1
|
Mukherjee S, Aoki Y, Kawamura S, Sodeoka M. Ligand-Controlled Copper-Catalyzed Halo-Halodifluoromethylation of Alkenes and Alkynes Using Fluorinated Carboxylic Anhydrides. Angew Chem Int Ed Engl 2024; 63:e202407150. [PMID: 38979689 DOI: 10.1002/anie.202407150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Polyhalogenated molecules are often found as bioactive compounds in nature and are used as synthetic building blocks. Fluoroalkyl compounds hold promise for the development of novel pharmaceuticals and agrochemicals, as the introduction of fluoroalkyl groups is known to improve lipophilicity, membrane permeability, and metabolic stability. Three-component 1,2-halo-halodifluoromethylation reactions of alkenes are useful for their synthesis. However, general methods enabling the introduction of halodifluoromethyl (CF2X) and halogen (X') groups in the desired combination of X and X' are lacking. To address this gap, for the first time, we report a three-component halo-halodifluoromethylation of alkenes and alkynes using combinations of commercially available fluorinated carboxylic anhydrides ((CF2XCO)2O, X=Cl and Br) and alkali metal halides (X'=Cl and Br). In situ prepared fluorinated diacyl peroxides were identified as important intermediates, and the use of appropriate bipyridyl-based ligands and a copper catalyst was essential for achieving high product selectivity. The synthetic utility of the polyhalogenated products was demonstrated by exploiting differences in the reactivities of their C-X and C-X' bonds to achieve selective derivatization. Finally, the reaction mechanism and ligand effect were investigated using experimental and theoretical methods to provide important insights for the further development of catalytic reactions.
Collapse
Affiliation(s)
- Subrata Mukherjee
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuma Aoki
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shintaro Kawamura
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
2
|
Kawamura S, Sodeoka M. Understanding and Controlling Fluorinated Diacyl Peroxides and Fluoroalkyl Radicals in Alkene Fluoroalkylations. CHEM REC 2023; 23:e202300202. [PMID: 37522613 DOI: 10.1002/tcr.202300202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
The demand for practical methods for the synthesis of novel fluoroalkyl molecules is increasing owing to their diverse applications. Our group has achieved efficient difunctionalizing fluoroalkylations of alkenes using fluorinated carboxylic anhydrides as user-friendly fluoroalkyl sources. Fluorinated diacyl peroxide, prepared in situ from carboxylic anhydrides, enables the development of novel reactions when used as a radical fluoroalkylating reagent. In this account, we aim to provide an in-depth understanding of the structure, bonding, and reactivity of fluorinated diacyl peroxides and radicals as well as their control in fluoroalkylation reactions. In the first part of this account, the physical properties and reactivity of diacyl peroxides and fluoroalkyl radicals are described. In the subsequent part, we categorize the reactions into copper-catalyzed and metal-free methods utilizing the oxidizing properties of fluorinated diacyl peroxides. We also outline examples and mechanisms.
Collapse
Affiliation(s)
- Shintaro Kawamura
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
3
|
Hall JR, Blythe IM, Sharninghausen LS, Sanford MS. Copper-Mediated Fluoroalkylation of Aryl Bromides and Chlorides Enabled by Directing Groups. Organometallics 2023; 42:543-546. [PMID: 37841393 PMCID: PMC10575473 DOI: 10.1021/acs.organomet.3c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
This report describes the reactions between N-heterocyclic carbene copper(I) fluoroalkyl complexes and aryl halides bearing ortho-directing groups. Pyridine, pyrazole, oxazoline, imine, and ester directing groups are shown to dramatically enhance the reactivity of aryl bromides and chlorides with (IPr)CuI-fluoroalkyl complexes (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene; fluoroalkyl = difluoromethyl and pentafluoroethyl) to afford aryl-fluoroalkyl coupling products. This approach is leveraged to achieve the Cu-catalyzed directed fluoroalkylation of a series of aryl bromide substrates.
Collapse
Affiliation(s)
- Jonathan R. Hall
- University of Michigan, Department of Chemistry, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Isaac M. Blythe
- University of Michigan, Department of Chemistry, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Liam S. Sharninghausen
- University of Michigan, Department of Chemistry, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- University of Michigan, Department of Chemistry, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Tagami T, Aoki Y, Kawamura S, Sodeoka M. 1,2-Bis-perfluoroalkylations of alkenes and alkynes with perfluorocarboxylic anhydrides via the formation of perfluoroalkylcopper intermediates. Org Biomol Chem 2021; 19:9148-9153. [PMID: 34523640 DOI: 10.1039/d1ob01529j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, Cu-mediated protocol toward the 1,2-bis-perfluoroalkyaltion of alkenes/alkynes was developed. The method proceeded with perfluorocarboxylic anhydrides as inexpensive and readily available perfluoroalkyl sources. Diacyl peroxide was generated in situ from the perfluorocarboxylic anhydrides and H2O2. The key step in this reaction is the formation of a stable perfluoroalkylcopper intermediate that is achieved with the aid of a bipyridyl ligand. Subsequent reaction of the intermediate with perfluoroalkyl-containing alkyl or vinyl radicals affords the desired products.
Collapse
Affiliation(s)
- Takuma Tagami
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Yuma Aoki
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Shintaro Kawamura
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Chen CT, Su YC, Lu CH, Lien CI, Hung SF, Hsu CW, Agarwal R, Modala R, Tseng HM, Tseng PX, Fujii R, Kawashima K, Mori S. Enantioselective Radical Type, 1,2-Oxytrifluoromethylation of Olefins Catalyzed by Chiral Vanadyl Complexes: Importance of Noncovalent Interactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chien-Tien Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yu-Cheng Su
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chia-Hao Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chien-I Lien
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Shiang-Fu Hung
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chan-Wei Hsu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Rachit Agarwal
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ramuasagar Modala
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Hung-Min Tseng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Pin-Xuan Tseng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ryoma Fujii
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Kyohei Kawashima
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Seiji Mori
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
- Frontier Research Center for Applied Atomic Sciences, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
6
|
Ariga K, Fakhrullin R. Nanoarchitectonics on living cells. RSC Adv 2021; 11:18898-18914. [PMID: 35478610 PMCID: PMC9033578 DOI: 10.1039/d1ra03424c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
In this review article, the recent examples of nanoarchitectonics on living cells are briefly explained. Not limited to conventional polymers, functional polymers, biomaterials, nanotubes, nanoparticles (conventional and magnetic ones), various inorganic substances, metal-organic frameworks (MOFs), and other advanced materials have been used as components for nanoarchitectonic decorations for living cells. Despite these artificial processes, the cells can remain active or remain in hibernation without being killed. In most cases, basic functions of the cells are preserved and their resistances against external assaults are much enhanced. The possibilities of nanoarchitectonics on living cells would be high, equal to functional modifications with conventional materials. Living cells can be regarded as highly functionalized objects and have indispensable contributions to future materials nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University Kreml uramı 18 Kazan 42000 Republic of Tatarstan Russian Federation
| |
Collapse
|
7
|
Li Z, Qiu X, Lou J, Wang Q. Progress in Visible-Light Catalyzed C—F Bond Functionalization of gem-Difluoroalkenes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Kawamura S, Mukherjee S, Sodeoka M. Recent advances in reactions using diacyl peroxides as sources of O- and C-functional groups. Org Biomol Chem 2021; 19:2096-2109. [DOI: 10.1039/d0ob02349c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review summarizes recent advances in reactions utilizing diacyl peroxides as O- and C-sources, with examples illustrating how the reactivity of diacyl peroxides in organic reactions can be controlled.
Collapse
Affiliation(s)
- Shintaro Kawamura
- Catalysis and Integrated Research Group
- RIKEN Center for Sustainable Resource Science
- Wako
- Japan
- Synthetic Organic Chemistry Laboratory
| | - Subrata Mukherjee
- Catalysis and Integrated Research Group
- RIKEN Center for Sustainable Resource Science
- Wako
- Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group
- RIKEN Center for Sustainable Resource Science
- Wako
- Japan
- Synthetic Organic Chemistry Laboratory
| |
Collapse
|
9
|
Ariga K. Nanoarchitectonics Revolution and Evolution: From Small Science to Big Technology. SMALL SCIENCE 2020. [DOI: 10.1002/smsc.202000032] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| |
Collapse
|
10
|
Abstract
In spite of only a few naturally occurring products having one or more fluorine atoms, organofluorine compounds have been widely utilized in pharmaceutical, agrochemical, and functional material science fields due to the characteristic properties of the fluorine atom. Therefore, the development of new methods for the introduction of fluorine-containing functional groups has been a long-standing research topic. This article discusses our contributions to this area. The first topic is on the trifluoromethylations of C-C multiple bonds using Togni reagent based on our working hypothesis that hypervalent iodine could be activated by coordination of the carbonyl moiety to the Lewis acid catalyst. The second topic relates to asymmetric fluorofunctionalization of alkenes. A newly designed phase-transfer catalyst consisting of a carboxylate anion functioning as a phase-transfer agent and a primary hydroxyl group as a site that captures the anionic substrate was revealed to be an effective catalyst for asymmetric fluorolactonization. Inspired by the mechanistic studies of fluorolactonization, we produced a linked binaphthyl dicarboxylate catalyst, which catalyzes the 6-endo-fluorocyclization and the deprotonative fluorination of allylic amides in a highly enantioselective manner. The third topic is on C-H fluorofunctionalizations using either catalysis or photoactivation. Benzylic trifluoromethylation, which is still a rare reaction, using Togni reagent and aromatic C-H trifluoromethylation using Umemoto reagent under simple photoirradiation conditions were achieved. In addition, the Csp3-H fluorination of alkyl phthalimide derivatives is demonstrated.
Collapse
|
11
|
Ariga K, Shrestha LK. Fullerene Nanoarchitectonics with Shape-Shifting. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2280. [PMID: 32429148 PMCID: PMC7287900 DOI: 10.3390/ma13102280] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
This short review article introduces several examples of self-assembly-based structural formation and shape-shifting using very simple molecular units, fullerenes (C60, C70, and their derivatives), as fullerene nanoarchitectonics. Fullerene molecules are suitable units for the basic science of self-assembly because they are simple zero-dimensional objects with only a single elemental component, carbon, without any charged or interactive functional groups. In this review article, self-assembly of fullerene molecules and their shape-shifting are introduced as fullerene nanoarchitectonics. An outline and a background of fullerene nanoarchitectonics are first described, followed by various demonstrations, including fabrication of various fullerene nanostructures, such as rods on the cube, holes in the cube, interior channels in the cube, and fullerene micro-horns, and also a demonstration of a new concept, supramolecular differentiation.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
12
|
Wu S, Song H, Zhang C. Fluoroalkylation of Diazo Compounds with Diverse R
fn
Reagents. Chem Asian J 2020; 15:1660-1677. [DOI: 10.1002/asia.202000305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/05/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Shuai Wu
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 China
| | - Hai‐Xia Song
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 China
| | - Cheng‐Pan Zhang
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 China
| |
Collapse
|
13
|
Liang X, Li L, Tang J, Komiyama M, Ariga K. Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200012] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Jiaxuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
14
|
Shrestha RG, Maji S, Shrestha LK, Ariga K. Nanoarchitectonics of Nanoporous Carbon Materials in Supercapacitors Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E639. [PMID: 32235393 PMCID: PMC7221662 DOI: 10.3390/nano10040639] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/23/2023]
Abstract
High surface area and large pore volume carbon materials having hierarchical nanoporous structure are required in high performance supercapacitors. Such nanoporous carbon materials can be fabricated from organic precursors with high carbon content, such as synthetic biomass or agricultural wastes containing cellulose, hemicellulose, and lignin. Using recently developed unique concept of materials nanoarchitectonics, high performance porous carbons with controllable surface area, pore size distribution, and hierarchy in nanoporous structure can be fabricated. In this review, we will overview the recent trends and advancements on the synthetic methods for the production of hierarchical porous carbons with one- to three-dimensional network structure with superior performance in supercapacitors applications. We highlight the promising scope of accessing nanoporous graphitic carbon materials from: (i) direct conversion of single crystalline self-assembled fullerene nanomaterials and metal organic frameworks, (ii) hard- and soft-templating routes, and (iii) the direct carbonization and/or activation of biomass or agricultural wastes as non-templating routes. We discuss the appealing points of the different synthetic carbon sources and natural precursor raw-materials derived nanoporous carbon materials in supercapacitors applications.
Collapse
Affiliation(s)
- Rekha Goswami Shrestha
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI−MANA), National Institute for Materials Science (NIMS), 1−1 Namiki, Tsukuba 305−0044, Japan; (S.M.); (L.K.S.)
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277−8561, Japan
| |
Collapse
|
15
|
Ariga K, Yamauchi Y. Nanoarchitectonics from Atom to Life. Chem Asian J 2020; 15:718-728. [PMID: 32017354 DOI: 10.1002/asia.202000106] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Functional materials with rational organization cannot be directly created only by nanotechnology-related top-down approaches. For this purpose, a novel research paradigm next to nanotechnology has to be established to create functional materials on the basis of deep nanotechnology knowledge. This task can be assigned to an emerging concept, nanoarchitectonics. In the nanoarchitectonics approaches, functional materials were architected through combination of atom/molecular manipulation, organic chemical synthesis, self-assembly and related spontaneous processes, field-applied assembly, micro/nano fabrications, and bio-related processes. In this short review article, nanoarchitectonics-related approaches on materials fabrications and functions are exemplified from atom-scale to living creature level. Based on their features, unsolved problems for future developments of the nanoarchitectonics concept are finally discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics MANA, National Institute for Materials Science NIMS, 1-1 Namiki, 305-0044, Tsukuba, Ibaraki, JAPAN
| | - Yusuke Yamauchi
- University of Queensland, School of Chemical Engineering, AUSTRALIA
| |
Collapse
|