1
|
Funai T, Tanaka N, Sugimachi R, Wada SI, Urata H. Zn 2+ ions improve the fidelity of metal-mediated primer extension while suppressing intrinsic and Mn 2+-induced mutagenic effects by DNA polymerases. Org Biomol Chem 2024; 22:9094-9100. [PMID: 39446115 DOI: 10.1039/d4ob01433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
While Mn2+ ions are well-established for reducing the fidelity of DNA polymerases, leading to the misincorporation of nucleotides, our investigation of the effects of metal ions revealed a contrasting role of Zn2+. Here, we demonstrate that Zn2+ ions enhance the fidelity of DNA polymerases (the 3' → 5' exonuclease-deficient Klenow fragment and Taq DNA polymerase) by suppressing misincorporation during primer extension reactions. Remarkably, Zn2+ ions inhibit both intrinsic misincorporation and Mn2+-induced misincorporation of nucleotides. Furthermore, Zn2+ ions also effectively suppressed misincorporation during metal-mediated primer extension reactions, which involved forming Ag+ and Hg2+ ion-mediated base pairs. These findings suggest that Zn2+ ions inhibit both intrinsic and Mn2+-induced mismatched base pair formation. Consequently, the combined use of Mn2+ and Zn2+ ions may offer a strategy for precisely regulating the fidelity of DNA polymerases. Remarkably, Zn2+ ions even suppress misincorporation in primer extension reactions that rely on metal-mediated base pairs, and conversely, this suggests that DNA polymerases recognize metal-mediated base pairs such as T-Hg2+-T, C-Ag+-A, and C-Ag+-T as relatively stable base pairs. These results imply that Zn2+ ions may also enhance the fidelity of DNA polymerases when incorporating non-canonical nucleobases, potentially paving the way for the expansion of the genetic alphabet.
Collapse
Affiliation(s)
- Tatsuya Funai
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Natsumi Tanaka
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Riyo Sugimachi
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Shun-Ichi Wada
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Hidehito Urata
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
2
|
Kotammagari TK, Al-Waeel M, Lukkari J, Lönnberg T. Organomercury oligonucleotide-polydopamine nanoparticle assemblies discriminate between target sequences by Hg(ii)-mediated base pairing. RSC Adv 2024; 14:38279-38284. [PMID: 39628462 PMCID: PMC11612767 DOI: 10.1039/d4ra07922a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
A fluorescently tagged oligonucleotide hybridization probe incorporating a single 5-mercuricytosine residue was synthesized and found to adsorb on polydopamine nanoparticles much more strongly than its unmetallated counterpart. Hybridization with target sequences led to release of the probe from the nanoparticle to varying degrees depending on the nucleobase opposite to 5-mercuricytosine.
Collapse
Affiliation(s)
| | - Majid Al-Waeel
- Department of Chemistry, University of Turku Henrikinkatu 2 20500 Turku Finland
| | - Jukka Lukkari
- Department of Chemistry, University of Turku Henrikinkatu 2 20500 Turku Finland
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku Henrikinkatu 2 20500 Turku Finland
| |
Collapse
|
3
|
Takezawa Y, Shionoya M. Enzymatic synthesis of ligand-bearing oligonucleotides for the development of metal-responsive DNA materials. Org Biomol Chem 2024; 22:7259-7270. [PMID: 38967487 DOI: 10.1039/d4ob00947a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Metal-mediated artificial base pairs are some of the most promising building blocks for constructing DNA-based supramolecules and functional materials. These base pairs are formed by coordination bonds between ligand-type nucleobases and a bridging metal ion and have been exploited to develop metal-responsive DNA materials and DNA-templated metal arrays. In this review, we provide an overview of methods for the enzymatic synthesis of DNA strands containing ligand-type artificial nucleotides that form metal-mediated base pairs. Conventionally, ligand-bearing DNA oligomers have been synthesized via solid-phase synthesis using a DNA synthesizer. In recent years, there has been growing interest in enzymatic methods as an alternative approach to synthesize ligand-bearing DNA oligomers, because enzymatic reactions proceed under mild conditions and do not require protecting groups. DNA polymerases are used to incorporate ligand-bearing unnatural nucleotides into DNA, and DNA ligases are used to connect artificial DNA oligomers to natural DNA fragments. Template-independent polymerases are also utilized to post-synthetically append ligand-bearing nucleotides to DNA oligomers. In addition, enzymatic replication of DNA duplexes containing metal-mediated base pairs has been intensively studied. Enzymatic methods facilitate the synthesis of DNA strands containing ligand-bearing nucleotides at both internal and terminal positions. Enzymatically synthesized ligand-bearing DNAs have been applied to metal-dependent self-assembly of DNA structures and the allosteric control of DNAzyme activity through metal-mediated base pairing. Therefore, the enzymatic synthesis of ligand-bearing oligonucleotides holds great potential in advancing the development of various metal-responsive DNA materials, such as molecular sensors and machines, providing a versatile tool for DNA supramolecular chemistry and nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.
| |
Collapse
|
4
|
Takezawa Y, Zhang H, Mori K, Hu L, Shionoya M. Ligase-mediated synthesis of Cu II-responsive allosteric DNAzyme with bifacial 5-carboxyuracil nucleobases. Chem Sci 2024; 15:2365-2370. [PMID: 38362437 PMCID: PMC10866359 DOI: 10.1039/d3sc05042d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
A CuII-responsive allosteric DNAzyme has been developed by introducing bifacial 5-carboxyuracil (caU) nucleobases, which form both hydrogen-bonded caU-A and metal-mediated caU-CuII-caU base pairs. The base sequence was logically designed based on a known RNA-cleaving DNAzyme so that the caU-modified DNAzyme (caU-DNAzyme) can form a catalytically inactive structure containing three caU-A base pairs and an active form with three caU-CuII-caU pairs. The caU-DNAzyme was synthesized by joining short caU-containing fragments with a standard DNA ligase. The activity of caU-DNAzyme was suppressed without CuII, but enhanced 21-fold with the addition of CuII. Furthermore, the DNAzyme activity was turned on and off during the reaction by the addition and removal of CuII ions. Both ligase-mediated synthesis and CuII-dependent allosteric regulation were achieved by the bifacial base pairing properties of caU. This study provides a new strategy for designing stimuli-responsive DNA molecular systems.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hanci Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Keita Mori
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Lingyun Hu
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
5
|
Wang LJ, Liu Q, Lu YY, Liang L, Zhang CY. Silver-Coordinated Watson-Crick Pairing-Driven Three-Dimensional DNA Walker for Locus-Specific Detection of Genomic N6-Methyladenine and N4-Methylcytosine at the Single-Molecule Level. Anal Chem 2024; 96:2191-2198. [PMID: 38282288 DOI: 10.1021/acs.analchem.3c05184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
N6-Methyladenine (6mdA) and N4-methylcytosine (4mdC) are the two most dominant DNA modifications in both prokaryotes and eukaryotes, but standard hybridization-based techniques cannot be applied for the 6mdA/4mdC assay. Herein, we demonstrate the silver-coordinated Watson-Crick pairing-driven three-dimensional (3D) DNA walker for locus-specific detection of genomic 6mdA/4mdC at the single-molecule level. 6mdA-DNA and 4mdC-DNA can selectively hybridize with the binding probes (BP1 and BP2) to form 6mdA-DNA-BP1 and 4mdC-DNA-BP2 duplexes. The 6mdA-C/4mdC-A mismatches cannot be stabilized by AgI, and thus, 18-nt BP1/BP2 cannot be extended by the catalysis of KF exonuclease. Through toehold-mediated strand displacement (TMSD), the signal probe (SP1/SP2) functionalized on the gold nanoparticles (AuNPs) can competitively bind to BP1/BP2 in 6mdA-DNA-BP1/4mdC-DNA-BP2 duplex to obtain SP1-18-nt BP1 and SP2-18-nt BP2 duplexes. The resulting DNA duplexes can act as the substrates of lambda exonuclease, leading to the cleavage of SP1/SP2 and the release of Cy3/Cy5 and 18-nt BP1/BP2. The released 18-nt BP1/BP2 can subsequently serve as the walker DNA, moving along the surface of the AuNP to activate dynamic 3D DNA walking and releasing abundant Cy3/Cy5. The released Cy3/Cy5 can be quantified by single-molecule imaging. This nanosensor exhibits high sensitivity with a limit of detection (LOD) of 9.80 × 10-15 M for 6mdA-DNA and 9.97 × 10-15 M for 4mdC-DNA. It can discriminate 6mdA-/4mdC-DNA from unmodified genomic DNAs, distinguish 0.01% 6mdA-/4mdC-DNA from excess unmethylated DNAs, and quantify 6mdA-/4mdC-DNA at specific sites in genomic DNAs of liver cancer cells and Escherichia coli plasmid cloning vector, providing a new platform for locus-specific analysis of 6mdA/4mdC in genomic DNAs.
Collapse
Affiliation(s)
- Li-Juan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ying-Ying Lu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Le Liang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Martínez-Fernández L, Kohl FR, Zhang Y, Ghosh S, Saks AJ, Kohler B. Triplet Excimer Formation in a DNA Duplex with Silver Ion-Mediated Base Pairs. J Am Chem Soc 2024; 146:1914-1925. [PMID: 38215466 DOI: 10.1021/jacs.3c08793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The dynamics of excited electronic states in self-assembled structures formed between silver(I) ions and cytosine-containing DNA strands or monomeric cytosine derivatives were investigated by time-resolved infrared (TRIR) spectroscopy and quantum mechanical calculations. The steady-state and time-resolved spectra depend sensitively on the underlying structures, which change with pH and the nucleobase and silver ion concentrations. At pH ∼ 4 and low dC20 strand concentration, an intramolecularly folded i-motif is observed, in which protons, and not silver ions, mediate C-C base pairing. However, at the higher strand concentrations used in the TRIR measurements, dC20 strands associate pairwise to yield duplex structures containing C-Ag+-C base pairs with a high degree of propeller twisting. UV excitation of the silver ion-mediated duplex produces a long-lived excited state, which we assign to a triplet excimer state localized on a pair of stacked cytosines. The computational results indicate that the propeller-twisted motifs induced by metal-ion binding are responsible for the enhanced intersystem crossing that populates the triplet state and not a generic heavy atom effect. Although triplet excimer states have been discussed frequently as intermediates in the formation of cyclobutane pyrimidine dimers, we find neither computational nor experimental evidence for cytosine-cytosine photoproduct formation in the systems studied. These findings provide a rare demonstration of a long-lived triplet excited state that is formed in a significant yield in a DNA duplex, demonstrating that supramolecular structural changes induced by metal ion binding profoundly affect DNA photophysics.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Science (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Forrest R Kohl
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Supriya Ghosh
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Andrew J Saks
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Bern Kohler
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| |
Collapse
|
7
|
Lefringhausen N, Erbacher C, Elinkmann M, Karst U, Müller J. Contiguous Silver(I)-Mediated Base Pairs of Imidazophenanthroline and Canonical Nucleobases in DNA Duplexes: Formation of Classical Duplexes versus Homodimer Formation. Bioconjug Chem 2024; 35:99-106. [PMID: 38157473 DOI: 10.1021/acs.bioconjchem.3c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Metal-mediated base pairs represent a topical alternative to canonical hydrogen-bonded base pairs. In this context, the ligand 1H-imidazo[4,5-f][1,10]phenanthroline (P) was introduced as an artificial nucleobase in a glycol nucleic acid-based nucleoside analogue into a DNA oligonucleotide in a way that the oligonucleotide contains a central block of six contiguous P residues. The ability to engage in Ag+-mediated base pairing was evaluated with respect to the four canonical nucleosides in positions complementary to P. Highly stabilizing Ag+-mediated base pairs were formed with cytosine and guanine (i.e., P-Ag+-C and P-Ag+-G base pairs), whereas the analogous base pairs with thymine and adenine were much less stable and hence formed incompletely. Surprisingly, the intermediate formation of a homodimeric duplex of the P-containing oligonucleotide was observed in all cases, albeit to a different extent. The homodimer is composed of P-Ag+-P base pairs and 18 overhanging mismatched canonical nucleobases. It demonstrates the obstacles present when designing metal-mediated base pairs as metal complexation may take place irrespective of the surrounding natural base pairs. Homodimer formation was found to be particularly prominent when the designated metal-mediated base pairs are of low stability, suggesting that homodimers and regular duplexes are formed in a competing manner.
Collapse
Affiliation(s)
- Nils Lefringhausen
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, Münster 48149, Germany
| | - Catharina Erbacher
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 48, Münster 48149, Germany
| | - Matthias Elinkmann
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 48, Münster 48149, Germany
| | - Uwe Karst
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 48, Münster 48149, Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, Münster 48149, Germany
- Cells in Motion Interfaculty Centre (CiMIC) and Center for Soft Nanoscience (SoN), Universität Münster, Corrensstr. 28/30, Münster 48149, Germany
| |
Collapse
|
8
|
Sethi S, Zumila H, Watanabe Y, Mo J, Fujimoto K. UltraFast PhotoInduced double duplex DNA invasion into a 400-mer dsDNA target. Bioorg Med Chem Lett 2024; 98:129597. [PMID: 38154604 DOI: 10.1016/j.bmcl.2023.129597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/13/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Natural DNA restriction enzymes bind duplex DNA with high affinity at multiple sites; however, for some of the artificial chemical-based restriction moieties, invasion of the double-strand for efficient cleavage is an obstacle. We have previously reported photo-induced double-duplex invasion (pDDI) using 3-cyanovinylcarbazole (K)-containing probes for both the target strands that photo-crosslink with pyrimidine bases in a sequence-specific manner on both the strands, stabilizing the opened double-strand for cleavage. The drawback of the pDDI was low efficiency due to inter-probe cross-linking, solved by the inclusion of 5-cyano-uridine at -1 position on the complimentary strand with respect to K in both probes. Although this led to reduced inter-probe cross-linking, the pDDI efficiency was still low. RESULTS Here, we report that inter-probe cross-linking and intra-probe cross-linking of a single probe is also leading to reduced pDDI efficiency. We addressed this problem by designing DDI probes to inhibit both inter-probe and intra-probe cross-linking. CONCLUSION Based on the new design of pDDI probe with 5-cyano uridine led to a drastic increase in the efficiency of pDDI in (400-mer) double-stranded DNA with only 1 s of photo-irradiation.
Collapse
Affiliation(s)
- Siddhant Sethi
- Biofunctional Medical Engineering Research Area, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, Japan
| | - Hailili Zumila
- Biofunctional Medical Engineering Research Area, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, Japan
| | - Yasuha Watanabe
- Biofunctional Medical Engineering Research Area, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, Japan
| | - Junling Mo
- Biofunctional Medical Engineering Research Area, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, Japan
| | - Kenzo Fujimoto
- Biofunctional Medical Engineering Research Area, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, Japan.
| |
Collapse
|
9
|
Takezawa Y, Hu L, Nakama T, Shionoya M. Metal-dependent activity control of a compact-sized 8-17 DNAzyme based on metal-mediated unnatural base pairing. Chem Commun (Camb) 2024; 60:288-291. [PMID: 38063055 DOI: 10.1039/d3cc05520e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A compact 8-17 DNAzyme was modified with a CuII-meditated artificial base pair to develop a metal-responsive allosteric DNAzyme. The base sequence was rationally designed based on the reported three-dimensional structure. The activity of the modified DNAzyme was enhanced 5.1-fold by the addition of one equivalent of CuII ions, showing good metal responsiveness. Since it has been challenging to modify compactly folded DNAzymes without losing their activity, this study demonstrates the utility of the metal-mediated artificial base pairing to create stimuli-responsive functional DNAs.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Lingyun Hu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
10
|
Escher D, Schäfer T, Hebenbrock M, Müller J. 6-Pyrazolylpurine and its deaza derivatives as nucleobases for silver(I)-mediated base pairing with pyrimidines. J Biol Inorg Chem 2023; 28:791-803. [PMID: 37982840 PMCID: PMC10687122 DOI: 10.1007/s00775-023-02022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/26/2023] [Indexed: 11/21/2023]
Abstract
The artificial nucleobase 6-pyrazolylpurine (6PP) and its deaza derivatives 1-deaza-6-pyrazolylpurine (1D6PP), 7-deaza-6-pyrazolylpurine (7D6PP), and 1,7-dideaza-6-pyrazolylpurine (1,7D6PP) were investigated with respect to their ability to differentiate between the canonical nucleobases cytosine and thymine by means of silver(I)-mediated base pairing. As shown by temperature-dependent UV spectroscopy and by circular dichroism spectroscopy, 6PP and (to a lesser extent) 7D6PP form stable silver(I)-mediated base pairs with cytosine, but not with thymine. 1D6PP and 1,7D6PP do not engage in the formation of stabilizing silver(I)-mediated base pairs with cytosine or thymine. The different behavior of 1D6PP, 7D6PP, and 1,7D6PP indicates that silver(I) binding occurs via the N1 position of the purine derivative, i.e. via the Watson-Crick face. The data show that 6PP is capable of differentiating between cytosine and thymine, which is potentially relevant in the context of detecting single-nucleotide polymorphisms.
Collapse
Affiliation(s)
- Daniela Escher
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - Tim Schäfer
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - Marian Hebenbrock
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 30, 48149, Münster, Germany.
- Center for Soft Nanoscience (SoN) and Cells in Motion Interfaculty Centre (CiMIC), Universität Münster, Corrensstr. 30, 48149, Münster, Germany.
| |
Collapse
|
11
|
Mastracco P, Copp SM. Beyond nature's base pairs: machine learning-enabled design of DNA-stabilized silver nanoclusters. Chem Commun (Camb) 2023; 59:10360-10375. [PMID: 37575075 DOI: 10.1039/d3cc02890a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Sequence-encoded biomolecules such as DNA and peptides are powerful programmable building blocks for nanomaterials. This paradigm is enabled by decades of prior research into how nucleic acid and amino acid sequences dictate biomolecular interactions. The properties of biomolecular materials can be significantly expanded with non-natural interactions, including metal ion coordination of nucleic acids and amino acids. However, these approaches present design challenges because it is often not well-understood how biomolecular sequence dictates such non-natural interactions. This Feature Article presents a case study in overcoming challenges in biomolecular materials with emerging approaches in data mining and machine learning for chemical design. We review progress in this area for a specific class of DNA-templated metal nanomaterials with complex sequence-to-property relationships: DNA-stabilized silver nanoclusters (AgN-DNAs) with bright, sequence-tuned fluorescence colors and promise for biophotonics applications. A brief overview of machine learning concepts is presented, and high-throughput experimental synthesis and characterization of AgN-DNAs are discussed. Then, recent progress in machine learning-guided design of DNA sequences that select for specific AgN-DNA fluorescence properties is reviewed. We conclude with emerging opportunities in machine learning-guided design and discovery of AgN-DNAs and other sequence-encoded biomolecular nanomaterials.
Collapse
Affiliation(s)
- Peter Mastracco
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, USA.
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| |
Collapse
|
12
|
Takezawa Y, Mori K, Huang WE, Nishiyama K, Xing T, Nakama T, Shionoya M. Metal-mediated DNA strand displacement and molecular device operations based on base-pair switching of 5-hydroxyuracil nucleobases. Nat Commun 2023; 14:4759. [PMID: 37620299 PMCID: PMC10449808 DOI: 10.1038/s41467-023-40353-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Rational design of self-assembled DNA nanostructures has become one of the fastest-growing research areas in molecular science. Particular attention is focused on the development of dynamic DNA nanodevices whose configuration and function are regulated by specific chemical inputs. Herein, we demonstrate the concept of metal-mediated base-pair switching to induce inter- and intramolecular DNA strand displacement in a metal-responsive manner. The 5-hydroxyuracil (UOH) nucleobase is employed as a metal-responsive unit, forming both a hydrogen-bonded UOH-A base pair and a metal-mediated UOH-GdIII-UOH base pair. Metal-mediated strand displacement reactions are demonstrated under isothermal conditions based on the base-pair switching between UOH-A and UOH-GdIII-UOH. Furthermore, metal-responsive DNA tweezers and allosteric DNAzymes are developed as typical models for DNA nanodevices simply by incorporating UOH bases into the sequence. The metal-mediated base-pair switching will become a versatile strategy for constructing stimuli-responsive DNA nanostructures, expanding the scope of dynamic DNA nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Keita Mori
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Wei-En Huang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kotaro Nishiyama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tong Xing
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
13
|
Takezawa Y, Kanemaru D, Kudo N, Shionoya M. Phenanthroline-modified DNA three-way junction structures stabilized by interstrand 3 : 1 metal complexation. Dalton Trans 2023; 52:11025-11029. [PMID: 37309206 DOI: 10.1039/d3dt01508d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Incorporation of interstrand metal complexes into DNA is a versatile strategy for metal-dependent stabilization and structural induction of DNA supramolecular structures. In this study, we have synthesized DNA three-way junction (3WJ) structures modified with phenanthroline (phen) ligands. The phen-modified 3WJ was found to be thermally stabilized (ΔTm = +16.9 °C) by the formation of an interstrand NiII(phen)3 complex. Furthermore, NiII-mediated structure induction of 3WJs was demonstrated with the phen-modified strands and their unmodified counterparts. This study suggests that ligand-modified 3WJs would be useful structural motifs for the construction of metal-responsive DNA molecular systems.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Daisuke Kanemaru
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Naofumi Kudo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
14
|
Vecchioni S, Lu B, Livernois W, Ohayon YP, Yoder JB, Yang CF, Woloszyn K, Bernfeld W, Anantram MP, Canary JW, Hendrickson WA, Rothschild LJ, Mao C, Wind SJ, Seeman NC, Sha R. Metal-Mediated DNA Nanotechnology in 3D: Structural Library by Templated Diffraction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210938. [PMID: 37268326 DOI: 10.1002/adma.202210938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/06/2023] [Indexed: 06/04/2023]
Abstract
DNA double helices containing metal-mediated DNA (mmDNA) base pairs are constructed from Ag+ and Hg2+ ions between pyrimidine:pyrimidine pairs with the promise of nanoelectronics. Rational design of mmDNA nanomaterials is impractical without a complete lexical and structural description. Here, the programmability of structural DNA nanotechnology toward its founding mission of self-assembling a diffraction platform for biomolecular structure determination is explored. The tensegrity triangle is employed to build a comprehensive structural library of mmDNA pairs via X-ray diffraction and generalized design rules for mmDNA construction are elucidated. Two binding modes are uncovered: N3-dominant, centrosymmetric pairs and major groove binders driven by 5-position ring modifications. Energy gap calculations show additional levels in the lowest unoccupied molecular orbitals (LUMO) of mmDNA structures, rendering them attractive molecular electronic candidates.
Collapse
Affiliation(s)
- Simon Vecchioni
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Brandon Lu
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - William Livernois
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Jesse B Yoder
- IMCA-CAT, Argonne National Lab, Argonne, IL, 60439, USA
| | - Chu-Fan Yang
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Karol Woloszyn
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - William Bernfeld
- Department of Chemistry, New York University, New York, NY, 10003, USA
- ASPIRE Program, King School, Stamford, CT, 06905, USA
| | - M P Anantram
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - James W Canary
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Lynn J Rothschild
- NASA Ames Research Center, Planetary Sciences Branch, Moffett Field, CA, 94035, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Shalom J Wind
- Department of Applied Physics and Applied Math, Columbia University, New York, NY, 10027, USA
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY, 10003, USA
| |
Collapse
|
15
|
Boisten F, Maisuls I, Schäfer T, Strassert CA, Müller J. Site-specific covalent metalation of DNA oligonucleotides with phosphorescent platinum(ii) complexes. Chem Sci 2023; 14:2399-2404. [PMID: 36873838 PMCID: PMC9977450 DOI: 10.1039/d2sc05916a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Phosphorescent Pt(II) complexes, composed of a tridentate N^N^C donor ligand and a monodentate ancillary ligand, were covalently attached to DNA oligonucleotides. Three modes of attachment were investigated: positioning the tridentate ligand as an artificial nucleobase via a 2'-deoxyribose or a propane-1,2-diol moiety and orienting it towards the major groove by appending it to a uridine C5 position. The photophysical properties of the complexes depend on the mode of attachment and on the identity of the monodentate ligand (iodido vs. cyanido ligand). Significant duplex stabilization was observed for all cyanido complexes when they are attached to the DNA backbone. The luminescence strongly depends on whether a single or two adjacent complexes are introduced, with the latter showing an additional emission band indicative of excimer formation. The doubly platinated oligonucleotides could be useful as ratiometric or lifetime-based oxygen sensors, as the green photoluminescence intensities and average lifetimes of the monomeric species are drastically boosted upon deoxygenation, whereas the red-shifted excimer phosphorescence is nearly insensitive to the presence of triplet dioxygen in solution.
Collapse
Affiliation(s)
- Felix Boisten
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie Corrensstr. 28/30 48149 Münster Germany
| | - Iván Maisuls
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie Corrensstr. 28/30 48149 Münster Germany .,Westfälische Wilhelms-Universität Münster, Center for Nanotechnology (CeNTech) Heisenbergstr. 11 48149 Münster Germany
| | - Tim Schäfer
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie Corrensstr. 28/30 48149 Münster Germany
| | - Cristian A Strassert
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie Corrensstr. 28/30 48149 Münster Germany .,Westfälische Wilhelms-Universität Münster, Center for Nanotechnology (CeNTech) Heisenbergstr. 11 48149 Münster Germany.,Westfälische Wilhelms-Universität Münster, Center for Soft Nanoscience (SoN) and Cells in Motion Interfaculty Centre (CiMIC) Corrensstr. 28/30 48149 Münster Germany
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie Corrensstr. 28/30 48149 Münster Germany .,Westfälische Wilhelms-Universität Münster, Center for Soft Nanoscience (SoN) and Cells in Motion Interfaculty Centre (CiMIC) Corrensstr. 28/30 48149 Münster Germany
| |
Collapse
|
16
|
Skiba J, Kowalczyk A, Gorski A, Dutkiewicz N, Gapińska M, Stróżek J, Woźniak K, Trzybiński D, Kowalski K. Replacement of the phosphodiester backbone between canonical nucleosides with a dirhenium carbonyl "click" linker-a new class of luminescent organometallic dinucleoside phosphate mimics. Dalton Trans 2023; 52:1551-1567. [PMID: 36655722 DOI: 10.1039/d2dt03995h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first-in-class luminescent dinucleoside phosphate analogs with a [Re2(μ-Cl)2(CO)6(μ-pyridazine)] "click" linker as a replacement for the natural phosphate group are reported together with the synthesis of luminescent adenosine and thymidine derivatives having the [Re2(μ-Cl)2(CO)6(μ-pyridazine)] entity attached to positions 5' and 3', respectively. These compounds were synthesized by applying inverse-electron-demand Diels-Alder and copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition reactions in three or four steps. The obtained compounds exhibited orange emission (λPL ≈ 600 nm, ΦPL ≈ 0.10, and τ = 0.33-0.61 μs) and no toxicity (except for one nucleoside) to human HeLa cervical epithelioid and Ishikawa endometrial adenocarcinoma cancer cells in vitro. Furthermore, the compounds' ability to inhibit the growth of Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacterial strains was moderate and only observed at a high concentration of 100 μM. Confocal microscopy imaging revealed that the "dirhenium carbonyl" dinucleosides and nucleosides localized mainly in the membranous structures of HeLa cells and uniformly inside S. aureus and E. coli bacterial cells. An interesting finding was that some of the tested compounds were also found in the nuclei of HeLa cells.
Collapse
Affiliation(s)
- Joanna Skiba
- Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Aleksander Gorski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| | - Natalia Dutkiewicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| | - Magdalena Gapińska
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Józef Stróżek
- Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Krzysztof Woźniak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Damian Trzybiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Konrad Kowalski
- Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| |
Collapse
|
17
|
Mori K, Takezawa Y, Shionoya M. Metal-dependent base pairing of bifacial iminodiacetic acid-modified uracil bases for switching DNA hybridization partner. Chem Sci 2023; 14:1082-1088. [PMID: 36756334 PMCID: PMC9891364 DOI: 10.1039/d2sc06534g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
Dynamic control of DNA assembly by external stimuli has received increasing attention in recent years. Dynamic ligand exchange in metal complexes can be a central element in the structural and functional transformation of DNA assemblies. In this study, N,N-dicarboxymethyl-5-aminouracil (dcaU) nucleoside with an iminodiacetic acid (IDA) ligand at the 5-position of the uracil base has been developed as a bifacial nucleoside that can form both hydrogen-bonded and metal-mediated base pairs. Metal complexation study of dcaU nucleosides revealed their ability to form a 2:1 complex with a GdIII ion at the monomeric level. The characteristics of base pairing of dcaU nucleosides were then examined inside DNA duplexes. The results revealed that the formation of the metal-mediated dcaU-GdIII-dcaU pair significantly stabilized the DNA duplex containing one dcaU-dcaU mismatch (ΔT m = +16.1 °C). In contrast, a duplex containing a hydrogen-bonded dcaU-A pair was destabilized in the presence of GdIII (ΔT m = -3.5 °C). The GdIII-dependent base pairing of dcaU bases was applied to control the hybridization preference of DNA in response to metal ions. The hybridization partner of a dcaU-containing strand was reversibly exchanged by the addition and removal of GdIII ions. Since the incorporation of a single dcaU base can switch the hybridization behavior of DNA, the bifacial dcaU base would be a versatile building block for imparting metal responsiveness to DNA assemblies, allowing the rational design of dynamic DNA systems.
Collapse
Affiliation(s)
- Keita Mori
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
18
|
Rajasree SC, Takezawa Y, Shionoya M. Cu II-mediated stabilisation of DNA duplexes bearing consecutive ethenoadenine lesions and its application to a metal-responsive DNAzyme. Chem Commun (Camb) 2023; 59:1006-1009. [PMID: 36524578 DOI: 10.1039/d2cc06179a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-mediated nucleobase pairing can play a central role in the expression of metal-responsive DNA functions. We report the CuII-mediated stabilisation of DNA duplexes bearing damaged nucleobases, 1,N6-ethenoadenine (εA), as metal-binding sites, which was utilised to construct a metal-responsive DNAzyme. Consecutive incorporation of three or more εA-εA mismatch pairs allowed for CuII-dependent significant duplex stabilisation through metal-mediated εA-CuII-εA base pairing. Subsequently, a split DNAzyme with three εA-CuII-εA base pairs was strategically designed. The activity of the εA-modified DNAzyme was enhanced by 5.3-fold upon addition of CuII ions. This study demonstrates the utility of εA lesions for building metal-responsive DNA architectures.
Collapse
Affiliation(s)
- Silpa Chandran Rajasree
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
19
|
Hu L, Takezawa Y, Shionoya M. Cu II-mediated DNA base pairing of a triazole-4-carboxylate nucleoside prepared by click chemistry. Chem Commun (Camb) 2023; 59:892-895. [PMID: 36594822 DOI: 10.1039/d2cc06205d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Artificial metal-mediated DNA base pairing is a promising strategy for creating highly functionalized DNA supramolecules. Here we report a novel ligand-type triazole-4-carboxylate (TazC) nucleoside that is readily prepared by the click reaction. TazC nucleosides were found to form a stable TazC-CuII-TazC base pair inside DNA duplexes, resulting in CuII-specific duplex stabilization (ΔTm = +7.7 °C). This study demonstrates that the triazole derivatives are useful in the development of metal-mediated base pairing.
Collapse
Affiliation(s)
- Lingyun Hu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
20
|
Lefringhausen N, Seiffert V, Erbacher C, Karst U, Müller J. Chiral-at-Metal Silver-Mediated Base Pairs: Metal-Centred Chirality versus DNA Helical Chirality. Chemistry 2023; 29:e202202630. [PMID: 36219466 PMCID: PMC10098492 DOI: 10.1002/chem.202202630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 11/23/2022]
Abstract
When covalently incorporating ligands capable of forming chiral metal complexes into a DNA oligonucleotide duplex, an enantiospecific formation of metal-mediated base pairs is possible. We have been investigating the chirality of the silver-mediated base pair P-AgI -P (P, 1H-imidazo[4,5-f][1,10]phenanthroline) depending on the number of consecutive P : P pairs within a series of duplexes. Towards this end, both enantiomers of the nucleoside analogue 3-(1H-imidazo[4,5-f][1,10]phenanthrolin-1-yl)propane-1,2-diol comprising an acyclic backbone were introduced into DNA duplexes, resulting in diastereomeric metal-mediated base pairs. The same chiral-at-metal complex is formed inside the duplex for up to five neighbouring P-AgI -P pairs, irrespective of whether (S)-P or (R)-P is used. With six silver-mediated base pairs, the chirality of the metal complex is inverted for (S)-P but not for (R)-P. This indicates an intricate balance of what determines the configuration of the metal complex, the intrinsically preferred metal-centred chirality or the DNA helical chirality.
Collapse
Affiliation(s)
- Nils Lefringhausen
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149, Münster, Germany
| | - Victoria Seiffert
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149, Münster, Germany
| | - Catharina Erbacher
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 48, 48149, Münster, Germany
| | - Uwe Karst
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 48, 48149, Münster, Germany
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Center for Soft Nanoscience (SoN) and Cells in Motion Interfaculty Centre (CiMIC), Corrensstr. 28/30, 48149, Münster, Germany
| |
Collapse
|
21
|
Hao J, Cao D, Zhao Q, Zhang D, Wang H. Intramolecular Folding of PolyT Oligonucleotides Induced by Cooperative Binding of Silver(I) Ions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227842. [PMID: 36431941 PMCID: PMC9694225 DOI: 10.3390/molecules27227842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Ag+-bridged T-Ag+-T was recently discovered in a Ag+-DNA nanowire crystal, but it was reported that Ag+ had little to no affinity to T nucleobases and T-rich oligonucleotides in solution. Therefore, the binding mode for the formation of this type of novel metallo base pair in solution is elusive. Herein, we demonstrate that Ag+ can interact with polyT oligonucleotides once the concentration of Ag+ in solution exceeds a threshold value. The threshold value is independent of the concentration of the polyT oligonucleotide but is inversely proportional to the length of the polyT oligonucleotide. The polyT oligonucleotides are intramolecularly folded due to their positively cooperative formation and the stack of T-Ag+-T base pairs, resulting in the 5'- and 3'-ends being in close proximity to each other. The intramolecular Ag+-folded polyT oligonucleotide has a higher thermal stability than the duplex and can be reversibly modulated by cysteine.
Collapse
Affiliation(s)
- Jinghua Hao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiang Zhao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dapeng Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-10-62849611; Fax: +86-10-62849600
| | - Hailin Wang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Nyenhuis M, Schönrath I, Kamzeeva PN, Zatsepin TS, Müller J, Doltsinis N, Aralov AV. Benzothiazole-substituted 1,3-diaza-2-oxophenoxazine as a luminescent nucleobase surrogate for silver(I)-mediated base pairing. Dalton Trans 2022; 51:13386-13395. [PMID: 35989665 DOI: 10.1039/d2dt01762h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A benzothiazole-substituted derivative (X) of 1,3-diaza-2-oxophenoxazine was evaluated with respect to its ability to engage in Ag(I)-mediated homo base pair formation in two different DNA duplexes. The metal binding was determined by a combination of temperature-dependent UV spectroscopy, CD spectroscopy, and fluorescence spectroscopy, indicating the incorporation of two Ag(I) ions to generate a dinuclear X-Ag(I)2-X base pair. Interestingly, a luminescence increase was observed upon metal binding. Theoretical luminescence spectra were calculated using time-dependent density functional theory (TDDFT) for all possible Ag(I)-mediated X : X base pair geometries to identify the species responsible for the increase in luminescence. The study shows that even bulky non-planar artificial nucleobases can be applied to form stabilizing metal-mediated base pairs.
Collapse
Affiliation(s)
- Marvin Nyenhuis
- Westfälische Wilhelms-Universität Münster, Institute for Solid State Theory and Center for Multiscale Theory and Computation, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.
| | - Isabell Schönrath
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany.
| | - Polina N Kamzeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia.
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory Str. 1-3, 119992 Moscow, Russia
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany.
| | - Nikos Doltsinis
- Westfälische Wilhelms-Universität Münster, Institute for Solid State Theory and Center for Multiscale Theory and Computation, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia.
| |
Collapse
|
23
|
Algar JL, Findlay JA, Preston D. Roles of Metal Ions in Foldamers and Other Conformationally Flexible Supramolecular Systems. ACS ORGANIC & INORGANIC AU 2022; 2:464-476. [PMID: 36855532 PMCID: PMC9955367 DOI: 10.1021/acsorginorgau.2c00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
Conformational control is a key prerequisite for much molecular function. As chemists seek to create complex molecules that have applications beyond the academic laboratory, correct spatial positioning is critical. This is particularly true of flexible systems. Conformationally flexible molecules show potential because they resemble in many cases naturally occurring analogues such as the secondary structures found in proteins and peptides such as α-helices and β-sheets. One of the ways in which conformation can be controlled in these molecules is through interaction with or coordination to metal ions. This review explores how secondary structure (i.e., controlled local conformation) in foldamers and other conformationally flexible systems can be enforced or modified through coordination to metal ions. We hope to provide examples that illustrate the power of metal ions to influence this structure toward multiple different outcomes.
Collapse
|
24
|
Atsugi T, Ono A, Tasaka M, Eguchi N, Fujiwara S, Kondo J. A Novel Ag
I
‐DNA Rod Comprising a One‐Dimensional Array of 11 Silver Ions within a Double Helical Structure. Angew Chem Int Ed Engl 2022; 61:e202204798. [DOI: 10.1002/anie.202204798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Takahiro Atsugi
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Akira Ono
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Miho Tasaka
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Natsumi Eguchi
- Department of Materials and Life Sciences Faculty of Science and Technology Sophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
| | - Shoji Fujiwara
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences Faculty of Science and Technology Sophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
| |
Collapse
|
25
|
Atsugi T, Ono A, Tasaka M, Eguchi N, Fujiwara S, Kondo J. A Novel Ag
I
‐DNA Rod Comprising a One‐Dimensional Array of 11 Silver Ions within a Double Helical Structure. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takahiro Atsugi
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Akira Ono
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Miho Tasaka
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Natsumi Eguchi
- Department of Materials and Life Sciences Faculty of Science and Technology Sophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
| | - Shoji Fujiwara
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences Faculty of Science and Technology Sophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
| |
Collapse
|
26
|
Heddinga MH, Müller J. Modulating aptamer function by copper(II)-mediated base pair formation. Org Biomol Chem 2022; 20:4787-4793. [PMID: 35640171 DOI: 10.1039/d2ob00788f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two aptamers, one for ATP and one for arginine, were modified using an artificial 2'-dexoyribonucleoside based on the nucleobase surrogate imidazole-4-carboxylate. This synthetic nucleoside substitute does not engage in hydrogen bonding but is capable of forming Cu(II)-mediated base pairs instead. Hence, the addition of Cu(II) can be used to influence the ability of the aptamer derivatives to adopt the correct fold necessary for binding their respective target molecule. As a result, aptamer function can be modulated via the addition of Cu(II). The extent of modulation ability depends on the identity of the aptamer and on the exact location of the artificial nucleosides within the oligonucleotide sequence.
Collapse
Affiliation(s)
- Marius H Heddinga
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany.
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany. .,Westfälische Wilhelms-Universität Münster, Center for Soft Nanoscience (SoN) and Cells in Motion Interfaculty Centre (CiMIC), Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
27
|
Buchanan JS, Preston D. A Catalogue of Orthogonal Complementary Ligand Pairings for Palladium(II) Complexes. Chem Asian J 2022; 17:e202200272. [PMID: 35362213 PMCID: PMC9324840 DOI: 10.1002/asia.202200272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/29/2022] [Indexed: 11/23/2022]
Abstract
Molecular recognition is a form of information transfer, seen in the base pairing in DNA which is derived from the identity (acceptor or donor) and number of hydrogen bond sites within each base. Here we report bis-ligand palladium(II) complexes that exhibit similar complementarity. Pd(II) has square planar four-coordinate geometry, giving control over ligand orientation and denticity. Pairings were developed using ligand denticity (3 : 1 or 2 : 2), and hydrogen bond capability (AA:DD or AD:DA) or lack thereof. Five pairings were investigated, with two sets of four being found fully orthogonal. The two 3 : 1 pairings exhibited limited ligand exchange. The extent of this exchange varied dependant on solvent from 2 : 1 (desired to undesired) to 6 : 1. A reliable and varied set of ligand pairs have therefore been developed for bis-ligand coordination sphere engineering in pursuit of sorting for complex molecular architectures and molecular-level information storage and transfer events.
Collapse
Affiliation(s)
- Jason S. Buchanan
- Research School of ChemistryAustralian National UniversityCanberraACT 2600Australia
| | - Dan Preston
- Research School of ChemistryAustralian National UniversityCanberraACT 2600Australia
| |
Collapse
|
28
|
Wallin J, Lönnberg T. Improved Synthesis Strategy for N‐Methoxy‐1,3‐Oxazinane Nucleic Acids (MOANAs). European J Org Chem 2022. [DOI: 10.1002/ejoc.202200538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Josefiina Wallin
- University of Turku: Turun Yliopisto Department of Chemistry FINLAND
| | - Tuomas Lönnberg
- University of Turku Dept. of Chemistry Vatselankatu 2 20014 Turku FINLAND
| |
Collapse
|
29
|
Tian T, Li Y, Lin Y. Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Res 2022; 10:40. [PMID: 35606345 PMCID: PMC9125017 DOI: 10.1038/s41413-022-00212-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/20/2022] [Indexed: 02/08/2023] Open
Abstract
The physicochemical nature of DNA allows the assembly of highly predictable structures via several fabrication strategies, which have been applied to make breakthroughs in various fields. Moreover, DNA nanostructures are regarded as materials with excellent editability and biocompatibility for biomedical applications. The ongoing maintenance and release of new DNA structure design tools ease the work and make large and arbitrary DNA structures feasible for different applications. However, the nature of DNA nanostructures endows them with several stimulus-responsive mechanisms capable of responding to biomolecules, such as nucleic acids and proteins, as well as biophysical environmental parameters, such as temperature and pH. Via these mechanisms, stimulus-responsive dynamic DNA nanostructures have been applied in several biomedical settings, including basic research, active drug delivery, biosensor development, and tissue engineering. These applications have shown the versatility of dynamic DNA nanostructures, with unignorable merits that exceed those of their traditional counterparts, such as polymers and metal particles. However, there are stability, yield, exogenous DNA, and ethical considerations regarding their clinical translation. In this review, we first introduce the recent efforts and discoveries in DNA nanotechnology, highlighting the uses of dynamic DNA nanostructures in biomedical applications. Then, several dynamic DNA nanostructures are presented, and their typical biomedical applications, including their use as DNA aptamers, ion concentration/pH-sensitive DNA molecules, DNA nanostructures capable of strand displacement reactions, and protein-based dynamic DNA nanostructures, are discussed. Finally, the challenges regarding the biomedical applications of dynamic DNA nanostructures are discussed.
Collapse
Affiliation(s)
- Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yanjing Li
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, 300070, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
30
|
Afari MNK, Virta P, Lönnberg T. N-Methoxy-1,3-oxazinane nucleic acids (MOANAs) - a configurationally flexible backbone modification allows post-synthetic incorporation of base moieties. Org Biomol Chem 2022; 20:3480-3485. [PMID: 35388869 DOI: 10.1039/d2ob00465h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
(2R,3S)-4-(Methoxyamino)butane-1,2,3-triol was converted into a protected phosphoramidite building block and incorporated into the middle of a short DNA oligonucleotide. O1 and O3 of the (2R,3S)-4-(methoxyamino)butane-1,2,3-triol were engaged in phosphodiester linkages, leaving O2 and the methoxyamino function available to form an N-methoxy-1,3-oxazinane ring through reaction with an aldehyde. In modified oligonucleotides thus obtained, the oxazinane ring formally replaces the furanose ring and the aldehyde, the base moiety of natural nucleosides. The feasibility of synthesizing base-modified oligonucleotides by this approach was demonstrated with several aromatic and aliphatic aldehydes featuring various functional groups.
Collapse
Affiliation(s)
- Mark N K Afari
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
| | - Pasi Virta
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
| |
Collapse
|
31
|
Sequence-Specific Recognition of Double-Stranded DNA by Peptide Nucleic Acid Forming Double-Duplex Invasion Complex. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Peptide nucleic acid (PNA) is an analog of natural nucleic acids, where the sugar-phosphate backbone of DNA is replaced by an electrostatically neutral N-(2-aminoethyl)glycine backbone. This unique peptide-based backbone enables PNAs to form a very stable duplex with the complementary nucleic acids via Watson–Crick base pairing since there is no electrostatic repulsion between PNA and DNA·RNA. With this high nucleic acid affinity, PNAs have been used in a wide range of fields, from biological applications such as gene targeting, to engineering applications such as probe and sensor developments. In addition to single-stranded DNA, PNA can also recognize double-stranded DNA (dsDNA) through the formation of a double-duplex invasion complex. This double-duplex invasion is hard to achieve with other artificial nucleic acids and is expected to be a promising method to recognize dsDNA in cellula or in vivo since the invasion does not require the prior denaturation of dsDNA. In this paper, we provide basic knowledge of PNA and mainly focus on the research of PNA invasion.
Collapse
|
32
|
Hu L, Takezawa Y, Shionoya M. Metal-mediated DNA base pairing of easily prepared 2-oxo-imidazole-4-carboxylate nucleotides. Chem Sci 2022; 13:3977-3983. [PMID: 35440985 PMCID: PMC8985573 DOI: 10.1039/d2sc00926a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Metal-mediated DNA base pairs, which consist of two ligand-type artificial nucleobases and a bridging metal ion, have attracted increasing attention in recent years as a different base pairing mode from natural base pairing. Metal-mediated base pairing has been extensively studied, not only for metal-dependent thermal stabilisation of duplexes, but also for metal assembly by DNA templates and construction of functional DNAs that can be controlled by metals. Here, we report the metal-mediated base paring properties of a novel 2-oxo-imidazole-4-carboxylate (ImOC) nucleobase and a previously reported 2-oxo-imidazole-4-carboxamide (ImOA) nucleobase, both of which can be easily derived from a commercially available uridine analogue. The ImOC nucleobases were found to form stable ImOC–CuII–ImOC and ImOC–HgII–ImOC base pairs in the presence of the corresponding metal ions, leading to an increase in the duplex melting temperature by +20 °C and +11 °C, respectively. The ImOC bases did not react with other divalent metal ions and showed superior metal selectivity compared to similar nucleobase design reported so far. The ImOC–CuII–ImOC base pair was much more stable than mismatch pairs with other natural nucleobases, confirming the base pair specificity in the presence of CuII. Furthermore, we demonstrated the quantitative assembly of three CuII ions inside a DNA duplex with three consecutive ImOC–ImOC pairs, showing great potential of DNA-template based CuII nanoarray construction. The study of easily-prepared ImOC base pairs will provide a new design strategy for metal-responsive DNA materials. A novel 2-oxo-imidazole-4-carboxylate (ImOC) nucleobase, which can be easily derived from a commercially available uridine analogue, was found to form stable CuII- and HgII-mediated base pairs in DNA duplexes.![]()
Collapse
Affiliation(s)
- Lingyun Hu
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
33
|
Lippert B. “Metal-modified base pairs” vs. “metal-mediated pairs of bases”: not just a semantic issue! J Biol Inorg Chem 2022; 27:215-219. [PMID: 35091756 PMCID: PMC8907086 DOI: 10.1007/s00775-022-01926-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
A “nucleobase pair” is not identical with a “pair of basic ligands”, as only in the first case, the existence of inter-base hydrogen bonds is implied. The cross-linking of two nucleobases or two basic ligands by a metal ion of suitable geometry produces either “metal-modified” or “metal-mediated” species, but in the author’s opinion, this difference is not always properly made. This commentary is an attempt to provide a clearer distinction between the two scenarios.
Collapse
Affiliation(s)
- Bernhard Lippert
- Fakultät Für Chemie Und Chemische Biologie (CCB), Technische Universität Dortmund, 44221, Dortmund, Germany.
| |
Collapse
|
34
|
Takezawa Y, Sakakibara S, Shionoya M. Bipyridine-Modified DNA Three-Way Junctions with Amide linkers: Metal-Dependent Structure Induction and Self-Sorting. Chemistry 2021; 27:16626-16633. [PMID: 34623721 DOI: 10.1002/chem.202102977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Indexed: 11/12/2022]
Abstract
DNA three-way junction (3WJ) structures are essential building blocks for the construction of DNA nanoarchitectures. We have synthesized a bipyridine (bpy)-modified DNA 3WJ by using a newly designed bpy-modified nucleoside, Ubpy -3, in which a bpy ligand is tethered via a stable amide linker. The thermal stability of the bpy-modified 3WJ was greatly enhanced by the formation of an interstrand NiII (bpy)3 complex at the junction core (ΔTm =+17.7 °C). Although the stereochemistry of the modification site differs from that of the previously reported bpy-modified nucleoside Ubpy -2, the degree of the NiII -mediated stabilization observed with Ubpy -3 was comparable to that of Ubpy -2. Structure induction of the 3WJs and the duplexes was carried out by the addition or removal of NiII ions. Furthermore, NiII -mediated self-sorting of 3WJs was performed by using the bpy-modified strands and their unmodified counterparts. Both transformations were driven by the formation of NiII (bpy)3 complexes. The structural induction and self-sorting of bpy-modified 3WJs are expected to have many potential applications in the development of metal-responsive DNA materials.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shiori Sakakibara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
35
|
Abstract
Metal-mediated base pairs enable a site-specific incorporation of transition metal ions into nucleic acid structures. The resulting nucleic acid-metal complex conjugates are of interest in the context of functionalized nucleic acids, as they bear metal-based functionality. It is desirable to devise nucleic acids with an externally triggered metal-binding affinity, as this may allow regulating this functionality. Toward this end, a caged deoxyribonucleoside analog HNPP was devised for the site-specific binding of copper(II) ions upon irradiation by light, based on the ligand 3-hydroxy-2-methylpyridin-4(1H)-one (H) and the photocleavable 2-(2-nitrophenyl)propoxy protecting group (NPP). The formation of both H-Cu(II)-H homo base pairs and H-Cu(II)-X hetero base pairs (involving a second artificial deoxyribonucleoside X, based on imidazole-4-carboxylate) was achieved upon irradiation of DNA duplexes bearing the respective HNPP:HNPP or HNPP:X mispairs in the presence of copper(II) ions. The H-Cu(II)-X pair shows an exceptional DNA duplex stabilization of up to 43 °C upon its formation, exceeding that of the H-Cu(II)-H pair. It therefore represents one of the most stabilizing Cu(II)-mediated base pairs reported so far. Our findings expand the scope of light-triggered metal-mediated base pair formation by introducing a copper(II)-binding ligand.
Collapse
Affiliation(s)
- Shuvankar Naskar
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 28/30, 48149 Münster, Germany
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 28/30, 48149 Münster, Germany
| |
Collapse
|
36
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
37
|
Dairaku T, Kawai R, Nozawa-Kumada K, Yoshida K, Ono T, Kondo Y, Kondo J, Ono A, Tanaka Y, Kashiwagi Y. Chemical reduction of Ag + to Ag employing organic electron donors: evaluation of the effect of Ag +-mediated cytosine-cytosine base pairing on the aggregation of Ag nanoparticles. Dalton Trans 2021; 50:12208-12214. [PMID: 35226008 DOI: 10.1039/d1dt01927a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ag+-mediated base pairing is valuable for synthesising DNA-based silver nanoparticles (AgNPs) and nanoclusters (AgNCs). Recently, we reported the formation of a [Ag(cytidine)2]+ complex in dimethyl sulfoxide (DMSO), which facilitated the evaluation of the effect of cytosine-Ag+-cytosine (C-Ag+-C) base pairing on the degree of AgNP aggregation in solution. As an aprotic solvent, DMSO was expected to dissolve the [Ag(cytidine)2]+ complex, and powerful reducing agents, such as organic electron donors. In this study, the chemical reduction of a cytidine/Ag+ system using a powerful reducing agent tetrakis(dimethylamino)ethylene (TDAE) was investigated. 1H/13C/15N NMR spectroscopic evidence was obtained to identify the iminium dication (TDAE2+), which is an oxidised form of TDAE. The results were compared with those obtained using another organic electron donor, tetrathiafulvalene (TTF), which exhibits a relatively lower reduction activity than TDAE. AgNPs prepared via redox reaction between [Ag(cytidine)2]+ and organic electron donors (TDAE and TTF) were characterised using UV-Vis spectroscopy and nanoparticle tracking analysis. It was found that the formation of C-Ag+-C base pairing inhibited the aggregation of AgNPs in solution. In addition, in the presence of cytidine, the total concentration of the AgNP solution was affected by the reduction activity of the reducing agent.
Collapse
Affiliation(s)
- Takenori Dairaku
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Rika Kawai
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kentaro Yoshida
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Tetsuya Ono
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Akira Ono
- Department of Material & Life Chemistry, Faculty of Engineering, Kangawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yoshitomo Kashiwagi
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| |
Collapse
|
38
|
Morihiro K, Moriyama Y, Nemoto Y, Osumi H, Okamoto A. anti-syn Unnatural Base Pair Enables Alphabet-Expanded DNA Self-Assembly. J Am Chem Soc 2021; 143:14207-14217. [PMID: 34450012 DOI: 10.1021/jacs.1c05393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Self-assembly properties and diversity in higher-order structures of DNA enable programmable tools to be used to construct algorithms at the molecular level. However, the utility of DNA-based programmable tools is hampered by the low orthogonality to natural nucleic acids, especially in complex molecular systems. To address this challenge, we report here the orthogonal regulation of DNA self-assembly by using an unnatural base pair (UBP) formation. Our newly designed UBP AnN:SyN is formed in combination with anti and unusual syn glycosidic conformation with high thermal stability and selectivity. Furthermore, AnC worked as a pH-sensitive artificial nucleobase, which forms a strong base pair with cytosine under a weak acidic condition (pH 6.0). The orthogonal AnN:SyN base pair functioned as a trigger for hybridization chain reaction to provide long nicked double-stranded DNA (ca. 1000 base pairs). This work represents the first example of the orthogonal DNA self-assembly that is nonreactive to natural four-letter alphabets DNA trigger and expands the types of programmable tools that work in a complex environment.
Collapse
Affiliation(s)
- Kunihiko Morihiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuya Moriyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yui Nemoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiraki Osumi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
39
|
Nishiyama K, Mori K, Takezawa Y, Shionoya M. Metal-responsive reversible binding of triplex-forming oligonucleotides with 5-hydroxyuracil nucleobases. Chem Commun (Camb) 2021; 57:2487-2490. [PMID: 33616595 DOI: 10.1039/d1cc00553g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metal-responsive triplex-forming oligonucleotides (TFOs) were synthesised by incorporating 5-hydroxyuracil (UOH) nucleobases as metal recognition sites. Binding of the UOH-containing TFO to the target natural DNA duplexes was reversibly regulated by the addition and removal of GdIII ions under isothermal conditions.
Collapse
Affiliation(s)
- Kotaro Nishiyama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Keita Mori
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
40
|
Dairaku T, Kawai R, Kanaba T, Ono T, Yoshida K, Sato H, Nozawa-Kumada K, Kondo Y, Kondo J, Ono A, Tanaka Y, Kashiwagi Y. Effect of cytosine-Ag +-cytosine base pairing on the redox potential of the Ag +/Ag couple and the chemical reduction of Ag + to Ag by tetrathiafulvalene. Dalton Trans 2021; 50:7633-7639. [PMID: 33973617 DOI: 10.1039/d1dt00975c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The redox properties of metallo-base pairs remain to be elucidated. Herein, we report the detailed 1H/13C/109Ag NMR spectroscopic and cyclic voltammetric characterisation of the [Ag(cytidine)2]+ complex as isolated cytosine-Ag+-cytosine (C-Ag+-C) base pairs. We also performed comparative studies between cytidine/Ag+ and other nucleoside/Ag+ systems by using cyclic voltammetry measurements. In addition, to evaluate the effect of [Ag(cytidine)2]+ formation on the chemical reduction of Ag+ to Ag, we utilised the redox reaction between Ag+ and tetrathiafulvalene (TTF). We found that Ag+-mediated base pairing lowers the redox potential of the Ag+/Ag couple. In addition, C-Ag+-C base pairing makes it more difficult to reduce captured Ag+ ions than in other nucleoside/Ag+ systems. Remarkably, the cytidine/Ag+ system can be utilised to control the redox potential of the Ag+/Ag couple in DMSO. This feature of the cytidine/Ag+ system may be exploited for Ag nanoparticle synthesis by using the redox reaction between Ag+ and TTF.
Collapse
Affiliation(s)
- Takenori Dairaku
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Rika Kawai
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Teppei Kanaba
- Application, Bruker Japan K.K., 3-9 Moriya-cho, Kanagawa-ku, Yokohama, Kanagawa 221-0022, Japan
| | - Tetsuya Ono
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Kentaro Yoshida
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Hajime Sato
- Application, Bruker Japan K.K., 3-9 Moriya-cho, Kanagawa-ku, Yokohama, Kanagawa 221-0022, Japan
| | - Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Akira Ono
- Department of Material & Life Chemistry, Faculty of Engineering, Kangawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Yoshitomo Kashiwagi
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| |
Collapse
|
41
|
Hande M, Maity S, Lönnberg T. Sequence dependence of Pd(II)-mediated base pairing by palladacyclic nucleobase surrogates. J Inorg Biochem 2021; 222:111506. [PMID: 34118781 DOI: 10.1016/j.jinorgbio.2021.111506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/30/2021] [Indexed: 11/15/2022]
Abstract
A C-nucleoside derivative of phenylpyridine or the respective palladacycle was incorporated at either 3'- or 5'-terminus of a short oligodeoxynucleotide. Hybridization properties of these modified oligonucleotides were studied in a fluorescence-based competition assay in addition to conventional UV melting temperature analysis and compared with those of a previously prepared analogue featuring the modified nucleoside in the middle of the sequence. With the unpalladated phenylpyridine oligonucleotides, UV melting temperature qualitatively correlated with the ability to displace a strand from a double helix in the competition assay, decreasing in the order 5' > 3' > middle. Corresponding results on the palladacyclic oligonucleotides were more difficult to interpret but both UV melting and competition experiments revealed a decrease in the duplex stability upon palladation in most cases. On the other hand, dependence of the UV melting temperature on the identity of the canonical nucleobase opposite to the modified nucleobase analogue was much more pronounced with the palladacyclic duplexes than with their unpalladated counterparts. Furthermore, UV melting profiles of the palladacyclic duplexes featured an additional transition at a temperature exceeding the melting temperature of the unmodified part of the duplex. Taken together, these results lend support to the idea of Pd(II)-mediated base pairs that are highly stable but incompatible with the geometry of a double helix.
Collapse
Affiliation(s)
- Madhuri Hande
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland
| | - Sajal Maity
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland.
| |
Collapse
|
42
|
Ukale D, Lönnberg T. Organomercury Nucleic Acids: Past, Present and Future. Chembiochem 2021; 22:1733-1739. [PMID: 33410571 PMCID: PMC8247973 DOI: 10.1002/cbic.202000821] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/30/2020] [Indexed: 11/19/2022]
Abstract
Synthetic efforts towards nucleosides, nucleotides, oligonucleotides and nucleic acids covalently mercurated at one or more of their base moieties are summarized, followed by a discussion of the proposed, realized and abandoned applications of this unique class of compounds. Special emphasis is given to fields in which active research is ongoing, notably the use of HgII -mediated base pairing to improve the hybridization properties of oligonucleotide probes. Finally, this minireview attempts to anticipate potential future applications of organomercury nucleic acids.
Collapse
Affiliation(s)
- Dattatraya Ukale
- Department of ChemistryUniversity of TurkuVatselankatu 220014TurkuFinland
| | - Tuomas Lönnberg
- Department of ChemistryUniversity of TurkuVatselankatu 220014TurkuFinland
| |
Collapse
|
43
|
Flamme M, Figazzolo C, Gasser G, Hollenstein M. Enzymatic construction of metal-mediated nucleic acid base pairs. Metallomics 2021; 13:6206861. [PMID: 33791776 DOI: 10.1093/mtomcs/mfab016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Artificial metal base pairs have become increasingly important in nucleic acids chemistry due to their high thermal stability, water solubility, orthogonality to natural base pairs, and low cost of production. These interesting properties combined with ease of chemical and enzymatic synthesis have prompted their use in several practical applications, including the construction of nanomolecular devices, ions sensors, and metal nanowires. Chemical synthesis of metal base pairs is highly efficient and enables the rapid screening of novel metal base pair candidates. However, chemical synthesis is limited to rather short oligonucleotides and requires rather important synthetic efforts. Herein, we discuss recent progress made for the enzymatic construction of metal base pairs that can alleviate some of these limitations. First, we highlight the possibility of generating metal base pairs using canonical nucleotides and then describe how modified nucleotides can be used in this context. We also provide a description of the main analytical techniques used for the analysis of the nature and the formation of metal base pairs together with relevant examples of their applications.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.,Université de Paris, 12 rue de l'École de Médecine, 75006 Paris, France.,Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Chiara Figazzolo
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.,Université de Paris, 12 rue de l'École de Médecine, 75006 Paris, France.,Centre de Recherches Interdisciplinaires CRI, 8 rue Charles V, 75004 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
44
|
Pramanik S, Khamari L, Mukherjee S. Differentiating a Least-Stable Single Nucleotide Mismatch in DNA Via Metal Ion-Mediated Base Pairing and Using Thioflavin T as an Extrinsic Fluorophore. J Phys Chem Lett 2021; 12:2547-2554. [PMID: 33683888 DOI: 10.1021/acs.jpclett.1c00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monitoring the DNA dynamics in solution has great potential to develop new nucleic acid-based sensors and devices. With spectroscopic approaches, both at the ensemble average and single-molecule resolution, this study is directed to differentiate a single nucleotide mismatch (SNM) via a metal ion-stabilized mismatched base-pairing (C-Ag+-C/C-Cu2+-T) (C = cytosine, T = thymine) and site-selective extrinsic fluorophore, specifically, Thioflavin T (ThT). This is the first approach of its kind where dynamic quantities like molecular diffusion coefficients and diffusion times have been utilized to distinguish the least-stable SNM (CC & CT) formed by the most discriminating nucleobase, specifically, cytosine in a 20-mer duplex DNA. Additionally, this work also quantifies metal ions (Ag+ and Cu2+) at lower concentrations using fluorescence correlation spectroscopy. Our results can provide greater molecular-level insights into the mismatch-dependent metal-DNA interactions and also illuminate ThT as a new fluorophore to monitor the dynamics involved in DNA-metal composites.
Collapse
Affiliation(s)
- Srikrishna Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Laxmikanta Khamari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
45
|
Ariga K, Shionoya M. Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200362] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
46
|
Escher D, Müller J. Silver(I)‐mediated hetero base pairs of 6‐pyrazolylpurine and its deaza derivatives. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniela Escher
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstr. 30 48149 Münster Germany
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstr. 30 48149 Münster Germany
| |
Collapse
|
47
|
Schönrath I, Tsvetkov VB, Barceló-Oliver M, Hebenbrock M, Zatsepin TS, Aralov AV, Müller J. Silver(I)-mediated base pairing in DNA involving the artificial nucleobase 7,8-dihydro-8-oxo-1,N 6-ethenoadenine. J Inorg Biochem 2021; 219:111369. [PMID: 33878529 DOI: 10.1016/j.jinorgbio.2021.111369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022]
Abstract
The artificial nucleobase 7,8-dihydro-8-oxo-1,N6-ethenoadenine (X) was investigated with respect to its ability to engage in Ag(I)-mediated base pairing in DNA. Spectroscopic data indicate the formation of dinuclear X-Ag(I)2-X homo base pairs and mononuclear X-Ag(I)-C base pairs (C, cytosine). Density functional theory calculations and molecular dynamics simulations indicate that the nucleobase changes from its lactam tautomeric form prior to the formation of the Ag(I)-mediated base pair to the lactim form after the incorporation of the Ag(I) ions. Fluorescence spectroscopy indicates that the two Ag(I) ions of the homo base pair are incorporated sequentially. Isothermal titration calorimetry confirms that the affinity of one of the Ag(I) ions is about tenfold higher than that of the other Ag(I) ion. The computational analysis by means of density functional theory confirms a much larger reaction energy for the incorporation of the first Ag(I) ion. The thermal stabilization upon the formation of the dinuclear Ag(I)-mediated homo base pair exceeds the one previously observed for the closely related nucleobase 1,N6-ethenoadenine by far, despite very similar structures. This additional stabilization may stem from the presence of water molecules engaged in hydrogen bonding with the additional oxygen atom of the artificial nucleobase X. The highly stabilizing Ag(I)-mediated base pair is a valuable addition to established dinuclear metal-mediated base pairs.
Collapse
Affiliation(s)
- Isabell Schönrath
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany
| | - Vladimir B Tsvetkov
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, 8/2 Trubetskaya Str., 119146 Moscow, Russia; Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia
| | - Miquel Barceló-Oliver
- Universitat de les Illes Balears, Departament de Química, carretera Valldemossa km 7.5, Ed. Mateu Orfila i Rotger, 07122 Palma de Mallorca, Spain
| | - Marian Hebenbrock
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia; Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory Str. 1-3, 119992 Moscow, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia.
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany.
| |
Collapse
|
48
|
Nakama T, Takezawa Y, Shionoya M. Site-specific polymerase incorporation of consecutive ligand-containing nucleotides for multiple metal-mediated base pairing. Chem Commun (Camb) 2021; 57:1392-1395. [PMID: 33438690 DOI: 10.1039/d0cc07771b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enzymatic method has been developed for the synthesis of DNA oligomers containing consecutive artificial ligand-type nucleotides. Three hydroxypyridone ligand-containing nucleotides forming CuII-mediated unnatural base pairs were continuously incorporated at a pre-specified position by a lesion-bypass Dpo4 polymerase. This enzymatic synthesis was applied to the development of a CuII-responsive DNAzyme. Accordingly, this research will open new routes for the construction of metal-responsive DNA architectures that are manipulated by multiple metal-mediated base pairing.
Collapse
Affiliation(s)
- Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
49
|
Wu GY, Liang C, Li H, Zhang X, Yao G, Zhu FF, Hu YX, Yin GQ, Zheng W, Lu Z. A multi-responsive supramolecular heparin-based biohybrid metallogel constructed by controlled self-assembly based on metal–ligand, host–guest and electrostatic interactions. Org Chem Front 2021. [DOI: 10.1039/d1qo00692d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of supramolecular heparin-based biohybrid metallogels with multiple stimuli-responsive behaviours was constructed through the controlled self-assembly based on three orthogonal interactions within a single system.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Chao Liang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Hao Li
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Xianyi Zhang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Guanxin Yao
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Fan-Fan Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, China
| | - Wei Zheng
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
50
|
Wu GY, Liang C, Hu YX, Wang XQ, Yin GQ, Lu Z. Hierarchical self-assembly of discrete bis-[2]pseudorotaxane metallacycle with bis-pillar[5]arene via host-guest interactions and their redox-responsive behaviors. RSC Adv 2020; 11:1187-1193. [PMID: 35423686 PMCID: PMC8693504 DOI: 10.1039/d0ra09920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/20/2020] [Indexed: 11/21/2022] Open
Abstract
A discrete rhomboidal metallacycle R functionalized with bis-[2]pseudorotaxane of [Cu(phenanthroline)2]+ derivatives was successfully synthesized via coordination-driven self-assembly. Furthermore, the host-guest complexation of such a bis-[2]pseudorotaxane metallacycle with a bis-pillar[5]arene (bisP5) allowed for the formation of a new family of cross-linked supramolecular polymers R⊃(bisP5)2, which displayed interesting redox-responsive properties. By taking advantage of the substantial structural differences between the coordination geometries of [Cu(phenanthroline)2]+ and [Cu(phenanthroline)2]2+, the weight-average diffusion coefficients D of the supramolecular polymer were adjusted through changing the redox state of the Cu(i)/Cu(ii) complexes.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu Anhui 241002 China
| | - Chao Liang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu Anhui 241002 China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu Anhui 241002 China
| |
Collapse
|