1
|
Ariga K. Liquid-Liquid Interfacial Nanoarchitectonics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305636. [PMID: 37641176 DOI: 10.1002/smll.202305636] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Science in the small world has become a crucial key that has the potential to revolutionize materials technology. This trend is embodied in the postnanotechnology concept of nanoarchitectonics. The goal of nanoarchitectonics is to create bio-like functional structures, in which self-organized and hierarchical structures are working efficiently. Liquid-liquid interface like environments such as cell membrane surface are indispensable for the expression of biological functions through the accumulation and organization of functional materials. From this viewpoint, it is necessary to reconsider the liquid-liquid interface as a medium where nanoarchitectonics can play an active role. In this review, liquid-liquid interfacial nanoarchitectonics is classified by component materials such as organic, inorganic, carbon, and bio, and recent research examples are discussed. Examples discussed in this paper include molecular aggregates, supramolecular polymers, conductive polymers film, crystal-like capsules, block copolymer assemblies, covalent organic framework (COF) films, complex crystals, inorganic nanosheets, colloidosomes, fullerene assemblies, all-carbon π-conjugated graphite nanosheets, carbon nanoskins and fullerphene thin films at liquid-liquid interfaces. Furthermore, at the liquid-liquid interface using perfluorocarbons and aqueous phases, cell differentiation controls are discussed with the self-assembled structure of biomaterials. The significance of liquid-liquid interfacial nanoarchitectonics in the future development of materials will then be discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha Kashiwa, Tokyo, 277-8561, Japan
| |
Collapse
|
2
|
Bhadra BN, Shrestha LK, Ma R, Hill JP, Yamauchi Y, Ariga K. Metal-Organic Framework on Fullerene (MOFOF) as a Hierarchical Composite by the Integration of Coordination Chemistry and Supramolecular Chemistry. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39056580 DOI: 10.1021/acsami.4c09747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
There is a synergy between coordination chemistry and supramolecular chemistry that has led to the development of innovative hierarchical composites with diverse functionalities. Here, we present a novel approach for the synthesis and characterization of a metal-organic framework on fullerene (MOFOF) composites, achieved through the integration of coordination chemistry and supramolecular chemistry principles. The hierarchical nature of the MOFOF harnesses the inherent properties of metal-organic frameworks and fullerenes. The two-step synthesis procedure involves controlled assembly of fullerenes as tube-like nanostructures (fullerene nanotube: FNT), their surface functionalization, and the on-surface growth of the MOF (in this case, ZIF-67). The method permits the precise tuning of morphology, effective distribution of MOF-on-FNT, and tight compositional control. The materials were comprehensively structurally characterized using electron microscopy, spectroscopic techniques, and other methods to elucidate the unique features and interactions within the MOFOF composites. The main findings reveal that the novel synthesis and characterization of MOFOF composites demonstrate the successful integration of coordination chemistry and supramolecular chemistry for the designing and fabricating of advanced hierarchical composites with tailored properties, including micro- and mesopore channels, interfacial facets, and defect sites. These properties are expected to lead to numerous potential applications such as gas storage and separation, catalysis, sensing, energy storage, and environmental remediation. However, only the capability of acid vapor sensing was tested and is described here.
Collapse
Affiliation(s)
- Biswa Nath Bhadra
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Lok Kumar Shrestha
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Renzhi Ma
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Jonathan P Hill
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
3
|
Nanospiked paper: Microfibrous cellulose materials nanostructured via partial hydrolysis and self-assembly. Carbohydr Polym 2023; 300:120257. [DOI: 10.1016/j.carbpol.2022.120257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/02/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
|
4
|
Zhou Q, Si Z, Wang K, Li K, Hong W, Zhang Y, Li P. Enzyme-triggered smart antimicrobial drug release systems against bacterial infections. J Control Release 2022; 352:507-526. [PMID: 36341932 DOI: 10.1016/j.jconrel.2022.10.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
The rapid emergence and spread of drug-resistant bacteria, as one of the most pressing public health threats, are declining our arsenal of available antimicrobial drugs. Advanced antimicrobial drug delivery systems that can achieve precise and controlled release of antimicrobial agents in the microenvironment of bacterial infections will retard the development of antimicrobial resistance. A variety of extracellular enzymes are secreted by bacteria to destroy physical integrity of tissue during their invasion of host body, which can be utilized as stimuli to trigger "on-demand" release of antimicrobials. In the past decade, such bacterial enzyme responsive drug release systems have been intensively studied but few review has been released. Herein, we systematically summarize the recent progress of smart antimicrobial drug delivery systems triggered by bacteria secreted enzymes such as lipase, hyaluronidase, protease and antibiotic degrading enzymes. The perspectives and existing key issues of this field will also be discussed to fuel the innovative research and translational application in the future.
Collapse
Affiliation(s)
- Qian Zhou
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Kunpeng Li
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Weilin Hong
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Peng Li
- Frontiers Science Center for Flexible Electronics, (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| |
Collapse
|
5
|
Ariga K. Liquid Interfacial Nanoarchitectonics: Molecular Machines, Organic Semiconductors, Nanocarbons, Stem Cells, and Others. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Zhang Y, Ranaei Pirmardan E, Barakat A, Naseri M, Hafezi-Moghadam A. Nanoarchitectonics for Photo-Controlled Intracellular Drug Release in Immune Modulation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42976-42987. [PMID: 36103264 DOI: 10.1021/acsami.2c12440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Local stimuli differentiate monocytes into M2-like macrophages that mechanistically drive the pathologies in cancer and age-related macular degeneration (AMD). A photo-controlled nanodrug that halts macrophage polarization through Rho-associated kinase (ROCK) inhibition was developed. A small-molecule ROCK inhibitor, fasudil, was conjugated to a photo-responsive group and a short poly(ethylene glycol) (PEG) chain. This resulted in the novel amphiphilic prodrug, PEG-2-(4'-(di(prop-2-yn-1-yl)amino)-4-nitro-[1,1'-biphenyl]-yl)propan-1-ol (PANBP)-Fasudil, that spontaneously formed micelles. Ultraviolet (UV) irradiation of PEG-PANBP-Fasudil nanoparticles rapidly released fasudil. For visualization of linker degradation, a reporter nanoprobe was synthesized, in which 2-Me-4-OMe TokyoGreen (TG), a fluorophore that does not fluoresce in conjugation, was incorporated. Irradiation of nanoprobe-laden monocytes activated the reporter fluorophore. Cytokine stimulation differentiated monocytes into macrophages, while UV irradiation prevented polarization of PEG-PANBP-Fasudil nanoparticle-laden monocytes. Nanoarchitectonics-based design opens new possibilities for intracellular drug delivery and precise spatiotemporal immune cell modulation toward the development of new therapies.
Collapse
Affiliation(s)
- Yuanlin Zhang
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, 75 Francis St., Thorn Research Building, Boston, Massachusetts 02115, United States
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, 75 Francis St., Thorn Research Building, Boston, Massachusetts 02115, United States
| | - Aliaa Barakat
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, 75 Francis St., Thorn Research Building, Boston, Massachusetts 02115, United States
| | - Marzieh Naseri
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, 75 Francis St., Thorn Research Building, Boston, Massachusetts 02115, United States
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, 75 Francis St., Thorn Research Building, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Nanoarchitectonics of Starch Nanoparticles Rosin Catalyzed by Algerian Natural Montmorillonite (Maghnite-H+) for Enhanced Antimicrobial Activity. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Yu A, Peng Z, Li Y, Zhu L, Peng P, Li FF. Fullerene-Derived Carbon Nanotubes and Their Electrocatalytic Properties in Oxygen Reduction and Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42337-42346. [PMID: 36095158 DOI: 10.1021/acsami.2c10387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon-based materials with superior electrochemical performances have been prepared from fullerenes by releasing their intrinsic advantages such as pentagon defects and π-electron carbons. To the best of our knowledge, fullerene-derived carbon nanotubes (CNTs) and their electrochemical behavior have not been experimentally investigated. In this work, in situ growth of CNT composites from fullerene is realized via a self-catalyzed process by employing an Fe-decorated fullerene (ferrocenylpyrrolidine C60) as the precursor and NH3 as the pyrolysis atmosphere. The results show that the in situ Fe doping in fullerene, the self-assembly of fullerene molecules, the pyrolysis temperature, and the NH3 flow play essential roles in the generation of CNTs. The as-prepared MN7-10/3 CNT composite exhibits efficient oxygen reduction performance with E1/2 = 0.82 V and Eon = 1.02 V vs the RHE. The flexible solid-state Zn-air battery constructed based on MN7-10/3 exhibits a superior power density (109.3 mW cm-2 at 180.9 mA cm-2) and long-term durability (the voltage remains at 95.6% of the initial value after discharging for 5000 s) compared with the benchmark Pt/C catalyst. The transformation of the Fe-decorated fullerene to CNTs reveals a new function of fullerenes and demonstrates a new solid-state synthetic method for CNTs.
Collapse
Affiliation(s)
- Ao Yu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Zhiyao Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Yaozhou Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Longtao Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Ping Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Fang-Fang Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China
| |
Collapse
|
9
|
Diez-Escudero A, Carlsson E, Andersson B, Järhult JD, Hailer NP. Trabecular Titanium for Orthopedic Applications: Balancing Antimicrobial with Osteoconductive Properties by Varying Silver Contents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41751-41763. [PMID: 36069272 PMCID: PMC9501801 DOI: 10.1021/acsami.2c11139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Periprosthetic joint infection (PJI) and implant loosening are the most common complications after joint replacement surgery. Due to their increased surface area, additively manufactured porous metallic implants provide optimal osseointegration but they are also highly susceptible to bacterial colonization. Antibacterial surface coatings of porous metals that do not inhibit osseointegration are therefore highly desirable. The potential of silver coatings on arthroplasty implants to inhibit PJI has been demonstrated, but the optimal silver content and release kinetics have not yet been defined. A tight control over the silver deposition coatings can help overcome bacterial infections while reducing cytotoxicity to human cells. In this regard, porous titanium sputtered with silver and titanium nitride with increasing silver contents enabled controlling the antibacterial effect against common PJI pathogens while maintaining the metabolic activity of human primary cells. Electron beam melting additively manufactured titanium alloys, coated with increasing silver contents, were physico-chemically characterized and investigated for effects against common PJI pathogens. Silver contents from 7 at % to 18 at % of silver were effective in reducing bacterial growth and biofilm formation. Staphylococcus epidermidis was more susceptible to silver ions than Staphylococcus aureus. Importantly, all silver-coated titanium scaffolds supported primary human osteoblasts proliferation, differentiation, and mineralization up to 28 days. A slight reduction of cell metabolic activity was observed at earlier time points, but no detrimental effects were found at the end of the culture period. Silver release from the silver-coated scaffolds also had no measurable effects on primary osteoblast gene expression since similar expression of genes related to osteogenesis was observed regardless the presence of silver. The investigated silver-coated porous titanium scaffolds may thus enhance osseointegration while reducing the risk of biofilm formation by the most common clinically encountered pathogens.
Collapse
Affiliation(s)
- Anna Diez-Escudero
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Elin Carlsson
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Brittmarie Andersson
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Josef D. Järhult
- Zoonosis
Science Center, Department of Medical Sciences, Uppsala University, Uppsala 751 85, Sweden
| | - Nils P. Hailer
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| |
Collapse
|
10
|
Shen X, Song J, Kawakami K, Ariga K. Molecule-to-Material-to-Bio Nanoarchitectonics with Biomedical Fullerene Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5404. [PMID: 35955337 PMCID: PMC9369991 DOI: 10.3390/ma15155404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Nanoarchitectonics integrates nanotechnology with various other fields, with the goal of creating functional material systems from nanoscale units such as atoms, molecules, and nanomaterials. The concept bears strong similarities to the processes and functions seen in biological systems. Therefore, it is natural for materials designed through nanoarchitectonics to truly shine in bio-related applications. In this review, we present an overview of recent work exemplifying how nanoarchitectonics relates to biology and how it is being applied in biomedical research. First, we present nanoscale interactions being studied in basic biology and how they parallel nanoarchitectonics concepts. Then, we overview the state-of-the-art in biomedical applications pursuant to the nanoarchitectonics framework. On this basis, we take a deep dive into a particular building-block material frequently seen in nanoarchitectonics approaches: fullerene. We take a closer look at recent research on fullerene nanoparticles, paying special attention to biomedical applications in biosensing, gene delivery, and radical scavenging. With these subjects, we aim to illustrate the power of nanomaterials and biomimetic nanoarchitectonics when applied to bio-related applications, and we offer some considerations for future perspectives.
Collapse
Affiliation(s)
- Xuechen Shen
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| |
Collapse
|
11
|
Ariga K. Materials nanoarchitectonics in a two-dimensional world within a nanoscale distance from the liquid phase. NANOSCALE 2022; 14:10610-10629. [PMID: 35838591 DOI: 10.1039/d2nr02513b] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Promoted understanding of nanotechnology has enabled the construction of functional materials with nanoscale-regulated structures. Accordingly, materials science requires one-step further innovation by coupling nanotechnology with the other materials sciences. As a post-nanotechnology concept, nanoarchitectonics has recently been proposed. It is a methodology to architect functional material systems using atomic, molecular, and nanomaterial unit-components. One of the attractive methodologies would be to develop nanoarchitectonics in a defined dimensional environment with certain dynamism, such as liquid interfaces. However, nanoarchitectonics at liquid interfaces has not been fully explored because of difficulties in direct observations and evaluations with high-resolutions. This unsatisfied situation in the nanoscale understanding of liquid interfaces may keep liquid interfaces as unexplored and attractive frontiers in nanotechnology and nanoarchitectonics. Research efforts related to materials nanoarchitectonics on liquid interfaces have been continuously made. As exemplified in this review paper, a wide range of materials can be organized and functionalized on liquid interfaces, including organic molecules, inorganic nanomaterials, hybrids, organic semiconductor thin films, proteins, and stem cells. Two-dimensional nanocarbon sheets have been fabricated by molecular reactions at dynamically moving interfaces, and metal-organic frameworks and covalent organic frameworks have been fabricated by specific interactions and reactions at liquid interfaces. Therefore, functions such as sensors, devices, energy-related applications, and cell control are being explored. In fact, the potential for the nanoarchitectonics of functional materials in two-dimensional nanospaces at liquid surfaces is sufficiently high. On the basis of these backgrounds, this short review article describes recent approaches to materials nanoarchitectonics in a liquid-based two-dimensional world, i.e., interfacial regions within a nanoscale distance from the liquid phase.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
12
|
Fullerene Rosette: Two-Dimensional Interactive Nanoarchitectonics and Selective Vapor Sensing. Int J Mol Sci 2022; 23:ijms23105454. [PMID: 35628264 PMCID: PMC9141234 DOI: 10.3390/ijms23105454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
The simplicity of fullerenes as assembled components provides attractive opportunities for basic understanding in self-assembly research. We applied in situ reactive methods to the self-assembly process of C60 molecules with melamine/ethylenediamine components in solution, resulting in a novel type of fullerene assemblies, micron-sized two-dimensional, amorphous shape-regular objects, fullerene rosettes. ATR−FTIR spectra, XPS, and TGA results suggest that the melamine/ethylenediamine components strongly interact and/or are covalently linked with fullerenes in the fullerene rosettes. The broad peak for layer spacing in the XRD patterns of the fullerene rosettes corresponds roughly to the interdigitated fullerene bilayer or monolayer of modified fullerene molecules. The fullerene rosettes are made from the accumulation of bilayer/monolayer assemblies of hybridized fullerenes in low crystallinity. Prototype sensor systems were fabricated upon immobilization of the fullerene rosettes onto surfaces of a quartz crystal microbalance (QCM), and selective sensing of formic acid was demonstrated as preliminary results for social-demanded toxic material sensing. The QCM sensor with fullerene rosette is categorized as one of the large-response sensors among reported examples. In selectivity to formic acids against basic guests (formic acid/pyridine >30) or aromatic guests (formic acid/toluene >110), the fullerene rosette-based QCM sensor also showed superior performance.
Collapse
|
13
|
Ariga K, Fakhrullin R. Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220071] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, 42000, Republic of Tatarstan, Russian Federation
| |
Collapse
|
14
|
Bhadra BN, Shrestha LK, Ariga K. Porous carbon nanoarchitectonics for the environment: detection and adsorption. CrystEngComm 2022. [DOI: 10.1039/d2ce00872f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a post-nanotechnology concept, nanoarchitectonics has emerged from the 20th century to the 21st century. This review summarizes the recent progress in the field of metal-free porous carbon nanoarchitectonics.
Collapse
Affiliation(s)
- Biswa Nath Bhadra
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|