1
|
Almeida M, Dudzinski D, Rousseau B, Amiel C, Prévost S, Cousin F, Le Coeur C. Aqueous Binary Mixtures of Stearic Acid and Its Hydroxylated Counterpart 12-Hydroxystearic Acid: Fine Tuning of the Lamellar/Micelle Threshold Temperature Transition and of the Micelle Shape. Molecules 2023; 28:6317. [PMID: 37687150 PMCID: PMC10489131 DOI: 10.3390/molecules28176317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
This study examines the structures of soft surfactant-based biomaterials which can be tuned by temperature. More precisely, investigated here is the behavior of stearic acid (SA) and 12-hydroxystearic acid (12-HSA) aqueous mixtures as a function of temperature and the 12-HSA/SA molar ratio (R). Whatever R is, the system exhibits a morphological transition at a given threshold temperature, from multilamellar self-assemblies at low temperature to small micelles at high temperature, as shown by a combination of transmittance measurements, Wide Angle X-ray diffraction (WAXS), small angle neutron scattering (SANS), and differential scanning calorimetry (DSC) experiments. The precise determination of the threshold temperature, which ranges between 20 °C and 50 °C depending on R, allows for the construction of the whole phase diagram of the system as a function of R. At high temperature, the micelles that are formed are oblate for pure SA solutions (R = 0) and prolate for pure 12-HSA solutions (R = 1). In the case of mixtures, there is a progressive continuous transition from oblate to prolate shapes when increasing R, with micelles that are almost purely spherical for R = 0.33.
Collapse
Affiliation(s)
- Maëva Almeida
- CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Université Paris Est Creteil, 94320 Thiais, France; (M.A.); (B.R.); (C.A.)
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12 CEA Saclay, 91191 Gif sur Yvette, France;
| | - Daniel Dudzinski
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12 CEA Saclay, 91191 Gif sur Yvette, France;
| | - Bastien Rousseau
- CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Université Paris Est Creteil, 94320 Thiais, France; (M.A.); (B.R.); (C.A.)
| | - Catherine Amiel
- CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Université Paris Est Creteil, 94320 Thiais, France; (M.A.); (B.R.); (C.A.)
| | - Sylvain Prévost
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, CEDEX 9, 38042 Grenoble, France;
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12 CEA Saclay, 91191 Gif sur Yvette, France;
| | - Clémence Le Coeur
- CNRS, ICMPE, UMR 7182, 2 Rue Henri Dunant, Université Paris Est Creteil, 94320 Thiais, France; (M.A.); (B.R.); (C.A.)
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12 CEA Saclay, 91191 Gif sur Yvette, France;
| |
Collapse
|
2
|
Almeida M, Dudzinski D, Amiel C, Guigner JM, Prévost S, Le Coeur C, Cousin F. Aqueous Binary Mixtures of Stearic Acid and Its Hydroxylated Counterpart 12-Hydroxystearic Acid: Cascade of Morphological Transitions at Room Temperature. Molecules 2023; 28:molecules28114336. [PMID: 37298812 DOI: 10.3390/molecules28114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Here, we describe the behavior of mixtures of stearic acid (SA) and its hydroxylated counterpart 12-hydroxystearic acid (12-HSA) in aqueous mixtures at room temperature as a function of the 12-HSA/SA mole ratio R. The morphologies of the self-assembled aggregates are obtained through a multi-structural approach that combines confocal and cryo-TEM microscopies with small-angle neutron scattering (SANS) and wide-angle X-ray scattering (WAXS) measurements, coupled with rheology measurements. Fatty acids are solubilized by an excess of ethanolamine counterions, so that their heads are negatively charged. A clear trend towards partitioning between the two types of fatty acids is observed, presumably driven by the favorable formation of a H-bond network between hydroxyl OH function on the 12th carbon. For all R, the self-assembled structures are locally lamellar, with bilayers composed of crystallized and strongly interdigitated fatty acids. At high R, multilamellar tubes are formed. The doping via a low amount of SA molecules slightly modifies the dimensions of the tubes and decreases the bilayer rigidity. The solutions have a gel-like behavior. At intermediate R, tubes coexist in solution with helical ribbons. At low R, local partitioning also occurs, and the architecture of the self-assemblies associates the two morphologies of the pure fatty acids systems: they are faceted objects with planar domains enriched in SA molecules, capped with curved domains enriched in 12-HSA molecules. The rigidity of the bilayers is strongly increased, as well their storage modulus. The solutions remain, however, viscous fluids in this regime.
Collapse
Affiliation(s)
- Maëva Almeida
- Institut Chimie et Materiaux Paris Est, Université Paris Est Créteil, CNRS, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12 CEA Saclay, 91191 Gif sur Yvette, France
| | - Daniel Dudzinski
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12 CEA Saclay, 91191 Gif sur Yvette, France
| | - Catherine Amiel
- Institut Chimie et Materiaux Paris Est, Université Paris Est Créteil, CNRS, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)-IRD-MNHN, Sorbonne Université & CNRS, UMR 7590, CEDEX 05, 75252 Paris, France
| | - Sylvain Prévost
- Institut Laue-Langevin-71 Avenue des Martyrs, CS 20156, CEDEX 9, 38042 Grenoble, France
| | - Clémence Le Coeur
- Institut Chimie et Materiaux Paris Est, Université Paris Est Créteil, CNRS, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12 CEA Saclay, 91191 Gif sur Yvette, France
| | - Fabrice Cousin
- Institut Chimie et Materiaux Paris Est, Université Paris Est Créteil, CNRS, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
3
|
Ikeda N, Aramaki K. Hydrogel Formation by Glutamic-acid-based Organogelator Using Surfactant-mediated Gelation. J Oleo Sci 2022; 71:1169-1180. [PMID: 35793975 DOI: 10.5650/jos.ess22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hydrogels formed by low-molecular-weight gelators have reversible sol-gel transition and responsiveness to various stimuli, and are used in cosmetics and drug applications. It is challenging to obtain hydrogels using novel gelators because subtle differences in their molecular architecture affect gelation. Organogelators (which form organogels) are insoluble in water, and their use as hydrogelators has not previously been considered. However, a surfactant-mediated gelation method was reported in which organogelators were solubilized in water by surfactants to form hydrogels using 12-hydroxyoctadecanoic acid. To investigate whether this method can be applied with other organogelators, the formation of hydrogel using a glutamic-acid-based organogelator was studied here. Hydrogels were formed by solubilizing 1:1 mixtures of glutamate-based organogelators, N-lauroyl-L-glutamic acid dibuthylamide, and N-2-ethylhexanoyl-L-glutamic acid dibutylamide in aqueous micellar solutions of anionic surfactant (sodium lauroyl glutamate) and cationic surfactant (cetyltrimethylammonium chloride). The minimum gelation concentration of the hydrogel was ~0.2-0.6 wt%. By changing the molar fraction of cetyltrimethylammonium chloride in the mixed surfactant, either spherical or wormlike micelles were formed. The hydrogel with wormlike micelles had a higher sol-gel transition temperature than that with spherical micelles and formed fine self-assembled fibrillar networks. Additionally, the hydrogel with the spherical micelles was elastic, whereas that with wormlike micelles was viscoelastic, suggesting that networks of the organogelators and wormlike micelles coexisted in the hydrogel from the wormlike micellar solution. Moreover, the hydrogel suppressed the reduction in the storage modulus at higher temperatures compared with the micellar aqueous solution, indicating that the elastic properties of the organogelator networks were maintained at high temperatures. The gel fibers of the hydrogel partially formed a loosely aggregated structure as the temperature increased, the fibers bundled via hydrophobic interactions, and new cross-linking points formed spontaneously. This phenomenon corresponded with an inflection point in the temperature-dependent storage modulus of the hydrogel.
Collapse
Affiliation(s)
- Naoaki Ikeda
- Graduate School of Environment and Information Sciences, Yokohama National University.,Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc
| | - Kenji Aramaki
- Graduate School of Environment and Information Sciences, Yokohama National University
| |
Collapse
|
4
|
Kawasaki Y, Nakagawa M, Ito T, Imura Y, Wang KH, Kawai T. Chiral transcription from chiral Au nanowires to self-assembled monolayers of achiral azobenzene derivatives. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yukie Kawasaki
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Makoto Nakagawa
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Tomoki Ito
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshiro Imura
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Ke-Hsuan Wang
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
5
|
Mori T, Yoshida M, Hazekawa M, Ishibashi D, Hatanaka Y, Kakehashi R, Nakagawa M, Nagao T, Yoshii M, Kojima H, Uno R, Uchida T. Targeted Delivery of Miconazole Employing LL37 Fragment Mutant Peptide CKR12-Poly (Lactic-Co-Glycolic) Acid Polymeric Micelles. Int J Mol Sci 2021; 22:ijms222112056. [PMID: 34769486 PMCID: PMC8584378 DOI: 10.3390/ijms222112056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
We previously reported that conjugates of antimicrobial peptide fragment analogues and poly (lactic-co-glycolic) acid (PLGA) enhance antimicrobial activity and that the conjugated micelle structure is an effective tool for antimicrobial drug delivery. In recent years, the delivery of antimicrobial peptides to targets for antimicrobial activity has attracted attention. In this study, we targeted Candida albicans, a causative organism of catheter-related bloodstream infections, which is refractory to antimicrobial agents and is currently a problem in medical practice. We evaluated the antifungal activity of CKR12 (a mutant fragment of the human cathelicidin peptide, LL-37)-PLGA-miconazole (MCZ) micelles using nanotechnology with MCZ delivery. The prepared CKR12-PLGA-MCZ micelles were characterised by measuring dynamic light scattering, zeta potential, dilution stability, and drug release. CKR12-PLGA-MCZ micelles showed higher antifungal activity than CKR12-PLGA micelles and MCZ solution. Furthermore, scanning and transmission electron microscopy suggested that CKR12-PLGA-MCZ micelles disrupted both cell wall and cell membrane of C. albicans. Our results revealed a synergistic effect of antifungal activity using a combination of antimicrobial peptide fragment analogues and MCZ, and that MCZ is a promising tool for the delivery to target microorganisms.
Collapse
Affiliation(s)
- Takeshi Mori
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; (T.M.); (M.Y.); (H.K.); (R.U.)
| | - Miyako Yoshida
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; (T.M.); (M.Y.); (H.K.); (R.U.)
| | - Mai Hazekawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-Ku, Fukuoka City 814-0180, Fukuoka, Japan; (M.H.); (D.I.)
| | - Daisuke Ishibashi
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-Ku, Fukuoka City 814-0180, Fukuoka, Japan; (M.H.); (D.I.)
| | - Yoshiro Hatanaka
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka City 536-8553, Osaka, Japan; (Y.H.); (R.K.); (M.N.); (T.N.); (M.Y.)
| | - Rie Kakehashi
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka City 536-8553, Osaka, Japan; (Y.H.); (R.K.); (M.N.); (T.N.); (M.Y.)
| | - Makoto Nakagawa
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka City 536-8553, Osaka, Japan; (Y.H.); (R.K.); (M.N.); (T.N.); (M.Y.)
| | - Toshihiro Nagao
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka City 536-8553, Osaka, Japan; (Y.H.); (R.K.); (M.N.); (T.N.); (M.Y.)
| | - Miki Yoshii
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka City 536-8553, Osaka, Japan; (Y.H.); (R.K.); (M.N.); (T.N.); (M.Y.)
| | - Honami Kojima
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; (T.M.); (M.Y.); (H.K.); (R.U.)
| | - Rio Uno
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; (T.M.); (M.Y.); (H.K.); (R.U.)
| | - Takahiro Uchida
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; (T.M.); (M.Y.); (H.K.); (R.U.)
- Correspondence: ; Tel.: +81-798-45-9957
| |
Collapse
|
6
|
Hata Y, Serizawa T. Robust Gels Composed of Self-Assembled Cello-oligosaccharide Networks. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yuuki Hata
- Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
7
|
Minakawa M, Nakagawa M, Wang KH, Imura Y, Kawai T. Homogeneous Helical Nanofibers of 12-Hydroxystearic Acid and Long-chain Amidoamine Derivatives Prepared by Tuning the Gelation Solvent. CHEM LETT 2021. [DOI: 10.1246/cl.200878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Muneharu Minakawa
- Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Makoto Nakagawa
- Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Ke-Hsuan Wang
- Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshiro Imura
- Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takeshi Kawai
- Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
8
|
Miyajima N, Wang YC, Nakagawa M, Kurata H, Imura Y, Wang KH, Kawai T. Water-Phase Synthesis of Ultrathin Au Nanowires with a Two-Dimensional Parallel Array Structure. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Naoya Miyajima
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yung-Chen Wang
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Department of Bioengineering, University of Washington, Seattle, WA 98195-1653, USA
| | - Makoto Nakagawa
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hiroki Kurata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshiro Imura
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Ke-Hsuan Wang
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
9
|
Aramaki K, Takimoto E, Yamaguchi T. Effect of the Cationic Head Group on Cationic Surfactant-Based Surfactant Mediated Gelation (SMG). Int J Mol Sci 2020; 21:ijms21218046. [PMID: 33126751 PMCID: PMC7663335 DOI: 10.3390/ijms21218046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
The surfactant-mediated gelation (SMG) method allows us to formulate hydrogels using a water-insoluble organogelator. In this study, we formulated hydrogels using three cationic surfactants, hexadecyltrimethylammonium bromide (CTAB), hexadecyltrimethylammonium chloride (CTAC), and hexadecylpyridinium chloride (CPC)] and an organogelator (12-hydroxyoctadecanoic acid (12-HOA), and studied their structures and mechanical properties. A fiber-like structure similar to that found in the 12-HOA-based organogels was observed by optical microscopy. Small- and wide-angle X-ray scattering profiles showed Bragg peaks derived from the long- and short-spacing of the crystalline structures in the gel fibers and a correlation peak from the surfactant micelles in the small-angle region. Furthermore, the formation of micelles in the hydrogels was confirmed by UV-vis spectroscopic measurements of the gel samples in the presence of Rhodamine 6G. We concluded that the hydrogels prepared by the SMG method in the present systems are orthogonal molecular assembled systems in which two different molecular assembled structures coexist. Among the three surfactant systems, the CTAB system presented the lowest critical gelation concentration and highest sol-gel transition temperature and viscoelasticity. These differences in gel fiber formation and gel properties were discussed from the viewpoint of the degree of solubilization of the gelator molecules in micelles coexisting with gel fibers and diffusion of the gelator molecules in the gel formation process.
Collapse
|
10
|
Minakawa M, Nakagawa M, Wang KH, Imura Y, Kawai T. Controlling Helical Pitch of Chiral Supramolecular Nanofibers Composed of Two Amphiphiles. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Muneharu Minakawa
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Makoto Nakagawa
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Ke-Hsuan Wang
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshiro Imura
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
11
|
Simancas-Herbada R, Fernández-Carballido A, Aparicio-Blanco J, Slowing K, Rubio-Retama J, López-Cabarcos E, Torres-Suárez AI. Controlled Release of Highly Hydrophilic Drugs from Novel Poly(Magnesium Acrylate) Matrix Tablets. Pharmaceutics 2020; 12:E174. [PMID: 32093038 PMCID: PMC7076391 DOI: 10.3390/pharmaceutics12020174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 11/22/2022] Open
Abstract
The potential of a new poly(magnesium acrylate) hydrogel (PAMgA) as a pharmaceutical excipient for the elaboration of matrix tablets for the extended release of highly hydrophilic drugs was evaluated. The polymer was synthetized with two different crosslinking degrees that were characterized by FTIR and DSC. Their acute oral toxicity was determined in a mouse model, showing no toxicity at doses up to 10 g/kg. Matrix tablets were prepared using metformin hydrochloride as a model drug and the mechanisms involved in drug release (swelling and/or erosion) were investigated using biorrelevant media. This new hydrogel effectively controlled the release of small and highly hydrophilic molecules as metformin, when formulated in matrix tablets for oral administration. The rate of metformin release from PAMgA matrices was mainly controlled by its diffusion through the gel layer (Fickian diffusion). The swelling capacity and the erosion of the matrix tablets influenced the metformin release rate, that was slower at pH 6.8, where polymer swelling is more intensive, than in gastric medium, where matrix erosion is slightly more rapid. The crosslinking degree of the polymer significantly influenced its swelling capacity in acid pH, where swelling is moderate, but not in intestinal fluid, where swelling is more intense.
Collapse
Affiliation(s)
- Rebeca Simancas-Herbada
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (R.S.-H.); (A.F.-C.); (J.A.-B.)
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (R.S.-H.); (A.F.-C.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (R.S.-H.); (A.F.-C.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Karla Slowing
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Jorge Rubio-Retama
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-R.); (E.L.-C.)
| | - Enrique López-Cabarcos
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-R.); (E.L.-C.)
| | - Ana-Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (R.S.-H.); (A.F.-C.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
12
|
The curious case of 12-hydroxystearic acid — the Dr. Jekyll & Mr. Hyde of molecular gelators. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Aramaki K, Koitani S, Takimoto E, Kondo M, Stubenrauch C. Hydrogelation with a water-insoluble organogelator - surfactant mediated gelation (SMG). SOFT MATTER 2019; 15:8896-8904. [PMID: 31617557 DOI: 10.1039/c9sm01700c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The low-molecular-weight gelator (LMG) 12-hydroxyoctadecanoic acid (12-HOA) is insoluble in water, but can be solubilized in surfactant micelles. We therefore solubilized 12-HOA at 80 °C in an aqueous solution of cetyltrimethylammonium bromide (CTAB) containing spherical micelles. On cooling this system down to room temperature, a hydrogel is obtained. We will refer to this process as "surfactant-mediated gelation" (SMG). The hydrogels were formed at a lower 12-HOA concentration when sodium salicylate (NaSal) was added to the CTAB system, which induced the formation of wormlike micelles. Hydrogels obtained by SMG from spherical and wormlike micelles are referred to as gelled micellar phases (GMs) and gelled wormlike micellar phases (GWLMs), respectively. Optical microscopy and transmission electron microscopy (TEM) showed that 12-HOA forms self-assembled fibrillar networks (SAFiNs) in both GMs and GWLMs. The sol-gel transition temperature, Tsol-gel, of the GWLM samples was higher than that of the GM samples. Dynamic rheological measurements revealed gel properties (G' > G'' at all angular frequencies) for both gels; however, a higher viscoelasticity was observed for the GWLM samples, which in turn, was reflected in the higher Tsol-gel. Small- and wide-angle X-ray scattering (SWAXS) showed that micelles and gel fibers coexist in the GM and GWLM samples. Our study demonstrates the gelation of aqueous micellar solutions with water-insoluble LMGs.
Collapse
Affiliation(s)
- Kenji Aramaki
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Sachi Koitani
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Eriko Takimoto
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Masashi Kondo
- Instrumental Analysis Center, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Cosima Stubenrauch
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|