Qian S, Pu S, Zhang Y, Wang P, Bai Y, Lai B. New insights on the enhanced non-hydroxyl radical contribution under copper promoted TiO
2/GO for the photodegradation of tetracycline hydrochloride.
J Environ Sci (China) 2021;
100:99-109. [PMID:
33279058 DOI:
10.1016/j.jes.2020.06.039]
[Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 06/12/2023]
Abstract
TiO2/graphene oxide (GO) as photocatalyst in the photo-degradation of multitudinous pollutants has been extensively studied. But its low photocatalytic efficiency is attributed to the high band gap energy which lead to low light utilization. Cu-TiO2/GO was synthesized via the impregnation methods to enhance the catalytic performance. The Cu-TiO2/GO reaction rate constant for photo-degradation of pollutants (tetracycline hydrochloride, TC) was about 1.4 times that of TiO2/GO. In 90 min, the removal ratio of Cu-TiO2/GO for TC was 98%, and the maximum degradation ratio occurred at pH 5. After five cycles, the removal ratio of Cu-TiO2/GO still exceeded 98%. UV-visible adsorption spectra of Cu-TiO2/GO showed that its band gap was narrower than TiO2/GO. Electron paramagnetic resonance (EPR) spectra test illustrated the generation rate of •O2- and •OH was higher in Cu-TiO2/GO system than TiO2/GO and TiO2 system. The contribution sequence of oxidative species was •O2- > holes (h+) > •OH in both TiO2/GO and Cu-TiO2/GO system. Interestingly, the contribution of •OH in Cu-TiO2/GO was less than that in TiO2/GO during the photo-degradation process. This phenomenon was attributed to the better adsorption performance of Cu-TiO2/GO which could reduce the accessibility of TC to •OH in liquid. The enhanced non‑hydroxyl radical contribution could be attributed to that the more other active species or sites on (nearby) the surface of Cu-TiO2/GO generated after doping Cu. These results provide a new perspective for the tradition metal-doped conventional catalysts to enhance the removal of organic pollutants in the environment.
Collapse