1
|
Varghese EV, Yao CY, Chen CH. Investigation of Mechanochromic Luminescence of Pyrene-based Aggregation-Induced Emission Luminogens: Correlation between Molecular Packing and Luminescence Behavior. Chem Asian J 2024; 19:e202300910. [PMID: 37932879 DOI: 10.1002/asia.202300910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
To better understand the correlation between molecular structure and optical properties such as aggregation-induced emission (AIE) and mechanochromic luminescence (MCL) emission, two new pyrene-based derivatives with substitutions at the 4- and 5-positions (1HH) and at the 4-, 5-, 9-, and 10-positions (2HH) were designed and synthesized. Cyano groups were introduced at the periphery of the synthesized compounds (1HCN, 1OCN, 1BCN, 2HCN, 2OCN, and 2BCN) to investigate the influence of these groups on the emission properties of the pyrene derivatives both in solution and in the solid state. The fluorescence emission performance of these compounds in water/acetone mixtures was simultaneously studied, revealing outstanding aggregation-induced emission properties. The typical shift in emission maxima to higher values was attributed to J-aggregate formation in the aggregate state. Careful investigation of the crystal structures demonstrated abundant and intense intermolecular interactions, such as C-H…π and C-H…N hydrogen bonds, contributing to the remarkable mechanochromic luminescence performance of these compounds. The MCL properties of all the compounds were investigated using powder X-ray diffraction, and the remarkable mechanochromic properties were attributed to J-aggregate phenomena in the solid state. These results provide valuable insights into the structure-property relationship of organic MCL materials, guiding the design of efficient organic MCL materials.
Collapse
Affiliation(s)
- Eldhose V Varghese
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan
| | - Chia-Yu Yao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan
| | - Chia-Hsiang Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| |
Collapse
|
2
|
Sun Y, Wang X, Yang B, Chen M, Guo Z, Wang Y, Li J, Xu M, Zhang Y, Sun H, Dang J, Fan J, Li J, Wei J. Trichalcogenasupersumanenes and its concave-convex supramolecular assembly with fullerenes. Nat Commun 2023; 14:3446. [PMID: 37301852 DOI: 10.1038/s41467-023-39086-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Synthesis of buckybowls have stayed highly challenging due to the large structural strain caused by curved π surface. In this paper, we report the synthesis and properties of two trichalcogenasupersumanenes which three chalcogen (sulfur or selenium) atoms and three methylene groups bridge at the bay regions of hexa-peri-hexabenzocoronene. These trichalcogenasupersumanenes are synthesized quickly in three steps using an Aldol cyclotrimerization, a Scholl oxidative cyclization, and a Stille type reaction. X-ray crystallography analysis reveals that they encompass bowl diameters of 11.06 Å and 11.35 Å and bowl depths of 2.29 Å and 2.16 Å for the trithiasupersumanene and triselenosupersumanene, respectively. Furthermore, trithiasupersumanene derivative with methyl chains can form host-guest complexes with C60 or C70, which are driven by concave-convex π ⋯ π interactions and multiple C-H ⋯ π interactions between bowl and fullerenes.
Collapse
Affiliation(s)
- Yixun Sun
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Bo Yang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Muhua Chen
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ziyi Guo
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yiting Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ji Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Mingyu Xu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yunjie Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Huaming Sun
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jingshuang Dang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Juan Fan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| | - Junfa Wei
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
3
|
Nishimoto M, Uetake Y, Yakiyama Y, Sakurai H. Thermodynamic Differentiation of the Two Sides of Azabuckybowl through Complexation with Square Planar Platinum(II). Chem Asian J 2023; 18:e202201103. [PMID: 36404383 DOI: 10.1002/asia.202201103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Indexed: 11/22/2022]
Abstract
The precise control of the two faces, concave/convex faces, is an attractive challenge to realizing novel dynamic molecular systems. Herein, we report the synthesis, X-ray crystal structure, and bowl-to-bowl inversion behavior of a platinum complex with azabuckybowl as a monodentate ligand. X-ray crystallography revealed that the azabuckybowl is orthogonally coordinated to the plane containing the Pt center and other ligands. One and two-dimensional NMR studies have also confirmed that this complex was observed as mixtures of two isomers, although the isomeric ratio was highly biased. Theoretical calculations indicate that the difference in thermodynamic stability of these isomers is due to the direction of the concave/convex face of an azabuckybowl ligand.
Collapse
Affiliation(s)
- Mikey Nishimoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuta Uetake
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yumi Yakiyama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Nishimoto M, Uetake Y, Yakiyama Y, Ishiwari F, Saeki A, Sakurai H. Synthesis of the C 70 Fragment Buckybowl, Homosumanene, and Heterahomosumanenes via Ring-Expansion Reactions from Sumanenone. J Org Chem 2022; 87:2508-2519. [PMID: 35179377 DOI: 10.1021/acs.joc.1c02416] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bowl-shaped aromatic molecules, buckybowls, are attractive molecules because of the unique properties derived from their curved-π scaffolds. Doping heteroatoms into buckybowl frameworks is a powerful method to change their structural and electronical properties. Herein, we report the synthesis of C70 fragment buckybowl, homosumanene, and heterahomosumanenes having a lactone moiety and a lactam moiety via three ring-expansion reactions using sumanenone as a common intermediate. X-ray diffraction analysis of the single crystals reveals their columnar packing structure with a shallow bowl-depth. The lactam moiety is readily derivatized to give azahomosumanene derivatives, nitrogen-doped analogues of homosumanene possessing a pyridine ring at the peripheral carbon. The synthetic application of the α-phenyl azahomosumanene as a cyclometalating ligand with platinum also revealed its utility for preparing a metal complex bearing a buckybowl ligand.
Collapse
Affiliation(s)
- Mikey Nishimoto
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuta Uetake
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yumi Yakiyama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumitaka Ishiwari
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akinori Saeki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Zhao M, Pun SH, Gong Q, Miao Q. Carbazole‐Fused Polycyclic Aromatics Enabled by Regioselective Scholl Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mengna Zhao
- Department of Chemistry The Chinese University of Hong Kong, Shatin, New Territories Hong Kong China
| | - Sai Ho Pun
- Department of Chemistry The Chinese University of Hong Kong, Shatin, New Territories Hong Kong China
| | - Qi Gong
- Department of Chemistry The Chinese University of Hong Kong, Shatin, New Territories Hong Kong China
| | - Qian Miao
- Department of Chemistry The Chinese University of Hong Kong, Shatin, New Territories Hong Kong China
| |
Collapse
|
6
|
Zhao M, Pun SH, Gong Q, Miao Q. Carbazole-Fused Polycyclic Aromatics Enabled by Regioselective Scholl Reactions. Angew Chem Int Ed Engl 2021; 60:24124-24130. [PMID: 34519417 DOI: 10.1002/anie.202107373] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 12/13/2022]
Abstract
The synthesis of new carbazole-fused polycyclic aromatics with interesting geometry and useful properties was explored using Scholl reactions. As found from the Scholl reactions of substrates having two carbazole units linked at different positions through o-phenylene, oxidative coupling of carbazole units occurred in a regioselective manner with new carbon-carbon bonds preferably formed at C3 and C4 in N-alkyl carbazoles. A new N-containing aromatic bowl was characterized by single-crystal X-ray crystallography, and new p-type organic semiconductors exhibited field effect mobility of up to 0.070 cm2 V-1 s-1 in solution-processed thin-film transistors.
Collapse
Affiliation(s)
- Mengna Zhao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Sai Ho Pun
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qi Gong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qian Miao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
7
|
Zhu G, Song Y, Zhang Q, Ding W, Chen X, Wang Y, Zhang G. Modulating the properties of buckybowls containing multiple heteroatoms. Org Chem Front 2021. [DOI: 10.1039/d0qo01452d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-centered buckybowls with sulfur decoration at the rim were synthesized and characterized. The buckybowls demonstrate tunable properties depending on the state of the sulfur atom.
Collapse
Affiliation(s)
- Guanxing Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Yujun Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Qianyu Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Weiwei Ding
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Xinxin Chen
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Yuannan Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| | - Gang Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P. R. China
| |
Collapse
|
8
|
Alvi S, Ali R. Synthetic approaches to bowl-shaped π-conjugated sumanene and its congeners. Beilstein J Org Chem 2020; 16:2212-2259. [PMID: 32983269 PMCID: PMC7492699 DOI: 10.3762/bjoc.16.186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 01/24/2023] Open
Abstract
Since the first synthetic report in 2003 by Sakurai et al., sumanene (derived from the Indian 'Hindi as well as Sanskrit word' "Suman", which means "Sunflower"), a beautifully simple yet much effective bowl-shaped C 3-symmetric polycyclic aromatic hydrocarbon having three benzylic positions clipped between three phenyl rings in the triphenylene framework has attracted a tremendous attention of researchers worldwide. Therefore, since its first successful synthesis, a variety of functionalized sumanenes as well as heterosumanenes have been developed because of their unique physiochemical properties. For example, bowl-to-bowl inversion, bowl depth, facial selectivity, crystal packing, metal complexes, intermolecular charge transfer systems, cation-π complexation, electron conductivity, optical properties and so on. Keeping the importance of this beautiful scaffold in mind, we compiled all the synthetic routes available for the construction of sumanene and its heteroatom derivatives including Mehta's first unsuccessful effort up to the latest achievements. Our major goal to write this review article was to provide a quick summary of where the field has been, where it stands at present, and where it might be going in near future. Although several reviews have been published on sumanene chemistry dealing with different aspects but this is the first report that comprehensively describes the 'all-in-one' chemistry of the sumanene architecture since its invention to till date. We feel that this attractive review article will definitely help the scientific community working not only in the area of organic synthesis but also in materials science and technology.
Collapse
Affiliation(s)
- Shakeel Alvi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India, Phone: +91-7011867613
| | - Rashid Ali
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India, Phone: +91-7011867613
| |
Collapse
|
9
|
Elbert SM, Haidisch A, Kirschbaum T, Rominger F, Zschieschang U, Klauk H, Mastalerz M. 2,7,11,16-Tetra-tert-Butyl Tetraindenopyrene Revisited by an "Inverse" Synthetic Approach. Chemistry 2020; 26:10585-10590. [PMID: 32314830 PMCID: PMC7496754 DOI: 10.1002/chem.202001555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Indexed: 11/30/2022]
Abstract
A new synthetic route to tetraindenopyrene (TIP)—a bowl‐shaped cut‐out structure of C70—is reported. The key step in this approach is a fourfold palladium‐catalyzed C−H activation that increases the yield more than 50 times in comparison to the approach originally described by Scott and co‐workers. Besides examination of its optoelectronic properties and study of its aggregation in solution, TIP was also re‐investigated by dispersion‐corrected DFT methods, which showed that dispersion interactions significantly increase the bowl‐to‐bowl inversion barrier. Furthermore, TIP was used as a semiconductor in p‐channel thin‐film transistors (TFTs).
Collapse
Affiliation(s)
- Sven M Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Anika Haidisch
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Tobias Kirschbaum
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Ute Zschieschang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Hagen Klauk
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Kasprzak A, Kowalczyk A, Jagielska A, Wagner B, Nowicka AM, Sakurai H. Tris(ferrocenylmethidene)sumanene: synthesis, photophysical properties and applications for efficient caesium cation recognition in water. Dalton Trans 2020; 49:9965-9971. [PMID: 32597432 DOI: 10.1039/d0dt01506g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The synthesis of a sumanene derivative bearing three ferrocenyl substituents is presented. This conjugated compound is solution-processable, shows red-light emission with high fluorescence quantum yield and can be used for the construction of the first buckybowl-based sensor for the selective and effective recognition of caesium cations (Cs+) in aqueous solution.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
11
|
as-Indaceno[3,2,1,8,7,6-ghijklm]terrylene as a near-infrared absorbing C 70-fragment. Nat Commun 2020; 11:3873. [PMID: 32747710 PMCID: PMC7400669 DOI: 10.1038/s41467-020-17684-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022] Open
Abstract
Carbon and hydrogen are fundamental components of organic molecules and a fascinating plethora of functions can be generated using these two elements. Yet, realizing attractive electronic structures only by using carbon and hydrogen remains challenging. Herein, we report the synthesis and properties of the C70 fragment as-indaceno[3,2,1,8,7,6-ghijklm]terrylene, which exhibits near-infrared (NIR) absorption (up to ca. 1300 nm), even though this molecule consists of only 34 carbon and 14 hydrogen atoms. A remarkably small highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap is confirmed by electrochemical measurement and theoretical calculations. Furthermore, as-indacenoterrylene is stable despite the absence of peripheral substituents, which contrasts with the cases of other NIR-absorbing hydrocarbons such as diradicaloids and antiaromatic molecules. The results of this study thus offer fundamental insights into the design of hydrocarbons with a small band gap.
Collapse
|
12
|
Muraoka A, Hayashi M. Electronic structure of sumanene-type Buckycatcher by DFT calculations. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Yakiyama Y, Hishikawa S, Sakurai H. Synthesis of C 70-fragment buckybowls bearing alkoxy substituents. Beilstein J Org Chem 2020; 16:681-690. [PMID: 32362946 PMCID: PMC7176931 DOI: 10.3762/bjoc.16.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
Buckybowls bearing a C70 fragment having two alkoxy groups were synthesized and their structural and optical properties were investigated by single crystal X-ray analysis and UV-vis spectroscopy. In the synthesis of dioxole derivative 5b, the regioisomer 5c was also produced. The yield of 5c was increased by increasing the reaction temperature, indicating that the rearrangement might involve the equilibrium between the Pd(IV) intermediates through C-H bond activation.
Collapse
Affiliation(s)
- Yumi Yakiyama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shota Hishikawa
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Gao G, Chen M, Roberts J, Feng M, Xiao C, Zhang G, Parkin S, Risko C, Zhang L. Rational Functionalization of a C70 Buckybowl To Enable a C70:Buckybowl Cocrystal for Organic Semiconductor Applications. J Am Chem Soc 2020; 142:2460-2470. [DOI: 10.1021/jacs.9b12192] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Josiah Roberts
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511-0055, United States
| | | | | | | | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Chad Risko
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511-0055, United States
| | | |
Collapse
|
15
|
Suresh JR, Whitener G, Theumer G, Bröcher DJ, Bauer I, Massa W, Knölker H. Synthesis and Crystal Structure of Dimorphic Dibenzo[cde,opq]rubicene. Chemistry 2019; 25:13759-13765. [PMID: 31339614 PMCID: PMC6899531 DOI: 10.1002/chem.201902915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Indexed: 11/09/2022]
Abstract
Dibenzo[cde,opq]rubicene has been synthesized by an eight-step reaction sequence including an iron-mediated [2+2+1] cycloaddition and a flash vacuum pyrolysis as key steps. Two crystal modifications of the S-shaped, planar polycyclic aromatic hydrocarbon have been obtained and characterized by X-ray diffractometry.
Collapse
Affiliation(s)
- Joghee R. Suresh
- Fakultät ChemieTechnische Universität DresdenBergstrasse 6601069DresdenGermany
| | - Glenn Whitener
- Fakultät ChemieTechnische Universität DresdenBergstrasse 6601069DresdenGermany
| | - Gabriele Theumer
- Fakultät ChemieTechnische Universität DresdenBergstrasse 6601069DresdenGermany
| | - Dirk J. Bröcher
- Fakultät ChemieTechnische Universität DresdenBergstrasse 6601069DresdenGermany
| | - Ingmar Bauer
- Fakultät ChemieTechnische Universität DresdenBergstrasse 6601069DresdenGermany
| | - Werner Massa
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435043MarburgGermany
| | | |
Collapse
|
16
|
Zou Y, Zeng W, Gopalakrishna TY, Han Y, Jiang Q, Wu J. Dicyclopenta[4,3,2,1- ghi:4',3',2',1'- pqr]perylene: A Bowl-Shaped Fragment of Fullerene C 70 with Global Antiaromaticity. J Am Chem Soc 2019; 141:7266-7270. [PMID: 31021086 DOI: 10.1021/jacs.9b03169] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solution-phase synthesis of buckybowls remains a big challenge, and there are limited reports on the fragments of C70. Herein, we report a new basic subunit of C70 with C2v symmetry, the dicyclopenta[4,3,2,1- ghi:4',3',2',1'- pqr]perylene (2CP-Per). Its aryl-substituted derivative 2CP-Per-Ar was synthesized and shows a bowl-shaped geometry according to X-ray crystallographic analysis. A fast bowl-to-bowl inversion process was observed above 183 K by variable temperature nuclear magnetic resonance (NMR), with a small inversion energy barrier. 2CP-Per-Ar displays amphoteric redox behavior with a small electrochemical energy gap (1.29 eV). Different from many other aromatic buckybowls, 2CP-Per exhibits global antiaromaticity with a strong paratropic ring current associated with the 16π-electrons rim, as revealed by NMR measurements and theoretic calculations. Its dianion is aromatic, similar to its isoelectronic structure coronene. Its dication is predicted to be aromatic, with a [6]annulene-within-[14]annulene structure.
Collapse
Affiliation(s)
- Ya Zou
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , 117543 , Singapore
| | - Wangdong Zeng
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , 117543 , Singapore
| | | | - Yi Han
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , 117543 , Singapore
| | - Qing Jiang
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , 117543 , Singapore
| | - Jishan Wu
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , 117543 , Singapore.,Joint School of National University of Singapore and Tianjin University , International Campus of Tianjin University , Binhai New City, Fuzhou 350207 , China
| |
Collapse
|
17
|
Tokimaru Y, Ito S, Nozaki K. A Hybrid of Corannulene and Azacorannulene: Synthesis of a Highly Curved Nitrogen-Containing Buckybowl. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805678] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuki Tokimaru
- Department of Chemistry and Biotechnology; Graduate School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology; Graduate School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
18
|
Tokimaru Y, Ito S, Nozaki K. A Hybrid of Corannulene and Azacorannulene: Synthesis of a Highly Curved Nitrogen-Containing Buckybowl. Angew Chem Int Ed Engl 2018; 57:9818-9822. [DOI: 10.1002/anie.201805678] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Yuki Tokimaru
- Department of Chemistry and Biotechnology; Graduate School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology; Graduate School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|