1
|
Mikhailenko MV, Ivanov VV, Shestakov AF, Kuzmin AV, Khasanov SS, Otsuka A, Yamochi H, Kitagawa H, Konarev DV. Magnetic behavior and ground spin states for coordination {L·[M II(Hal) 2] 3} 3- assemblies (Hal = Cl or I) of radical trianion hexacyanohexaazatriphenylenes (L) with three coordinated high-spin Fe II ( S = 2) or Co II ( S = 3/2) centers. Dalton Trans 2023; 52:11222-11233. [PMID: 37525575 DOI: 10.1039/d3dt01571h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A series of trianion assemblies of hexaazatriphenylenehexacarbonitrile {HAT(CN)6} and hexaazatrinaphthylenehexacarbonitrile {HATNA(CN)6} with three Fe(II) or Co(II) ions: {cryptand(K+)}3·{HATNA(CN)6·(FeIII2)3}3-·2C6H4Cl2 (1), {cryptand(K+)}3·{HATNA(CN)6·(CoIII2)3}3-·2C6H4Cl2 (2), and (CV+)3·{HAT(CN)6·(CoIICl2)3}3-·0.5(CVCl)·2.5C6H4Cl2 (3) are synthesized (CVCl = crystal violet). Salt 1 has a χMT value of 9.80 emu K mol-1 at 300 K, indicating a contribution of three high-spin FeII (S = 2) and one S = 1/2 of HATNA(CN)6˙3-. The χMT value increases with cooling up to 12.92 emu K mol-1 at 28 K, providing a positive Weiss temperature of +20 K. Such behavior is described using a strong antiferromagnetic coupling between S = 2 and S = 1/2 with J1 = -82.1 cm-1 and a weaker FeII-FeII antiferromagnetic coupling with J2 = -7.0 cm-1. As a result, the spins of three Fe(II) ions (S = 2) align parallel to each other forming a high-spin S = 11/2 system. Density functional theory (DFT) calculations support a high-spin state of CoII (S = 3/2) for 2 and 3. However, the χMT value of 2 and 3 is 2.25 emu K mol-1 at 300 K, which is smaller than 6 emu K mol-1 calculated for the system with three independent S = 3/2 and one S = 1/2 spins. In contrast to 1, the χMT values decrease with cooling to 0.13-0.36 emu K mol-1 at 1.9 K, indicating that spins of cobalt atoms align antiparallel to each other. Data fitting using PHI software for the model consisting of three high-spin Co(II) ions and an S = 1/2 radical ligand shows very large CoII-L˙3- coupling for 2 and 3 with J1 values of -442 and -349 cm-1. The CoII-CoII coupling via the ligand (J2) is also large, being -100 and -84 cm-1, respectively, which is more than 10 times larger than that of 1. One of the reasons for the J2 increase may be the shortening of the Co-N(L) bonds in 3 and 2 to 2.02(2) and 1.993(12) Å. DFT calculations support the population of the quartet state for the Co3 system, whereas the high-spin decet (S = 9/2) state is positioned higher by 680 cm-1 and is not populated at 300 K. This is explained by the large CoII-CoII coupling. Thus, a balance between J1 and J2 couplings provides parallel or antiparallel alignment of the FeII and CoII spins, leading to high- or low-spin ground states of {L·[MII(Hal)2]3}3-.
Collapse
Affiliation(s)
- Maxim V Mikhailenko
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Moscow region, 142432, Russia.
| | - Vladislav V Ivanov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Moscow region, 142432, Russia.
- Moscow State University, Leninskie Gory, Moscow, 119991 Russia
| | - Alexander F Shestakov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Moscow region, 142432, Russia.
- Moscow State University, Leninskie Gory, Moscow, 119991 Russia
| | - Aleksey V Kuzmin
- Institute of Solid State Physics RAS, Chernogolovka, Moscow region, 142432 Russia
| | - Salavat S Khasanov
- Institute of Solid State Physics RAS, Chernogolovka, Moscow region, 142432 Russia
| | - Akihiro Otsuka
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yamochi
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Dmitri V Konarev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Moscow region, 142432, Russia.
| |
Collapse
|
2
|
Prather KV, Tsui EY. Photoinduced Ligand-to-Metal Charge Transfer of Cobaltocene: Radical Release and Catalytic Cyclotrimerization. Inorg Chem 2023; 62:2128-2134. [PMID: 36701811 DOI: 10.1021/acs.inorgchem.2c03779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Irradiation of cobalt metallocenes at the ligand-to-metal charge transfer energies results in the labilization of the cyclopentadienyl-cobalt bond and radical release. The cyclopentadienyl radical is detected by electron paramagnetic resonance (EPR) spectroscopy using a spin trap and can also be chemically trapped using hydrogen-atom-donating reagents. This reaction presents a new photochemical method of generating new cobalt complexes or of forming cyclopentadienyl cobalt(I) species that are active for catalytic [2 + 2 + 2] cyclotrimerization reactions. More importantly, these results also show that cobaltocene should not be considered as a photostable redox reagent under many conditions, including those relevant to photovoltaics or photocatalysis.
Collapse
Affiliation(s)
- Keaton V Prather
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Emily Y Tsui
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
3
|
De S, Flambard A, Xu B, Chamoreau L, Gontard G, Lisnard L, Li Y, Boillot M, Lescouëzec R. Molecular Magnetic Materials Based on {Co
III
(Tp*)(CN)
3
}
−
Cyanidometallate: Combined Magnetic, Structural and
59
Co NMR Study. Chemistry 2022; 28:e202200783. [PMID: 35716039 PMCID: PMC9543823 DOI: 10.1002/chem.202200783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/09/2022]
Abstract
The cyanidocobaltate of formula fac‐PPh4[CoIII(Me2Tp)(CN)3] ⋅ CH3CN (1) has been used as a metalloligand to prepare polynuclear magnetic complexes (Me2Tp=hydrotris(3,5‐dimethylpyrazol‐1‐yl)borate). The association of 1 with in situ prepared [FeII(bik)2(MeCN)2](OTf)2 (bik=bis(1‐methylimidazol‐2‐yl)ketone) leads to a molecular square of formula {[CoIII{(Me2Tp)}(CN)3]2[FeII(bik)2]2}(OTf)2 ⋅ 4MeCN ⋅ 2H2O (2), whereas the self‐assembly of 1 with preformed cluster [CoII2(OH2)(piv)4(Hpiv)4] in MeCN leads to the two‐dimensional network of formula {[CoII2(piv)3]2[CoIII(Me2Tp)(CN)3]2 ⋅ 2CH3CN}∞ (3). These compounds were structurally characterized via single crystal X‐ray analysis and their spectroscopic (FTIR, UV‐Vis and 59Co NMR) properties and magnetic behaviours were also investigated. Bulk magnetic susceptibility measurements reveal that 1 is diamagnetic and 3 is paramagnetic throughout the explored temperature range, whereas 2 exhibits sharp spin transition centered at ca. 292 K. Compound 2 also exhibits photomagnetic effects at low temperature, selective light irradiations allowing to promote reversibly and repeatedly low‐spin⇔high‐spin conversion. Besides, the diamagnetic nature of the Co(III) building block allows us studying these compounds by means of 59Co NMR spectroscopy. Herein, a 59Co chemical shift has been used as a magnetic probe to corroborate experimental magnetic data obtained from bulk magnetic susceptibility measurements. An influence of the magnetic state of the neighbouring atoms is observed on the 59Co NMR signals. Moreover, for the very first time, 59Co NMR technique has been successfully introduced to investigate molecular materials with distinct magnetic properties.
Collapse
Affiliation(s)
- Siddhartha De
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Alexandrine Flambard
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Buqin Xu
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Lise‐Marie Chamoreau
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Geoffrey Gontard
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Laurent Lisnard
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Yanling Li
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Marie‐Laure Boillot
- Institut Chimie Moléculaire et Matériaux d'Orsay UMR CNRS 8182 Université Paris-Saclay, CNRS 91405 Orsay France
| | - Rodrigue Lescouëzec
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| |
Collapse
|
4
|
Miecznikowski JR, Zygmont SE, Jasinski JP, Kaur M, Almanza E, Kharbouch RM, Bonitatibus SC, Mircovich EE, Le Magueres P, Reinheimer E, Weitz AC. Synthesis, characterization, and electrochemistry of SNS cobalt(II) tridentate complexes. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Ksiądzyna M, Kinzhybalo V, Bieńko A, Medycki W, Jakubas R, Rajnák C, Boca R, Ozarowski A, Ozerov M, Piecha-Bisiorek A. Symmetry-Breaking Phase Transitions, Dielectric and Magnetic properties of Pyrrolidinium-Tetrahalidocobaltates. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00187j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report the physicochemical characteristics of novel Co-based pyrrolidinium analogs: (C4H10N)2CoCl4 (PCC) and (C4H10N)2CoBr4 (PCB). Both compounds consist of the zero-dimensional (OD) anionic network and disordered pyrolidinium cations. The structural...
Collapse
|
6
|
Kowalkowska-Zedler D, Nedelko N, Kazimierczuk K, Aleshkevych P, Łyszczek R, Ślawska-Waniewska A, Pladzyk A. Novel tetrahedral cobalt(ii) silanethiolates: structures and magnetism. RSC Adv 2020; 10:29100-29108. [PMID: 35521135 PMCID: PMC9055939 DOI: 10.1039/d0ra06036d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022] Open
Abstract
Three heteroleptic complexes of Co(ii) tri-tert-butoxysilanethiolates have been synthesized with piperidine [Co{SSi(OtBu)3}2(ppd)2] 1, piperazine [Co{SSi(OtBu)3}2(NH3)]2(μ-ppz)·2CH3CN 2, and N-ethylimidazole [Co{SSi(OtBu)3}2(etim)2] 3. The complexes have been characterized by a single-crystal X-ray, revealing their tetrahedral geometry on Co(ii) coordinated by two nitrogen and two sulfur atoms. Complexes 1 and 3 are mononuclear, whereas 2 is binuclear. The spectral properties and thermal properties of 1-3 complexes were established by FTIR spectroscopy for solid samples and TGA. The magnetic properties of complexes 1, 2, and 3 have been investigated by static magnetic measurements and X-band EPR spectroscopy. These studies have shown that 1 and 3, regardless of the similarity in structure of CoN2S2 cores, demonstrate different types of local magnetic anisotropy. Magnetic investigations of 2 reveal the presence of weak antiferromagnetic intra-molecular Co(ii)-Co(ii) interactions that are strongly influenced by the local magnetic anisotropy of individual Co(ii) ions.
Collapse
Affiliation(s)
- Daria Kowalkowska-Zedler
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology Narutowicza Str. 11/12 80-233 Gdańsk Poland
| | - Natalia Nedelko
- Institute of Physics, Polish Academy of Sciences Aleja Lotników 32/46 02-668 Warsaw Poland
| | - Katarzyna Kazimierczuk
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology Narutowicza Str. 11/12 80-233 Gdańsk Poland
| | - Pavlo Aleshkevych
- Institute of Physics, Polish Academy of Sciences Aleja Lotników 32/46 02-668 Warsaw Poland
| | - Renata Łyszczek
- Department of Coordination and General Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin M.C. Skłodowska Sq. 2 20-031 Lublin Poland
| | - Anna Ślawska-Waniewska
- Institute of Physics, Polish Academy of Sciences Aleja Lotników 32/46 02-668 Warsaw Poland
| | - Agnieszka Pladzyk
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology Narutowicza Str. 11/12 80-233 Gdańsk Poland
| |
Collapse
|
7
|
A combined experimental and theoretical study on an ionic cobalt(III/II) complex with a Schiff base ligand. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Kowalkowska-Zedler D, Dołęga A, Nedelko N, Łyszczek R, Aleshkevych P, Demchenko I, Łuczak J, Slawska-Waniewska A, Pladzyk A. Structural, magnetic and spectral properties of tetrahedral cobalt(ii) silanethiolates: a variety of structures and manifestation of field-induced slow magnetic relaxation. Dalton Trans 2020; 49:697-710. [PMID: 31848544 DOI: 10.1039/c9dt03722e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Blue crystals of five heteroleptic cobalt(ii) silanethiolates 1-5 have been obtained by the reaction of [Co{SSi(tBuO)3}2(NH3)]2 with aminopyridines and aminomethylpyridines at an appropriate molar ratio and their structural, spectral, thermal and magnetic properties have been established and described. All complexes 1-5 contain Co(ii) ions in a tetrahedral CoN2S2 environment formed by (tBuO)3SiS- residues and pyridines and present variable structures. Complexes 1-3 are mononuclear [Co{SSi(tBuO)3}2(L1)2] (L1 = 2-aminopyridine 2AP, 3-aminopyridine 3AP, and 4-aminopyridine 4AP). The application of 3AMP and 4AMP (3-aminomethylpyridine and 4-aminomethylpyridine) allows either dinuclear complex 4 [Co{SSi(tBuO)3}2(μ-3AMP)]2 or 1D coordination polymer 5 with the formula of [Co{SSi(tBuO)3}2(μ-4AMP)]n to be obtained. The molecular structures of 1-5 were determined by single-crystal X-ray and powder diffraction, UV-vis and FTIR spectrocopy for solid samples and their thermal properties were characterized by TG-DSC and TG-FTIR methods. The dc and ac magnetic and EPR studies of polycrystalline samples have been performed. For all complexes, the obtained data show a behavior typical of paramagnetic high-spin Co(ii) ions in a tetrahedral geometry, with a considerable contribution of the ZFS effect in a low temperature range. All complexes were also probed for SIM behavior. The modeling of the magnetic and EPR data was done for samples 1, 3, 4 and 5 to estimate ZFS parameters. The obtained results imply a negative value of the axial parameter D in complex 4 and positive D values for the rest of the compounds. A comparative magneto-structural analysis of complexes 4 and 5 points to the high sensitivity of the single-ion magnetic anisotropy of tetrahedral Co(ii) complexes to subtle changes in the first and second coordination spheres of Co(ii) ions.
Collapse
Affiliation(s)
- D Kowalkowska-Zedler
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Galle LM, Cutsail Iii GE, Nischwitz V, DeBeer S, Span I. Spectroscopic characterization of the Co-substituted C-terminal domain of rubredoxin-2. Biol Chem 2018; 399:787-798. [PMID: 29894292 DOI: 10.1515/hsz-2018-0142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/25/2018] [Indexed: 11/15/2022]
Abstract
Pseudomonas putida rubredoxin-2 (Rxn2) is an essential member of the alkane hydroxylation pathway and transfers electrons from a reductase to the membrane-bound hydroxylase. The regioselective hydroxylation of linear alkanes is a challenging chemical transformation of great interest for the chemical industry. Herein, we report the preparation and spectroscopic characterization of cobalt-substituted P. putida Rxn2 and a truncated version of the protein consisting of the C-terminal domain of the protein. Our spectroscopic data on the Co-substituted C-terminal domain supports a high-spin Co(II) with a distorted tetrahedral coordination environment. Investigation of the two-domain protein Rxn2 provides insights into the metal-binding properties of the N-terminal domain, the role of which is not well understood so far. Circular dichroism, electron paramagnetic resonance and X-ray absorption spectroscopies support an alternative Co-binding site within the N-terminal domain, which appears to not be relevant in nature. We have shown that chemical reconstitution in the presence of Co leads to incorporation of Co(II) into the active site of the C-terminal domain, but not the N-terminal domain of Rxn2 indicating distinct roles for the two rubredoxin domains.
Collapse
Affiliation(s)
- Lisa M Galle
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - George E Cutsail Iii
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Volker Nischwitz
- Central Institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Ingrid Span
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Zahariou G. Characterization of the High-Spin Co(II) Intermediate Species of the O2-Evolving Co4O4 Cubic Molecules. Inorg Chem 2017; 56:6105-6113. [DOI: 10.1021/acs.inorgchem.7b00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Georgia Zahariou
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
11
|
Suturina EA, Nehrkorn J, Zadrozny JM, Liu J, Atanasov M, Weyhermüller T, Maganas D, Hill S, Schnegg A, Bill E, Long JR, Neese F. Magneto-Structural Correlations in Pseudotetrahedral Forms of the [Co(SPh)4]2– Complex Probed by Magnetometry, MCD Spectroscopy, Advanced EPR Techniques, and ab Initio Electronic Structure Calculations. Inorg Chem 2017; 56:3102-3118. [DOI: 10.1021/acs.inorgchem.7b00097] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elizaveta A. Suturina
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
- Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Joscha Nehrkorn
- Berlin Joint EPR Lab, Institute for Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße
5, 12489 Berlin, Germany
| | - Joseph M. Zadrozny
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junjie Liu
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Mihail Atanasov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
- Bulgarian Academy of Sciences, Institute of General and Inorganic
Chemistry, Akad. Georgi
Bontchev Street 11, 1113 Sofia, Bulgaria
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios Maganas
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Stephen Hill
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander Schnegg
- Berlin Joint EPR Lab, Institute for Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße
5, 12489 Berlin, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Jeffrey R. Long
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
12
|
Fataftah MS, Coste SC, Vlaisavljevich B, Zadrozny JM, Freedman DE. Transformation of the coordination complex [Co(C 3S 5) 2] 2- from a molecular magnet to a potential qubit. Chem Sci 2016; 7:6160-6166. [PMID: 30034755 PMCID: PMC6024178 DOI: 10.1039/c6sc02170k] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/09/2016] [Indexed: 12/25/2022] Open
Abstract
We employ ac susceptibility as a probe of small changes of transverse zero-field splitting, revealing that these subtle changes transform [Co(C3S5)2]2– from a molecular magnet to a candidate qubit.
Mononuclear transition metal complexes demonstrate significant potential in the divergent applications of spintronics and quantum information processing. The facile tunability of these complexes enables structure function correlations for a plethora of relevant magnetic quantities. We present a series of pseudotetrahedral [Co(C3S5)2]2– complexes with varying deviations from D2d symmetry to investigate the influence of structural distortions on spin relaxation dynamics and qubit viability, as tuned by the variable transverse magnetic anisotropy, E. To overcome the traditional challenge of measuring E in species where D ≫ E, we employed a different approach of harnessing ac magnetic susceptibility to probe the emergence of quantum tunneling of magnetization as a proxy for E. Across the range of values for E in the series, we observe magnetic hysteresis for the smallest value of E. The hysteresis disappears with increasing E, concomitant with the appearance of an observable, low frequency (L-band) electron paramagnetic resonance (EPR) signal, indicating the potential to controllably shift the molecule's utilization from classical to quantum information processing applications. The development of design principles for molecular magnet information processing requires separate design principles for classical versus quantum regimes. Here we show for the first time how subtle structural changes can switch the utility of a complex between these two types of applications.
Collapse
Affiliation(s)
- Majed S Fataftah
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA .
| | - Scott C Coste
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA .
| | - Bess Vlaisavljevich
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA .
| | - Joseph M Zadrozny
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA .
| | - Danna E Freedman
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA .
| |
Collapse
|
13
|
Magnetic anisotropy in two- to eight-coordinated transition–metal complexes: Recent developments in molecular magnetism. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.06.013] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Zadrozny JM, Greer SM, Hill S, Freedman DE. A flexible iron(ii) complex in which zero-field splitting is resistant to structural variation. Chem Sci 2015; 7:416-423. [PMID: 29861991 PMCID: PMC5952318 DOI: 10.1039/c5sc02477c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/02/2015] [Indexed: 01/19/2023] Open
Abstract
The zero-field splitting parameters D and E in the iron(ii) complex [Fe(C3S5)2]2– are shown to be remarkably resistant to a twist of the inter-ligand dihedral angle (θd) from 90 to 70°.
The relationship between electronic structure and zero-field splitting dictates key design parameters for magnetic molecules. In particular, to enable the directed synthesis of new electronic spin based qubits, developing complexes where zero-field splitting energies are invariant to structural changes is a critical challenge. Toward those ends, we report three salts of a new compound, a four-coordinate iron(ii) complex [Fe(C3S5)2]2– ([(18-crown-6)K]+ (1), Ph4P+ (2), Bu4N+ (3)) with a continuous structural variation in a single parameter, the dihedral angle (θd) between the two C3S52– ligands, as a function of counterion (θd = 89.98(4)° for 1 to 72.41(2)° for 3). Electron paramagnetic resonance data for 1–3 reveal zero-field splitting parameters that are unusually robust to the structural variation. Mössbauer spectroscopic measurements indicate that the structural variation in θd primarily affects the highest-energy 3d-orbitals (dxz and dyz) of the iron(ii) ion. These orbitals have the smallest impact on the zero-field splitting parameters, thus the distortion has a minor effect on D and E. These results represent the first part of a directed effort to understand how spin state energies may be fortified against structural distortions for future applications of qubits in non-crystalline environments.
Collapse
Affiliation(s)
- Joseph M Zadrozny
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA .
| | - Samuel M Greer
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , FL 32306 , USA.,National High Magnetic Field Laboratory , Tallahassee , FL 32310 , USA
| | - Stephen Hill
- National High Magnetic Field Laboratory , Tallahassee , FL 32310 , USA.,Department of Physics , Florida State University , Tallahassee , FL 32306 , USA
| | - Danna E Freedman
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA .
| |
Collapse
|
15
|
Suturina EA, Maganas D, Bill E, Atanasov M, Neese F. Magneto-Structural Correlations in a Series of Pseudotetrahedral [CoII(XR)4]2– Single Molecule Magnets: An ab Initio Ligand Field Study. Inorg Chem 2015; 54:9948-61. [DOI: 10.1021/acs.inorgchem.5b01706] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elizaveta A. Suturina
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
- Novosibirsk State University, Pirogova
2, 630090, Novosibirsk, Russia
| | - Dimitrios Maganas
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Mihail Atanasov
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Akad. Georgi Bontchev Street 11, 1113 Sofia, Bulgaria
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| |
Collapse
|
16
|
First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.10.015] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Chiu CC, Chen JH, Wang SS, Tung JY. Magnetic susceptibility and EPR spectra of Co(II) 2-N substituted N-confused porphyrin: Co(2-NCH2-p-C6H4-isoC3H7-21-CH2-p-C6H4CH3-NCTPP)Cl. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Zadrozny JM, Telser J, Long JR. Slow magnetic relaxation in the tetrahedral cobalt(II) complexes [Co(EPh)4]2− (EO, S, Se). Polyhedron 2013. [DOI: 10.1016/j.poly.2013.04.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Idešicová M, Titiš J, Krzystek J, Boča R. Zero-Field Splitting in Pseudotetrahedral Co(II) Complexes: a Magnetic, High-Frequency and -Field EPR, and Computational Study. Inorg Chem 2013; 52:9409-17. [DOI: 10.1021/ic400980b] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Monika Idešicová
- Department of Chemistry (FPV), University of SS. Cyril and Methodius, SK-917 01 Trnava,
Slovakia
| | - Ján Titiš
- Department of Chemistry (FPV), University of SS. Cyril and Methodius, SK-917 01 Trnava,
Slovakia
| | - J. Krzystek
- National High
Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Roman Boča
- Department of Chemistry (FPV), University of SS. Cyril and Methodius, SK-917 01 Trnava,
Slovakia
| |
Collapse
|
20
|
Zadrozny JM, Atanasov M, Bryan AM, Lin CY, Rekken BD, Power PP, Neese F, Long JR. Slow magnetization dynamics in a series of two-coordinate iron(ii) complexes. Chem Sci 2013. [DOI: 10.1039/c2sc20801f] [Citation(s) in RCA: 473] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Mathies G, Almeida RM, Gast P, Moura JJG, Groenen EJJ. Multifrequency EPR study of Fe3+ and Co2+ in the active site of desulforedoxin. J Phys Chem B 2012; 116:7122-8. [PMID: 22612627 DOI: 10.1021/jp3025655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The understanding of the electronic structure of S > 1/2 transition-metal sites that show a large zero-field splitting (ZFS) of the magnetic sublevels benefits greatly from study by electron-paramagnetic-resonance (EPR) spectroscopy at frequencies above the standard 9.5 GHz. However, high-frequency EPR spectroscopy is technically challenging and still developing. Particularly the sensitivity of high-frequency EPR spectrometers is often too low to apply the technique in the study of transition-metal sites in proteins and enzymes. Here we report a multifrequency EPR study (at 9.5, 94.9, and 275.7 GHz) of the active site of the protein desulforedoxin, both in its natural Fe(3+) form and substituted with Co(2+). The 275.7 GHz EPR spectra made it possible to determine the ZFS parameters of the Fe(3+) site with high precision. No 275.7 GHz spectrum could be observed of the Co(2+) site, but based on 9.5 GHz spectra, its ZFS parameters could be estimated. We find that the typical variation in the geometry of the active site of a protein or enzyme, referred to as conformational strain, does not only make the detection of EPR spectra challenging, but also their analysis. Comparison of the EPR results on the active site of desulforedoxin to those of the closely related active site of rubredoxin illustrates the necessity of explicit quantum-chemical calculations in order to interrelate the electronic and geometric structure of biological transition-metal sites.
Collapse
Affiliation(s)
- Guinevere Mathies
- Department of Physics, Huygens Laboratory, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Zadrozny JM, Long JR. Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2-. J Am Chem Soc 2011; 133:20732-4. [PMID: 22142241 DOI: 10.1021/ja2100142] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Ph(4)P(+) salt of the tetrahedral complex [Co(SPh)(4)](2-), possessing an S = (3)/(2) ground state with an axial zero-field splitting of D = -70 cm(-1), displays single-molecule magnet behavior in the absence of an applied magnetic field. At very low temperatures, ac magnetic susceptibility data show the magnetic relaxation time, τ, to be temperature-independent, while above 2.5 K thermally activated Arrhenius behavior is apparent with U(eff) = 21(1) cm(-1) and τ(0) = 1.0(3) × 10(-7) s. Under an applied field of 1 kOe, τ more closely approximates Arrhenius behavior over the entire temperature range. Upon dilution of the complex within a matrix of the isomorphous compound (Ph(4)P)(2)[Zn(SPh)(4)], ac susceptibility data reveal the molecular nature of the slow magnetic relaxation and indicate that the quantum tunneling pathway observed at low temperatures is likely mediated by intermolecular dipolar interactions.
Collapse
Affiliation(s)
- Joseph M Zadrozny
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
23
|
Maganas D, Sottini S, Kyritsis P, Groenen EJJ, Neese F. Theoretical Analysis of the Spin Hamiltonian Parameters in Co(II)S4 Complexes, Using Density Functional Theory and Correlated ab initio Methods. Inorg Chem 2011; 50:8741-54. [DOI: 10.1021/ic200299y] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dimitrios Maganas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, GR-15771 Athens, Greece
- Institute of Theoretical and Physical Chemistry, Wegelerstrasse 12, D-53115 Bonn, Germany
| | - Silvia Sottini
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, GR-15771 Athens, Greece
| | - Edgar J. J. Groenen
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Frank Neese
- Institute of Theoretical and Physical Chemistry, Wegelerstrasse 12, D-53115 Bonn, Germany
| |
Collapse
|
24
|
Maganas D, Milikisyants S, Rijnbeek JMA, Sottini S, Levesanos N, Kyritsis P, Groenen EJJ. A Multifrequency High-Field Electron Paramagnetic Resonance Study of CoIIS4 Coordination. Inorg Chem 2009; 49:595-605. [DOI: 10.1021/ic901911h] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dimitrios Maganas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, GR-15771 Athens, Greece
| | - Sergey Milikisyants
- Department of Molecular Physics, Huygens Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Jorrit M. A. Rijnbeek
- Department of Molecular Physics, Huygens Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Silvia Sottini
- Department of Molecular Physics, Huygens Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Nikolaos Levesanos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, GR-15771 Athens, Greece
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, GR-15771 Athens, Greece
| | - Edgar J. J. Groenen
- Department of Molecular Physics, Huygens Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
25
|
Mock MT, Kieber-Emmons MT, Popescu CV, Gasda P, Yap GPA, Riordan CG. A Series of Cyanide-Bridged Binuclear Complexes. Inorganica Chim Acta 2009; 362:4553-4562. [PMID: 20161111 PMCID: PMC2739667 DOI: 10.1016/j.ica.2009.05.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A series of cyanide-bridged binuclear complexes, ('S(3)')Ni-CN-M[Tp(tBu)] ('S(3)' = bis(2-mercaptophenyl)sulfide, Tp(tBu) = hydrotris(3-tert-butylpyrazolyl)borate, M = Fe (2-Fe), Co (2-Co), Ni (2-Ni), Zn (2-Zn)) was prepared by the coupling of K[('S(3)')Ni(CN)] with [Tp(tBu)]MX. The isostructural series of complexes was structurally and spectroscopically characterized. A similar coupling strategy was used to synthesize the anionic copper(I) analogue, Et4N{('S3')Ni-CN-Cu[Tp(tBu)]}, 2-Cu.An alternative synthesis was devised for the preparation of the linkages isomers of 2-Zn, i.e. of cyanide-bridged linkage isomers. X-ray diffraction, (13)C NMR and IR spectral studies established that isomerization to the more stable Ni-CN-Zn isomer occurs. DFT computational results buttressed the experimental observations indicating that the cyanide-bridged isomer is ca. 5 kcal/mol more stable than its linkage isomer.
Collapse
Affiliation(s)
- Michael T Mock
- Department of Chemistry and Biochemistry University of Delaware, Newark, Delaware 19716
| | | | | | | | | | | |
Collapse
|
26
|
Sottini S, Mathies G, Gast P, Maganas D, Kyritsis P, Groenen EJ. A W-band pulsed EPR/ENDOR study of CoIIS4 coordination in the Co[(SPPh2)(SPiPr2)N]2 complex. Phys Chem Chem Phys 2009; 11:6727-32. [DOI: 10.1039/b905726a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Ikoma T, Oshio H, Yamamoto M, Ohba Y, Nihei M. Peculiarity in the Electronic Structure of Cu(II) Complex Ferromagnetically Coupled with Bisimino Nitroxides. J Phys Chem A 2008; 112:8641-8. [DOI: 10.1021/jp802810s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tadaaki Ikoma
- Institute of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishiku, Niigata 950-2181, Japan, and PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan, and Graduate School of Pure and Applied Science, Department of Chemistry, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8571, Japan, and Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan, and Institute of Multidisciplinary Research for Advanced Materials,
| | - Hiroki Oshio
- Institute of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishiku, Niigata 950-2181, Japan, and PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan, and Graduate School of Pure and Applied Science, Department of Chemistry, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8571, Japan, and Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan, and Institute of Multidisciplinary Research for Advanced Materials,
| | - Masashi Yamamoto
- Institute of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishiku, Niigata 950-2181, Japan, and PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan, and Graduate School of Pure and Applied Science, Department of Chemistry, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8571, Japan, and Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan, and Institute of Multidisciplinary Research for Advanced Materials,
| | - Yasunori Ohba
- Institute of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishiku, Niigata 950-2181, Japan, and PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan, and Graduate School of Pure and Applied Science, Department of Chemistry, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8571, Japan, and Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan, and Institute of Multidisciplinary Research for Advanced Materials,
| | - Masayuki Nihei
- Institute of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishiku, Niigata 950-2181, Japan, and PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan, and Graduate School of Pure and Applied Science, Department of Chemistry, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8571, Japan, and Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan, and Institute of Multidisciplinary Research for Advanced Materials,
| |
Collapse
|
28
|
Maganas D, Staniland SS, Grigoropoulos A, White F, Parsons S, Robertson N, Kyritsis P, Pneumatikakis G. Structural, spectroscopic and magnetic properties of M[R2P(E)NP(E)R′2]2complexes, M = Co, Mn, E = S, Se and R, R′ = Ph oriPr. Covalency of M–S bonds from experimental data and theoretical calculations. Dalton Trans 2006:2301-15. [PMID: 16688318 DOI: 10.1039/b517938f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The S/Se-containing bidentate ligands LH of the type R2P(E)NHP(E)R'2, E = S, Se and R, R' = Ph or iPr have been employed to synthesize ML2 (M = Mn, Co) complexes which contain the biologically important MS4 core. Theoretical calculations on the LH and L- forms of the ligands probe the geometric and electronic changes induced by the deprotonation of the LH form, which are correlated with structural data from X-ray crystallography. These results reflect the flexibility of the ligands, which enables them to be rather versatile with respect to the formation of ML2 complexes with varied geometries and MEPNPE metallacycle conformations. A series of old and new ML2 complexes have been synthesized and their structural, spectroscopic and magnetic properties characterized in detail. The nephelauxetic ratio beta of the CoL2 complexes provides evidence of covalent interactions, whereas the EPR properties of the MnL2 complexes are interpreted on the basis of predominant ionic interactions, between the metal center and the ligands, respectively. Additional evidence for the existence of covalent interactions in the CoL2 complexes (R = Ph, iPr, or mixed Ph/iPr), is offered by comparisons between their 31P NMR. The aforementioned notations are supported by extensive theoretical calculations on the ML2 (E = S, R = Me) modelled structures, which probe the covalent and ionic character of the M-S bonds when M = Co or Mn. Wider implications of the findings of the present study on the M-S covalency and its importance in the active sites of various metalloenzymes are also discussed.
Collapse
Affiliation(s)
- Dimitrios Maganas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, GR-157 71 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Fukui K, Masuda H, Ohya-Nishiguchi H, Kamada H. Effects of CoS torsion angle variation in a cobalt(II)-thiolate complex: X-ray crystal structure analysis, single-crystal EPR measurements and ligand-field calculations. Inorganica Chim Acta 1995. [DOI: 10.1016/0020-1693(95)04683-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Fujii S, Yoshimura T, Kamada H, Yamaguchi K, Suzuki S, Shidara S, Takakuwa S. Electron paramagnetic resonance studies of ferric cytochrome c' from photosynthetic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1251:161-9. [PMID: 7669805 DOI: 10.1016/0167-4838(95)00092-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electronic ground nature of ferric cytochromes c' isolated from five photosynthetic bacteria. Chromatium vinosum ATCC 17899, Rhodobacter capsulatus ATCC 11166, Rhodopseudomonas palustris ATCC 17001, Rhodospirillum molischianum ATCC 14031, and Rhodospirillum rubrum ATCC 11170 has been investigated by electron paramagnetic resonance (EPR) spectroscopy. EPR spectra indicate that the electronic ground state of five ferric cytochromes c' is a quantum mechanical admixed-spin state of a high spin (S = 5/2) and an intermediate spin (S = 3/2) at pH 7.2 and is high-spin state at pH 11.0. At physiological pH, however, the content of an intermediate spin state differs with the bacterial source of the protein: approximately 50%, Chromatium vinosum; approximately 40%, Rhodobacter capsulatus and Rhodopseudomonas palustris; approximately 10%, Rhodospirillum molischianum and Rhodospirillum rubrum. Computer simulation of the spectra supports this diversity of the contribution of an intermediate spin state. Model studies of the ferric porphyrin complexes suggest that the correlation between content of an intermediate spin state and heme iron displacement from the mean heme plane. Therefore, the variation of the content of an intermediate spin state observed in the present study reflects the subtle difference in the degree of heme iron displacement among the proteins.
Collapse
Affiliation(s)
- S Fujii
- Institute for Life Support Technology, Yamagata Technopolis Foundation, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Structural, spectroscopic and redox characterization of the soluble complexes [M(SC6H4NR2)4]2− and the effects of N-H … S hydrogen bonds. Inorganica Chim Acta 1995. [DOI: 10.1016/0020-1693(94)04178-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
X-ray crystal structures of a series of [MII(SR)4]2− complexes (MMn, Fe, Co, Ni, Zn, Cd and Hg) with S4 crystallographic symmetry. Inorganica Chim Acta 1993. [DOI: 10.1016/s0020-1693(00)87348-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Pountney DL, Vasák M. Spectroscopic studies on metal distribution in Co(II)/Zn(II) mixed-metal clusters in rabbit liver metallothionein 2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:335-41. [PMID: 1327773 DOI: 10.1111/j.1432-1033.1992.tb17294.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metal selectivity of metal-thiolate clusters in rabbit liver metallothionein (MT) 2 has been studied by examining the metal distribution of two similarly sized divalent metal ions, cobalt and zinc, which have different thiolate affinity. The forms of mixed-metal cluster species in (Co/Zn)7-MT generated with different ratios of both metal ions offered to the metal-free protein were investigated using EPR, ultraviolet/visible absorption and MCD spectroscopy. The results demonstrated that the distribution of these metals between the two metal-thiolate clusters is not random. Thus, the EPR absorption intensities of the bound Co(II) ions in the Zn-cluster matrix increased linearly up to a ratio of Co(II)/Zn(II) equivalents of 3:4, with the final EPR intensity of three non-interacting Co(II)-binding sites. This EPR behaviour is consistent with a binding scheme in which one Co(II) ion occupies a metal-binding site within the three-metal cluster and the remaining two Co(II) ions occupy two distinctly separate sites in the four-metal cluster. With four or more Co(II) ions in the cluster matrix, magnetic coupling between adjacent, sulphur-bridged Co(II) ions was observed. In previous studies on mixed-metal clusters in MT formed with Co(II)/Cd(II), Zn(II)/Cd(II) and Cd(II)/Fe(II), changes in the respective cluster volumes were shown to be a significant factor dictating the widely differing metal distributions in these systems. Based on the results of the current study, it is suggested that both the sizes of the two metal ions and their relative affinities towards the cysteine-thiolate ligands are important in the formation of mixed-metal clusters in MT.
Collapse
Affiliation(s)
- D L Pountney
- Biochemisches Institut, Universität Zürich, Switzerland
| | | |
Collapse
|