: 39027305 PMCID: PMC11253169 DOI: 10.1039/d4sc02499k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
In controlled supramolecular polymerization, planar π-conjugated scaffolds are commonly used to predictably regulate stacking interactions, with various assembly pathways arising from competing interactions involving side groups. However, the extent to which the nature of the chromophore itself (planar vs. non-planar) affects pathway complexity requires clarification. To address this question, we herein designed a new BOPHY dye 2, where two oppositely oriented BF2 groups induce a disruption of planarity, and compared its supramolecular polymerization in non-polar media with that of a previously reported planar BODIPY 1 bearing identical substituents. The slightly non-planar structure of the BOPHY dye 2, as evident in previously reported X-ray structures, together with the additional out-of-plane BF2 group, allow for more diverse stacking possibilities leading to two fiber-like assemblies (kinetic 2A and thermodynamic 2B), in contrast to the single assembly previously observed for BODIPY 1. The impact of the less rigid, preorganized BOPHY core compared to the planar BODIPY counterpart is also reflected in the stronger tendency of the former to form anisotropic assemblies as a result of more favorable hydrogen bonding arrays. The structural versatility of the BOPHY core ultimately enables two stable packing arrangements: a kinetically controlled antiparallel face-to-face stacking (2A), and a thermodynamically controlled parallel slipped packing (2B) stabilized by (BF2) F⋯H (meso) interactions. Our findings underscore the significance of planarity breaking and out-of-plane substituents on chromophores as design elements in controlled supramolecular polymerization.
Collapse
Affiliation(s)
- Rasitha Manha Veedu
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 Münster 48149 Germany
| | - Zulema Fernández
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 Münster 48149 Germany
| | - Nils Bäumer
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 Münster 48149 Germany
| | - Antonia Albers
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 Münster 48149 Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 Münster 48149 Germany
| |
Collapse
|
5
|
Manha Veedu R, Niemeyer N, Bäumer N, Kartha Kalathil K, Neugebauer J, Fernández G. Sterically Allowed H-type Supramolecular Polymerizations. Angew Chem Int Ed Engl 2023; 62:e202314211. [PMID: 37797248 DOI: 10.1002/anie.202314211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
The functionalization of π-conjugated scaffolds with sterically demanding substituents is a widely used tactic to suppress cofacial (H-type) stacking interactions, which may even inhibit self-assembly. Contrary to expectations, we demonstrate herein that increasing steric effects can result in an enhanced thermodynamic stability of H-type supramolecular polymers. In our approach, we have investigated two boron dipyrromethene (BODIPY) dyes with bulky phenyl (2) and mesityl (3) meso-substituents and compared their self-assembly in nonpolar media with that of a parent meso-methyl BODIPY 1 lacking bulky groups. While the enhanced steric demand induces pathway complexity, the superior thermodynamic stability of the H-type pathways can be rationalized in terms of additional enthalpic gain arising from intermolecular C-H⋅⋅⋅F-B interactions of the orthogonally arranged aromatic substituents, which overrule their inherent steric demand. Our findings underline the importance of balancing competing non-covalent interactions in self-assembly.
Collapse
Affiliation(s)
- Rasitha Manha Veedu
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Niklas Niemeyer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
- Universität Münster, Center for Multiscale Theory and Computation, Corrensstraße 36, 48149, Münster, Germany
| | - Nils Bäumer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Krishnan Kartha Kalathil
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills, Kottayam, Kerala-686560, India
| | - Johannes Neugebauer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
- Universität Münster, Center for Multiscale Theory and Computation, Corrensstraße 36, 48149, Münster, Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
6
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
7
|
Matarranz B, Díaz‐Cabrera S, Ghosh G, Carreira‐Barral I, Soberats B, García‐Valverde M, Quesada R, Fernández G. Anticooperative Supramolecular Oligomerization Mediated by V‐Shaped Monomer Design and Unconventional Hydrogen Bonds. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202218555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Beatriz Matarranz
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Sandra Díaz‐Cabrera
- Departamento de Química Facultad de Ciencias Universidad de Burgos 09001 Burgos Spain
| | - Goutam Ghosh
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | | | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears Cra. Valldemossa, Km. 7.5 07122 Palma de Mallorca Spain
| | - María García‐Valverde
- Departamento de Química Facultad de Ciencias Universidad de Burgos 09001 Burgos Spain
| | - Roberto Quesada
- Departamento de Química Facultad de Ciencias Universidad de Burgos 09001 Burgos Spain
| | - Gustavo Fernández
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
8
|
Matarranz B, Díaz-Cabrera S, Ghosh G, Carreira-Barral I, Soberats B, García-Valverde M, Quesada R, Fernández G. Anticooperative Supramolecular Oligomerization Mediated by V-Shaped Monomer Design and Unconventional Hydrogen Bonds. Angew Chem Int Ed Engl 2023; 62:e202218555. [PMID: 36828774 DOI: 10.1002/anie.202218555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
After more than three decades of extensive investigations on supramolecular polymers, strategies for self-limiting growth still remain challenging. Herein, we exploit a new V-shaped monomer design to achieve anticooperatively formed oligomers with superior robustness and high luminescence. In toluene, the monomer-oligomer equilibrium is shifted to the monomer side, enabling the elucidation of the molecular packing modes and the resulting (weak) anticooperativity. Steric effects associated with an antiparallel staircase organization of the dyes are proposed to outcompete aromatic and unconventional B-F⋅⋅⋅H-N/C interactions, restricting the growth at the stage of oligomers. In methylcyclohexane (MCH), the packing modes and the anticooperativity are preserved; however, pronounced solvophobic and chain-enwrapping effects lead to thermally ultrastable oligomers. Our results shed light on understanding anticooperative effects and restricted growth in self-assembly.
Collapse
Affiliation(s)
- Beatriz Matarranz
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Sandra Díaz-Cabrera
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Goutam Ghosh
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Israel Carreira-Barral
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears Cra., Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Gustavo Fernández
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
9
|
Shivran N, Koiry SP, Kushwah N, Chauhan AK, Aswal DK, Chattopadhyay S, Mula S. Effect of Alkyl Chain Length on Current‐Voltage Characteristics of BODIPY Molecules Deposited on Si(n
++
) Substrates. ChemistrySelect 2022. [DOI: 10.1002/slct.202203711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Neelam Shivran
- Bio-Organic Division Bhabha Atomic Research Centre 400085 Mumbai India
| | - Shankar P. Koiry
- Technical Physics Division Bhabha Atomic Research Centre 400085 Mumbai India
- Homi Bhabha National Institute Anushakti Nagar 400094 Mumbai India
| | - Nisha Kushwah
- Chemistry Division Bhabha Atomic Research Centre 400085 Mumbai India
| | - Anil K. Chauhan
- Technical Physics Division Bhabha Atomic Research Centre 400085 Mumbai India
- Homi Bhabha National Institute Anushakti Nagar 400094 Mumbai India
| | - Dinesh K. Aswal
- Homi Bhabha National Institute Anushakti Nagar 400094 Mumbai India
- Health, Safety and Environment Group Bhabha Atomic Research Centre 400085 Mumbai India
| | | | - Soumyaditya Mula
- Bio-Organic Division Bhabha Atomic Research Centre 400085 Mumbai India
- Homi Bhabha National Institute Anushakti Nagar 400094 Mumbai India
| |
Collapse
|
10
|
Khamrui R, Manna RN, Rajdev P, Paul A, Ghosh S. Impact of the Hydrogen-Bonding Functional Group on Hydrogelation of Amphiphilic Naphthalene-diimide Derivatives and Nonspecific Protein Adsorption. ACS APPLIED BIO MATERIALS 2022; 5:5410-5417. [PMID: 36251686 DOI: 10.1021/acsabm.2c00761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This manuscript reports the effect of hydrogen-bonding functionality on the supramolecular assembly of naphthalene-diimide (NDI)-derived amphiphilic building blocks in water. All the molecules contain a central NDI chromophore, functionalized with a hydrophilic oligo-oxyethylene (OE) wedge in one arm and a phenyl group on the opposite arm. They differ by a single H-bonding functionality, which links the NDI chromophore and the phenyl moiety. The H-bonding functionalities are amide, thioamide, urea, and urethane in NDI-A, NDI-TA, NDI-U, and NDI-UT, respectively. All of these molecules exhibit π-stacking in water, as evident from their distinct UV/vis absorption spectra when compared to that of the monomeric dye in THF. However, among these four, only NDI-A and NDI-TA show hydrogelation, while the other two precipitate out of the medium. The NDI-A hydrogel also exhibits transient stability and leads to a crystalline precipitate within ∼5 h. Only NDI-TA produces stable transparent hydrogel with the entangled fibrillar morphology that is typical for gelators. Both NDI-A and NDI-TA showed a thermoresponsive property with a lower critical solution temperature of about 41-42 °C. Powder XRD studies show a parallel orientation for NDI-A and an antiparallel orientation for NDI-TA. Computational studies support this experimental observation and indicate that the NDI-A assembly is highly stabilized by strong H-bonding among the amide groups and π-stacking interaction in the parallel orientation. On the other hand, due to weak H-bonding among the thioamide groups, the binding energy of the parallelly oriented NDI-TA was significantly lower and the optimized structure was disordered. Instead, its antiparallel orientation was more stable, with criss-cross aligned H-bonding interactions and π-π interactions between adjacent aromatic rings. The NDI-TA hydrogel with less ordered OE chains on the surface showed prominent adsorption of serum protein BSA. In sharp contrast, NDI-A did not exhibit any notable interaction with BSA, as evident from the ITC studies.
Collapse
Affiliation(s)
- Rajesh Khamrui
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Rabindra Nath Manna
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Priya Rajdev
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Ankan Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
11
|
Antina LA, Bumagina NA, Kalinkina VA, Lukanov MM, Ksenofontov AA, Kazak AV, Berezin MB, Antina EV. Aggregation behavior and spectroscopic properties of red-emitting distyryl-BODIPY in aqueous solution, Langmuir-Schaefer films and Pluoronic® F127 micelles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121366. [PMID: 35588603 DOI: 10.1016/j.saa.2022.121366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Red-emitting distyryl substituted BODIPY dyes are among the most promising luminophors for bioimaging and optics applications. However, the practical application of BODIPYs is limited due to their high hydrophobicity and tendency to aggregate in aqueous organic solutions and solid phase. In this article, we propose an elegant solution to this problem. To this end, we carried out the detailed experimental and quantum-chemical study of the structural and spectral features of BF2-ms-phenyl-5,5'-bis(4-dimethylaminostyryl)-3,3'-dimethyl-2,2'-dipyrromethene (distyryl-BDP). The particular attention was paid to analysis of high sensitivity of the distyryl-BDP spectral characteristics to the solvent properties, and also the aggregation behavior features both in water-organic media and in mono- and multilayer Langmuir-Schaefer films. We selected the best conditions to obtain the hydrophilic micellar structures of distyryl-BDP with Pluronic® F127 having a high efficiency of dye solubilization. This method increasing the solubility improves the distyryl-BDP transport efficiency in physiological aqueous media. The aqueous solutions of distyryl-BDP-Pl micelles show the intense fluorescence in the phototherapy window region (λfl = 739 nm).
Collapse
Affiliation(s)
- Lubov A Antina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia.
| | - Natalia A Bumagina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| | - Valeria A Kalinkina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia; Ivanovo State University of Chemistry and Technology, 7 Sheremetievskiy Av., 153000 Ivanovo, Russia
| | - Michail M Lukanov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia; Ivanovo State University of Chemistry and Technology, 7 Sheremetievskiy Av., 153000 Ivanovo, Russia
| | - Alexander A Ksenofontov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| | - Alexander V Kazak
- Nanomaterials Research Institute, Ivanovo State University, Ermak Str., 39, 153025 Ivanovo, Russia; Moscow Region State University, Very Voloshinoy St., 24, 141014, Mytishchi, Russia
| | - Mikhail B Berezin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| | - Elena V Antina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| |
Collapse
|
12
|
|
13
|
Ghosh G, Chakraborty A, Pal P, Jana B, Ghosh S. Direct Participation of Solvent Molecules in the Formation of Supramolecular Polymers. Chemistry 2022; 28:e202201082. [PMID: 35475531 DOI: 10.1002/chem.202201082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 11/05/2022]
Abstract
This article reports supramolecular polymerization of two bis-amide functionalized naphthalene-diimide (NDI) building blocks (NDI-L and NDI-C) in two solvents, namely n-heptane (Hep) and methylcyclohexane (MCH). NDI-L and NDI-C differ only by the peripheral hydrocarbon wedges, consisting of linear C7 chains or cyclic methylcyclohexane rings, respectively. UV/Vis and FTIR spectroscopy studies reveal distinct internal order and H-bonding pattern for NDI-L and NDI-C aggregates irrespective of the solvent system, indicating the dominant role of the intrinsic packing parameters of the individual building block, possibly influenced by the peripheral steric crowding. However, NDI-L produces a significantly stronger gel in Hep compared to MCH as evident from the rheological and thermal properties. In contrast, NDI-C exhibits a clear preference for MCH, producing gel with moderate strength but in Hep it fails to produce 1D morphology or gelation. All-atom molecular dynamics (MD) simulation studies corroborate with the experimental observation and provide the rationale for the observed solvent-shape effect by revealing a quantitative estimate regarding the thermodynamics of self-assembly in these four combinations. Such clear-cut shape-matching effect (between the peripheral hydrocarbon wedge and the solvent system) unambiguously support a direct participation of the solvent molecules during supramolecular polymerization and presence of a closely-adhered solvent shell around the supramolecular polymers, similar to the first layer of water molecules around the protein surface. Solvent induced CD experiments support this hypothesis as induced CD band was observed only from a chiral co-solvent of matching shape. This is reconfirmed by the higher de-solvation temperature of the shape-matching NDI/solvent system combination compared to the shape mis-match combination in variable temperature UV/Vis experiments, revealing transformation to a different aggregate at higher temperatures rather than disassembly to the monomer for all four combinations.
Collapse
Affiliation(s)
- Goutam Ghosh
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Anwesha Chakraborty
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Prasun Pal
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Biman Jana
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
14
|
Hu W, Zhang R, Zhang XF, Liu J, Luo L. Halogenated BODIPY photosensitizers: Photophysical processes for generation of excited triplet state, excited singlet state and singlet oxygen. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120965. [PMID: 35131619 DOI: 10.1016/j.saa.2022.120965] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
We have systematically examined the formation of singlet oxygen O2(1Δg), the excited triplet state (T1), and excited singlet state (S1) for halogenated BODIPY photosensitizers (halogen = Cl, Br, and I) in eight solvents to understand how halogen atoms and solvent affect these properties. The phosphorescence spectra and lifetimes of singlet oxygen generated by these halogenated BODIPYs have been measured by steady state/time resolved NIR emission, while the formation quantum yield of singlet oxygen (ΦΔ) has been determined by chemical method using diphenylisobenzofuran (DPBF) as the trapping agent. The formation quantum yield ΦΔ of singlet oxygen can be as high as 0.96 for iodinated BODIPY and 0.71 for brominated BODIPY. The triplet state T1 absorption spectra of brominated and iodinated BODIPYs have been recorded by laser flash photolysis method, in which T1 shows high formation efficiency and long lifetime. The formation and decay of excited singlet state S1 of four BODIPYs have been measured by ground state (S0) absorption and steady state/time resolved fluorescence. The results show that larger halogen atoms on BODIPY core lead to smaller fluorescence quantum yield, shorter fluorescence lifetime and higher singlet oxygen formation quantum yield due to heavy atom effect that promotes the formation of triplet state. On the other hand, higher solvent polarity causes lower singlet oxygen formation quantum yield, smaller fluorescence quantum yield, and shorter fluorescence lifetime. This solvent effect is explained by the presence of photoinduced charge transfer (ICT) process from halogen atoms to BODIPY. The ICT efficiency has been estimated and the results are agreed with ICT theory. ICT process in halogenated BODIPYs has never been revealed in literature. HOMO/LUMO obtained from DFT calculation also supports the presence of ICT. The involvement of ICT in the photosensitizing process of halogenated BODIPYs provides new insights for designing BODIPY photosensitizers for photodynamic therapy of tumor.
Collapse
Affiliation(s)
- Wenbin Hu
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| | - Rui Zhang
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| | - Xian-Fu Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China.
| | - Jiatian Liu
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| | - Lin Luo
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| |
Collapse
|
15
|
Effect of laser ablated gold nanoparticles on the nonlinear optical properties of π-extended BODIPY dyes. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Helmers I, Hossain MS, Bäumer N, Wesarg P, Soberats B, Shimizu LS, Fernández G. Anti-cooperative Self-Assembly with Maintained Emission Regulated by Conformational and Steric Effects. Angew Chem Int Ed Engl 2022; 61:e202200390. [PMID: 35112463 PMCID: PMC9311066 DOI: 10.1002/anie.202200390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 12/28/2022]
Abstract
Herein, we present a strategy to enable a maintained emissive behavior in the self-assembled state by enforcing an anti-cooperative self-assembly involving weak intermolecular dye interactions. To achieve this goal, we designed a conformationally flexible monomer unit 1 with a central 1,3-substituted (diphenyl)urea hydrogen bonding synthon that is tethered to two BODIPY dyes featuring sterically bulky trialkoxybenzene substituents at the meso-position. The competition between attractive forces (H-bonding and aromatic interactions) and destabilizing effects (steric and competing conformational effects) limits the assembly, halting the supramolecular growth at the stage of small oligomers. Given the presence of weak dye-dye interactions, the emission properties of molecularly dissolved 1 are negligibly affected upon aggregation. Our findings contribute to broadening the scope of emissive supramolecular assemblies and controlled supramolecular polymerization.
Collapse
Affiliation(s)
- Ingo Helmers
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | | | - Nils Bäumer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Paul Wesarg
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Bartolome Soberats
- Department of ChemistryUniversity of the Balearic IslandsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| | - Linda S. Shimizu
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaSC 29208USA
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
17
|
Helmers I, Hossain MS, Bäumer N, Wesarg P, Soberats B, Shimizu LS, Fernandez G. Anti‐cooperative Self‐Assembly with Maintained Emission Regulated by Conformational and Steric Effects. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ingo Helmers
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | | | - Nils Bäumer
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Paul Wesarg
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Bartolome Soberats
- Universitat de les Illes Balears Facultat de Ciencies Quimica Organica SPAIN
| | - Linda S. Shimizu
- University of South Carolina Chemistry and Biochemistry UNITED STATES
| | - Gustavo Fernandez
- WWU Münster Organisch-Chemisches Institut Correnstraße, 4ß 48149 Münster GERMANY
| |
Collapse
|
18
|
Gupta A, Chakraborty S, Ghosh D, Ramakrishnan R. Data-driven modeling of S 0 → S 1 excitation energy in the BODIPY chemical space: High-throughput computation, quantum machine learning, and inverse design. J Chem Phys 2021; 155:244102. [PMID: 34972385 DOI: 10.1063/5.0076787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Derivatives of BODIPY are popular fluorophores due to their synthetic feasibility, structural rigidity, high quantum yield, and tunable spectroscopic properties. While the characteristic absorption maximum of BODIPY is at 2.5 eV, combinations of functional groups and substitution sites can shift the peak position by ±1 eV. Time-dependent long-range corrected hybrid density functional methods can model the lowest excitation energies offering a semi-quantitative precision of ±0.3 eV. Alas, the chemical space of BODIPYs stemming from combinatorial introduction of-even a few dozen-substituents is too large for brute-force high-throughput modeling. To navigate this vast space, we select 77 412 molecules and train a kernel-based quantum machine learning model providing <2% hold-out error. Further reuse of the results presented here to navigate the entire BODIPY universe comprising over 253 giga (253 × 109) molecules is demonstrated by inverse-designing candidates with desired target excitation energies.
Collapse
Affiliation(s)
- Amit Gupta
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Sabyasachi Chakraborty
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Debashree Ghosh
- Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Raghunathan Ramakrishnan
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| |
Collapse
|
19
|
|
20
|
Miao J, Wang Y, Liu J, Wang L. Organoboron molecules and polymers for organic solar cell applications. Chem Soc Rev 2021; 51:153-187. [PMID: 34851333 DOI: 10.1039/d1cs00974e] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Organic solar cells (OSCs) are emerging as a new photovoltaic technology with the great advantages of low cost, light-weight, flexibility and semi-transparency. They are promising for portable energy-conversion products and building-integrated photovoltaics. Organoboron chemistry offers an important toolbox to design novel organic/polymer optoelectronic materials and to tune their optoelectronic properties for OSC applications. At present, organoboron small molecules and polymers have become an important class of organic photovoltaic materials. Power conversion efficiencies (PCEs) of 16% and 14% have been realized with organoboron polymer electron donors and electron acceptors, respectively. In this review, we summarize the research progress in various kinds of organoboron photovoltaic materials for OSC applications, including organoboron small molecular electron donors, organoboron small molecular electron acceptors, organoboron polymer electron donors and organoboron polymer electron acceptors. This review also discusses how to tune their opto-electronic properties and active layer morphology for enhancing OSC device performance. We also offer our insight into the opportunities and challenges in improving the OSC device performance of organoboron photovoltaic materials.
Collapse
Affiliation(s)
- Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yinghui Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
21
|
Navozenko O, Yashchuk V, Kachkovsky O, Gudeika D, Butkute R, Slominskii Y, Azovskyi V. Aggregate Formation of Boron-Containing Molecules in Thermal Vacuum Deposited Films. MATERIALS 2021; 14:ma14195615. [PMID: 34640007 PMCID: PMC8509698 DOI: 10.3390/ma14195615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
The spectral properties of new boron-containing dyes were studied. One-component (pure dyes) and composite "Alq3+dye" thin films were fabricated using the thermal vacuum deposition method. The positions of the transmission spectra maxima in a one-component film are different for different film thicknesses. The best correlation of the maxima positions of the dye transmission spectra in solid and liquid solutions was observed for thicknesses of films close to a few (up to 10) monolayers. On the other hand, the absorption spectra maxima positions of one-component dye films (upper 10 nm) and composite films with high concentration, did not match the corresponding positions of absorption spectra maxima recorded in solutions. Comparison of the absorption spectra in one-component dye films and in solutions indicates the presence of both monomers and their aggregates in one-component films (contrary to solutions where such processes of aggregation do not take place, even at very high concentrations). Simultaneously with aggregation manifestation in the absorption spectra, the intensity of fluorescence of one-component dye films dramatically decreases. A quantum chemical simulation of the possible relative arrangement of two dye molecules indicates that the most possible of the simplest types of aggregates are physical dimers. Films of practical importance (due to efficient energy transfer from host to guest molecules when all singlet excitons are captured) possess a high quantum yield of fluorescence when reaching an impurity concentration of a few percent (aggregation does not take place yet).
Collapse
Affiliation(s)
- Oleksandr Navozenko
- Faculty of Physics, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrs’ka Str., 01601 Kyiv, Ukraine; (V.Y.); (V.A.)
- Correspondence: (O.N.); (D.G.)
| | - Valeriy Yashchuk
- Faculty of Physics, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrs’ka Str., 01601 Kyiv, Ukraine; (V.Y.); (V.A.)
| | - Oleksiy Kachkovsky
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, Murmanskaya Street, 1, 02660 Kyiv, Ukraine;
| | - Dalius Gudeika
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania;
- Correspondence: (O.N.); (D.G.)
| | - Rita Butkute
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania;
| | - Yuriy Slominskii
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Str., 02660 Kyiv, Ukraine;
| | - Volodymyr Azovskyi
- Faculty of Physics, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrs’ka Str., 01601 Kyiv, Ukraine; (V.Y.); (V.A.)
| |
Collapse
|
22
|
Shah S, Marandi P, Neelakandan PP. Advances in the Supramolecular Chemistry of Tetracoordinate Boron-Containing Organic Molecules into Organogels and Mesogens. Front Chem 2021; 9:708854. [PMID: 34557473 PMCID: PMC8452935 DOI: 10.3389/fchem.2021.708854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Boron-containing organic compounds are well accepted as a class of compounds having excellent photophysical properties. In addition to the unique photophysical properties, the ease of synthesis and structural robustness make tetracoordinate boron complexes ideal for a variety of applications. While significant light has been thrown on their luminescence properties, there is no collective attention to their supramolecular chemistry. In this mini review, we discuss the progress made in the supramolecular chemistry of these compounds which includes their utility as building blocks for liquid crystalline materials and gels largely driven by various non-covalent interactions like H-bonding, CH-π interactions, BF-π interactions and Van der Waals forces. The organoboron compounds presented here are prepared from easy-to-synthesize chelating units such as imines, diiminates, ketoiminates and diketonates. Moreover, the presence of heteroatoms such as nitrogen, oxygen and sulfur, and the presence of aromatic rings facilitate non-covalent interactions which not only favor their formation but also helps to stabilize the self-assembled structures.
Collapse
Affiliation(s)
- Sanchita Shah
- Energy and Environment Unit, Institute of Nano Science and Technology, Mohali, India
| | - Parvati Marandi
- Energy and Environment Unit, Institute of Nano Science and Technology, Mohali, India
| | - P P Neelakandan
- Energy and Environment Unit, Institute of Nano Science and Technology, Mohali, India
| |
Collapse
|
23
|
Shivran N, Koli M, Chakraborty G, Srivastava AP, Chattopadhyay S, Mula S. A BODIPY- O-glycoside based near-infrared fluorescent sensor for serum albumin. Org Biomol Chem 2021; 19:7920-7929. [PMID: 34549222 DOI: 10.1039/d1ob01564h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly sensitive and selective near-infrared fluorescent bioprobes for serum albumin detection and quantification are in high demand for biomedical applications. Herein, we report a near-infrared emitting BODIPY-O-glycoside dye as a turn-on emission sensor for serum albumin. To the best of our knowledge, this is the first report of NIR-emitting BODIPY dyes for serum albumin sensing. Despite the various outstanding photophysical properties of the BODIPY dyes, their insolubility in water/biological media restricts their real biomedical applications. To overcome this issue, highly stable unadulterated BODIPY-O-glycoside nanoparticles (BDP-Glu-NPs) were prepared in aqueous solution by self-assembly of amphiphilic BODIPY-O-glycoside dyes. The BDP-Glu-NPs were characterized by spectroscopic, NMR, DLS and TEM studies. The ability of the BDP-Glu-NPs for the detection and quantification of serum albumin was demonstrated. It showed a 150-fold fluorescence enhancement in the presence of serum albumin, with excellent selectivity over other amino acids, porphyrin, proteins and various inorganic salts. Detection of human serum albumin (HSA) in urine samples showed that the bioprobe is applicable to a clinically significant range of the analytes with very low detection limit. These results suggested that the BDP-Glu-NPs can act as potential bioprobe to quantify albumin in biochemical and clinical samples.
Collapse
Affiliation(s)
- Neelam Shivran
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
| | - Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
| | - Goutam Chakraborty
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
| | | | | | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai-400094, India
| |
Collapse
|
24
|
Tan S, Luo W, Zhang Y, Ren XK, Liu Y, Chen Z, Zeng Q. Structural and Nanotribological Properties of a BODIPY Self-Assembly. Front Chem 2021; 9:704915. [PMID: 34422764 PMCID: PMC8377353 DOI: 10.3389/fchem.2021.704915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
Boron-dipyrromethenes (BODIPY) are promising functional dyes, whose exceptional optical properties are closely related to their supramolecular assembly. Herein, the self-assembly of a BODIPY derivative functionalized with uracil groups is explicitly and thoroughly investigated by using scanning tunneling microscopy (STM). Based on the simulation and calculation by density functional theory (DFT) method, it can be concluded that the construction of ordered self-assembly structure is attributed to the formation of hydrogen bonds between uracil groups. Moreover, the nanotribological property of the self-assembly on HOPG surface is measured by using atomic force microscopy (AFM). The effort on self-assembly of the BODIPY derivative could enhance the understanding of surface assembly mechanism.
Collapse
Affiliation(s)
- Shanchao Tan
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Wendi Luo
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
| | - Yongjie Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuhong Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Zhijian Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China.,Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Das G, Cherumukkil S, Padmakumar A, Banakar VB, Praveen VK, Ajayaghosh A. Tweaking a BODIPY Spherical Self‐Assembly to 2D Supramolecular Polymers Facilitates Excited‐State Cascade Energy Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gourab Das
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Sandeep Cherumukkil
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
| | - Akhil Padmakumar
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Vijay B. Banakar
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
| | - Vakayil K. Praveen
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| |
Collapse
|
26
|
Perumal D, Golla M, Pillai KS, Raj G, Krishna P K A, Varghese R. Biotin-decorated NIR-absorbing nanosheets for targeted photodynamic cancer therapy. Org Biomol Chem 2021; 19:2804-2810. [PMID: 33720265 DOI: 10.1039/d1ob00002k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeted photodynamic therapy (PDT) is one of the promising approaches for the selective killing of cancerous cells without affecting the normal cells, and hence designing new strategies for targeted PDT is extremely important. Herein we report the design and synthesis of a new class of nanosheets derived from the self-assembly of the iodo-BODIPY-biotin conjugate as a photosensitizer for targeted PDT applications. The nanosheet exhibits a high extinction coefficient in the NIR region, high singlet oxygen efficiency, no toxicity in the dark and cell targeting ligands (biotin) on the surface, which are necessary features required for an ideal photosensitizer. Overexpression of sodium-dependent multivitamin transporters (SMVTs) in HeLa and A549 (biotin receptor positive cell lines) is explored for the selective uptake of the nanophotosensitizer through receptor mediated endocytosis (interaction between biotin and SMVT). Control experiments using a biotin receptor negative cell line (WI-38) are also carried out to confirm that the specific interaction between the SMVTs and biotin is mainly responsible for the selective uptake of the photosensitizer. Efficient killing of cancerous cells is demonstrated upon light irradiation through the generation of singlet oxygen and other reactive oxygen species around the cellular environment.
Collapse
Affiliation(s)
- Devanathan Perumal
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | | | | | | | | | | |
Collapse
|
27
|
Das G, Cherumukkil S, Padmakumar A, Banakar VB, Praveen VK, Ajayaghosh A. Tweaking a BODIPY Spherical Self‐Assembly to 2D Supramolecular Polymers Facilitates Excited‐State Cascade Energy Transfer. Angew Chem Int Ed Engl 2021; 60:7851-7859. [DOI: 10.1002/anie.202015390] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Gourab Das
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Sandeep Cherumukkil
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
| | - Akhil Padmakumar
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Vijay B. Banakar
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
| | - Vakayil K. Praveen
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram Kerala 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| |
Collapse
|
28
|
Helmers I, Ghosh G, Albuquerque RQ, Fernández G. Pathway and Length Control of Supramolecular Polymers in Aqueous Media via a Hydrogen Bonding Lock. Angew Chem Int Ed Engl 2021; 60:4368-4376. [PMID: 33152151 PMCID: PMC7898687 DOI: 10.1002/anie.202012710] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/11/2022]
Abstract
Programming the organization of π-conjugated systems into nanostructures of defined dimensions is a requirement for the preparation of functional materials. Herein, we have achieved high-precision control over the self-assembly pathways and fiber length of an amphiphilic BODIPY dye in aqueous media by exploiting a programmable hydrogen bonding lock. The presence of a (2-hydroxyethyl)amide group in the target BODIPY enables different types of intra- vs. intermolecular hydrogen bonding, leading to a competition between kinetically controlled discoidal H-type aggregates and thermodynamically controlled 1D J-type fibers in water. The high stability of the kinetic state, which is dominated by the hydrophobic effect, is reflected in the slow transformation to the thermodynamic product (several weeks at room temperature). However, this lag time can be suppressed by the addition of seeds from the thermodynamic species, enabling us to obtain supramolecular polymers of tuneable length in water for multiple cycles.
Collapse
Affiliation(s)
- Ingo Helmers
- Organisch-Chemisches-InstitutWestfälische-Wilhelms-Universität MünsterCorrenstrasse 4048149MünsterGermany
| | - Goutam Ghosh
- Organisch-Chemisches-InstitutWestfälische-Wilhelms-Universität MünsterCorrenstrasse 4048149MünsterGermany
| | - Rodrigo Q. Albuquerque
- Lehrstuhl für SystemverfahrenstechnikTechnical University of Munich (TUM)Gregor-Mendel-Strasse 485354FreisingGermany
| | - Gustavo Fernández
- Organisch-Chemisches-InstitutWestfälische-Wilhelms-Universität MünsterCorrenstrasse 4048149MünsterGermany
| |
Collapse
|
29
|
Kuno A, Maeda H. Nitro-Substituted Dipyrrolyldiketone BF 2 Complexes as Electronic-State-Adjustable Anion-Responsive π-Electronic Systems. Molecules 2021; 26:595. [PMID: 33498695 PMCID: PMC7866090 DOI: 10.3390/molecules26030595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Nitro-substituted π-electronic molecules are fascinating because of their unique electronic and optical properties and the ease of their transformation into various functional derivatives. Herein, nitro-introduced dipyrrolyldiketone BF2 complexes as anion-responsive π-electronic molecules were synthesized, and their electronic properties and anion-binding abilities were investigated by spectroscopic analyses and theoretical studies. The obtained nitro-substituted derivatives showed solvent-dependent UV/vis spectral changes and high anion-binding affinities due to the easily pyrrole-inverted conformations and polarized pyrrole NH sites upon the introduction of electron-withdrawing moieties.
Collapse
Affiliation(s)
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525–8577, Japan;
| |
Collapse
|
30
|
Debnath I, Roy T, Matern J, Jansen SAH, Fernández G, Mahata K. Supramolecular polymorphism in aggregates of a boron-difluoride complex of peri-naphthoindigo via solvent- and pathway-dependent self-assembly. Org Chem Front 2021. [DOI: 10.1039/d1qo01074c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supramolecular polymorphism, a rare phenomenon, has been demonstrated using BF2-coordinated peri-naphthoindigo.
Collapse
Affiliation(s)
- Indraneel Debnath
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Tirupati Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Jonas Matern
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster, Correnstraße 40, 48149, Münster, Germany
| | - Stef A. H. Jansen
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster, Correnstraße 40, 48149, Münster, Germany
| | - Kingsuk Mahata
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
31
|
Helmers I, Ghosh G, Albuquerque RQ, Fernández G. Pfad‐ und Längenkontrolle von supramolekularen Polymeren im wässrigen Medium mittels eines Wasserstoffbrückenschlosses. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ingo Helmers
- Organisch-Chemisches-Institut Westfälische-Wilhelms-Universität Münster Correnstraße 40 48149 Münster Deutschland
| | - Goutam Ghosh
- Organisch-Chemisches-Institut Westfälische-Wilhelms-Universität Münster Correnstraße 40 48149 Münster Deutschland
| | - Rodrigo Q. Albuquerque
- Lehrstuhl für Systemverfahrenstechnik Technische Universität München (TUM) Gregor-Mendel-Straße 4 85354 Freising Deutschland
| | - Gustavo Fernández
- Organisch-Chemisches-Institut Westfälische-Wilhelms-Universität Münster Correnstraße 40 48149 Münster Deutschland
| |
Collapse
|
32
|
Ariga K, Mori T, Kitao T, Uemura T. Supramolecular Chiral Nanoarchitectonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905657. [PMID: 32191374 DOI: 10.1002/adma.201905657] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/26/2019] [Indexed: 05/06/2023]
Abstract
Exploration of molecular functions and material properties based on the control of chirality would be a scientifically elegant approach. Here, the fabrication and function of chiral-featured materials from both chiral and achiral components using a supramolecular nanoarchitectonics concept are discussed. The contents are classified in to three topics: i) chiral nanoarchitectonics of rather general molecular assemblies; ii) chiral nanoarchitectonics of metal-organic frameworks (MOFs); iii) chiral nanoarchitectonics in liquid crystals. MOF structures are based on nanoscopically well-defined coordinations, while mesoscopic orientations of liquid-crystalline phases are often flexibly altered. Discussion on the effects and features in these representative materials systems with totally different natures reveals the universal importance of supramolecular chiral nanoarchitectonics. Amplification of chiral molecular information from molecules to materials-level structures and the creation of chirality from achiral components upon temporal statistic fluctuations are universal, regardless of the nature of the assemblies. These features are thus surely advantageous characteristics for a wide range of applications.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Taizo Mori
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Takashi Kitao
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
33
|
Ariga K, Jia X, Song J, Hill JP, Leong DT, Jia Y, Li J. Nanoarchitektonik als ein Ansatz zur Erzeugung bioähnlicher hierarchischer Organisate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Xiaofang Jia
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Jonathan P. Hill
- WPI Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - David Tai Leong
- Department of Chemical & Biomolecular Engineering National University of Singapore Singapore 117585 Singapur
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
34
|
Ariga K, Jia X, Song J, Hill JP, Leong DT, Jia Y, Li J. Nanoarchitectonics beyond Self-Assembly: Challenges to Create Bio-Like Hierarchic Organization. Angew Chem Int Ed Engl 2020; 59:15424-15446. [PMID: 32170796 DOI: 10.1002/anie.202000802] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/04/2023]
Abstract
Incorporation of non-equilibrium actions in the sequence of self-assembly processes would be an effective means to establish bio-like high functionality hierarchical assemblies. As a novel methodology beyond self-assembly, nanoarchitectonics, which has as its aim the fabrication of functional materials systems from nanoscopic units through the methodological fusion of nanotechnology with other scientific disciplines including organic synthesis, supramolecular chemistry, microfabrication, and bio-process, has been applied to this strategy. The application of non-equilibrium factors to conventional self-assembly processes is discussed on the basis of examples of directed assembly, Langmuir-Blodgett assembly, and layer-by-layer assembly. In particular, examples of the fabrication of hierarchical functional structures using bio-active components such as proteins or by the combination of bio-components and two-dimensional nanomaterials, are described. Methodologies described in this review article highlight possible approaches using the nanoarchitectonics concept beyond self-assembly for creation of bio-like higher functionalities and hierarchical structural organization.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Xiaofang Jia
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jonathan P Hill
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - David Tai Leong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
35
|
Atchimnaidu S, Perumal D, Harikrishanan KS, Thelu HVP, Varghese R. Phototheranostic DNA micelles from the self-assembly of DNA-BODIPY amphiphiles for the thermal ablation of cancer cells. NANOSCALE 2020; 12:11858-11862. [PMID: 32484195 DOI: 10.1039/d0nr02622k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Design of phototheranostic agents in a single step approach is one of the challenges in cancer therapy. Herein, a one-step strategy based on amphiphilicity-driven self-assembly of DNA-BODIPY amphiphiles for the design of a new class of micelles, which offer all three phototheranostic functions, is reported. These include (i) strong emission at NIR (φf = 30%) for imaging, (ii) high photothermal conversion (η = 52%) for PTT and (iii) an ssDNA-based shell for the integration of cell targeting moieties. Selective uptake of DNA micelles into a target cancer cell and its killing by laser irradiation (635 nm) are also demonstrated. Furthermore, the excellent biocompatibility, ultrasmall nanosize and high stability of DNA micelles are promising for in vivo applications.
Collapse
Affiliation(s)
- Siriki Atchimnaidu
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Devanathan Perumal
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Kaloor S Harikrishanan
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Hari Veera Prasad Thelu
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| |
Collapse
|
36
|
Ariga K, Shrestha LK. Fullerene Nanoarchitectonics with Shape-Shifting. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2280. [PMID: 32429148 PMCID: PMC7287900 DOI: 10.3390/ma13102280] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
This short review article introduces several examples of self-assembly-based structural formation and shape-shifting using very simple molecular units, fullerenes (C60, C70, and their derivatives), as fullerene nanoarchitectonics. Fullerene molecules are suitable units for the basic science of self-assembly because they are simple zero-dimensional objects with only a single elemental component, carbon, without any charged or interactive functional groups. In this review article, self-assembly of fullerene molecules and their shape-shifting are introduced as fullerene nanoarchitectonics. An outline and a background of fullerene nanoarchitectonics are first described, followed by various demonstrations, including fabrication of various fullerene nanostructures, such as rods on the cube, holes in the cube, interior channels in the cube, and fullerene micro-horns, and also a demonstration of a new concept, supramolecular differentiation.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
37
|
Haino T, Hirao T. Supramolecular Polymerization and Functions of Isoxazole Ring Monomers. CHEM LETT 2020. [DOI: 10.1246/cl.200031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takeharu Haino
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takehiro Hirao
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
38
|
Liang X, Li L, Tang J, Komiyama M, Ariga K. Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200012] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Jiaxuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
39
|
Kajiki T, Komba S, Iwaura R. Supramolecular Organogelation Directed by Weak Noncovalent Interactions in Palmitoylated 1,5-Anhydro-d-Glucitol Derivatives. Chempluschem 2020; 85:701-710. [PMID: 32267103 DOI: 10.1002/cplu.202000147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Indexed: 01/11/2023]
Abstract
We synthesized a series of novel alicyclic compounds by modifying 1,5-anhydro-d-glucitol with two to four palmitoyl chains, and we explored their self-assembly and gelation behaviors in paraffin. The obtained organogels were studied by field emission scanning electron microscopy, atomic force microscopy, variable-temperature Fourier transform IR spectroscopy, X-ray diffraction analysis, polarized optical microscopy, and transmission spectroscopy. While all the palmitoylated derivatives spontaneously formed fibrous networks and gelated the paraffin, an acetylated derivative of 1,5-anhydro-d-glucitol did not gelatinize the solvent, thus indicating the importance of aliphatic chains for gelation. Interestingly, α- and β- d-glucopyranose with five palmitoyl chains neither gelatinized the solvent nor formed fibrous networks, thus suggesting that the absence of C-1 substitution in 1,5-anhydro-d-glucitol is important for gelation. Fourier transform IR spectroscopy suggested that the formation of weak hydrogen bonds between the carbonyl groups and the C-H groups was the driving force for formation of the supramolecular fibers and for gelation of the solvent.
Collapse
Affiliation(s)
- Takahito Kajiki
- SUNUS CO., LTD., 3-20 Nan-ei, Kagoshima, Kagoshima, 891-0196, Japan
| | - Shiro Komba
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Rika Iwaura
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| |
Collapse
|
40
|
Ariga K, Ishii M, Mori T. 2D Nanoarchitectonics: Soft Interfacial Media as Playgrounds for Microobjects, Molecular Machines, and Living Cells. Chemistry 2020; 26:6461-6472. [PMID: 32159246 DOI: 10.1002/chem.202000789] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Soft and flexible two-dimensional (2D) systems, such as liquid interfaces, would have much more potentials in dynamic regulation on nano-macro connected functions. In this Minireview article, we focus especially on dynamic motional functions at liquid dynamic interfaces as 2D material systems. Several recent examples are selected to be explained for overviewing features and importance of dynamic soft interfaces in a wide range of action systems. The exemplified research systems are mainly classified into three categories: (i) control of microobjects with motional regulations; (ii) control of molecular machines with functions of target discrimination and optical outputs; (iii) control of living cells including molecular machine functions at cell membranes and cell/biomolecular behaviors at liquid interface. Sciences on soft 2D media with motional freedom and their nanoarchitectonics constructions will have increased importance in future technology in addition to popular rigid solid 2D materials.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Masaki Ishii
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Department of Pure and Applied Chemistry, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
41
|
Shrestha RG, Maji S, Shrestha LK, Ariga K. Nanoarchitectonics of Nanoporous Carbon Materials in Supercapacitors Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E639. [PMID: 32235393 PMCID: PMC7221662 DOI: 10.3390/nano10040639] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/23/2023]
Abstract
High surface area and large pore volume carbon materials having hierarchical nanoporous structure are required in high performance supercapacitors. Such nanoporous carbon materials can be fabricated from organic precursors with high carbon content, such as synthetic biomass or agricultural wastes containing cellulose, hemicellulose, and lignin. Using recently developed unique concept of materials nanoarchitectonics, high performance porous carbons with controllable surface area, pore size distribution, and hierarchy in nanoporous structure can be fabricated. In this review, we will overview the recent trends and advancements on the synthetic methods for the production of hierarchical porous carbons with one- to three-dimensional network structure with superior performance in supercapacitors applications. We highlight the promising scope of accessing nanoporous graphitic carbon materials from: (i) direct conversion of single crystalline self-assembled fullerene nanomaterials and metal organic frameworks, (ii) hard- and soft-templating routes, and (iii) the direct carbonization and/or activation of biomass or agricultural wastes as non-templating routes. We discuss the appealing points of the different synthetic carbon sources and natural precursor raw-materials derived nanoporous carbon materials in supercapacitors applications.
Collapse
Affiliation(s)
- Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277−8561, Japan
| |
Collapse
|
42
|
Almodôvar VAS, Tomé AC. Porphyrin–diketopyrrolopyrrole conjugates and related structures: Synthesis, properties and applications. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619300271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A large diversity of porphyrin–diketopyrrolopyrrole conjugates and related structures formed by diketopyrrolopyrrole units and pyrrole-based moieties such as phthalocyanine, porphycene, calix[4]pyrrole or BODIPY have been reported since 2010. The new compounds, whether small molecules or polymeric materials, exhibit very interesting photophysical properties and have been tested in a range of technical or biological applications. This review summarizes the advances in the synthesis of such compounds. Their photophysical properties and potential applications are also briefly discussed.
Collapse
Affiliation(s)
- Vítor A. S. Almodôvar
- LAQV–REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Augusto C. Tomé
- LAQV–REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
43
|
Ariga K, Yamauchi Y. Nanoarchitectonics from Atom to Life. Chem Asian J 2020; 15:718-728. [PMID: 32017354 DOI: 10.1002/asia.202000106] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Functional materials with rational organization cannot be directly created only by nanotechnology-related top-down approaches. For this purpose, a novel research paradigm next to nanotechnology has to be established to create functional materials on the basis of deep nanotechnology knowledge. This task can be assigned to an emerging concept, nanoarchitectonics. In the nanoarchitectonics approaches, functional materials were architected through combination of atom/molecular manipulation, organic chemical synthesis, self-assembly and related spontaneous processes, field-applied assembly, micro/nano fabrications, and bio-related processes. In this short review article, nanoarchitectonics-related approaches on materials fabrications and functions are exemplified from atom-scale to living creature level. Based on their features, unsolved problems for future developments of the nanoarchitectonics concept are finally discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics MANA, National Institute for Materials Science NIMS, 1-1 Namiki, 305-0044, Tsukuba, Ibaraki, JAPAN
| | - Yusuke Yamauchi
- University of Queensland, School of Chemical Engineering, AUSTRALIA
| |
Collapse
|
44
|
Ghosh G, Dey P, Ghosh S. Controlled supramolecular polymerization of π-systems. Chem Commun (Camb) 2020; 56:6757-6769. [DOI: 10.1039/d0cc02787a] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Externally-initiated controlled supramolecular polymerization of the kinetically trapped aggregated state in a chain growth mechanism can produce well-defined living supramolecular polymers and copolymers.
Collapse
Affiliation(s)
- Goutam Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation Science
- Kolkata
- India
| | - Pradip Dey
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation Science
- Kolkata
- India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation Science
- Kolkata
- India
| |
Collapse
|
45
|
Shivran N, Koiry SP, Majumder C, Chauhan AK, Aswal DK, Chattopadhyay S, Mula S. Tuning of electron tunneling: a case study using BODIPY molecular layers. Phys Chem Chem Phys 2020; 22:2098-2104. [DOI: 10.1039/c9cp05918k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using simple surface chemistry, rectification characteristics can be tuned to reproducible negative differential resistance (NDR) with a very high peak-to-valley ratio (PVR) up to 1000 in BODIPY grafted on Si.
Collapse
Affiliation(s)
- Neelam Shivran
- Bio-Organic Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - Shankar P. Koiry
- Technical Physics Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
- Homi Bhabha National Institute
| | - Chiranjib Majumder
- Homi Bhabha National Institute
- Mumbai 400094
- India
- Chemistry Division
- Bhabha Atomic Research Centre
| | - Anil K. Chauhan
- Technical Physics Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
- Homi Bhabha National Institute
| | - Dinesh K. Aswal
- Homi Bhabha National Institute
- Mumbai 400094
- India
- National Physical Laboratory
- India
| | | | - Soumyaditya Mula
- Bio-Organic Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
- Homi Bhabha National Institute
| |
Collapse
|
46
|
Zhang Y, Liu P, Pan H, Dai H, Ren XK, Chen Z. Alignment of supramolecular J-aggregates based on uracil-functionalized BODIPY dye for polarized photoluminescence. Chem Commun (Camb) 2020; 56:12069-12072. [DOI: 10.1039/d0cc04929h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The H-bonding directed supramolecular J-aggregates of a uracil-functionalized BODIPY dye are uniaxially aligned through the rubbing method to generate highly polarized photoluminescence.
Collapse
Affiliation(s)
- Yongjie Zhang
- School of Chemical Engineering and Technology
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin University
- Tianjin
- China
| | - Ping Liu
- School of Chemical Engineering and Technology
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin University
- Tianjin
- China
| | - Hongfei Pan
- School of Chemical Engineering and Technology
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin University
- Tianjin
- China
| | - Haitao Dai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology
- School of Science
- Tianjin University
- Tianjin 300072
- China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin University
- Tianjin
- China
| | - Zhijian Chen
- School of Chemical Engineering and Technology
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin University
- Tianjin
- China
| |
Collapse
|
47
|
Aswathy PR, Sharma S, Tripathi NP, Sengupta S. Regioisomeric BODIPY Benzodithiophene Dyads and Triads with Tunable Red Emission as Ratiometric Temperature and Viscosity Sensors. Chemistry 2019; 25:14870-14880. [DOI: 10.1002/chem.201902952] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/17/2019] [Indexed: 02/06/2023]
Affiliation(s)
- P. R. Aswathy
- Department of Chemical SciencesIndian Institute of Science, Education and Research (IISER) Mohali Punjab 140306 India
| | - Sushil Sharma
- Department of Chemical SciencesIndian Institute of Science, Education and Research (IISER) Mohali Punjab 140306 India
| | - Narendra Pratap Tripathi
- Department of Chemical SciencesIndian Institute of Science, Education and Research (IISER) Mohali Punjab 140306 India
| | - Sanchita Sengupta
- Department of Chemical SciencesIndian Institute of Science, Education and Research (IISER) Mohali Punjab 140306 India
| |
Collapse
|
48
|
Co-assembly of gold nanocluster with imidazolium surfactant into ordered luminescent fibers based on aggregation induced emission strategy. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
49
|
|
50
|
Maji S, Shrestha LK, Ariga K. Nanoarchitectonics for Nanocarbon Assembly and Composite. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01294-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|