1
|
Sharika R, Mongkolpobsin K, Rangsinth P, Prasanth MI, Nilkhet S, Pradniwat P, Tencomnao T, Chuchawankul S. Experimental Models in Unraveling the Biological Mechanisms of Mushroom-Derived Bioactives against Aging- and Lifestyle-Related Diseases: A Review. Nutrients 2024; 16:2682. [PMID: 39203820 PMCID: PMC11357205 DOI: 10.3390/nu16162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Mushrooms have garnered considerable interest among researchers due to their immense nutritional and therapeutic properties. The presence of biologically active primary and secondary metabolites, which includes several micronutrients, including vitamins, essential minerals, and other dietary fibers, makes them an excellent functional food. Moreover, the dietary inclusion of mushrooms has been reported to reduce the incidence of aging- and lifestyle-related diseases, such as cancer, obesity, and stroke, as well as to provide overall health benefits by promoting immunomodulation, antioxidant activity, and enhancement of gut microbial flora. The multifunctional activities of several mushroom extracts have been evaluated by both in vitro and in vivo studies using cell lines along with invertebrate and vertebrate model systems to address human diseases and disorders at functional and molecular levels. Although each model has its own strengths as well as lacunas, various studies have generated a plethora of data regarding the regulating players that are modulated in order to provide various protective activities; hence, this review intends to compile and provide an overview of the plausible mechanism of action of mushroom-derived bioactives, which will be helpful in future medicinal explorations.
Collapse
Affiliation(s)
- Rajasekharan Sharika
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Pradniwat
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Williams LM, Berthon BS, Stoodley IL, Williams EJ, Wood LG. Medicinal Mushroom Extracts from Hericium coralloides and Trametes versicolor Exert Differential Immunomodulatory Effects on Immune Cells from Older Adults In Vitro. Nutrients 2023; 15:2227. [PMID: 37432355 DOI: 10.3390/nu15092227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 07/12/2023] Open
Abstract
Medicinal mushroom extracts (MMEs) exert immunomodulatory effects on innate immunity. The present study aimed to examine the effect of medicinal mushroom components on in vitro immune cell responses to inflammatory stimuli by peripheral blood mononuclear cells (PBMCs) isolated from older adults, where immune function is altered. PBMCs were treated with extracts from Hericium coralloides (HC) and Trametes versicolor (TV) prior to stimulation with rhinovirus A1 (RVA1), influenza A/H1N1pdm09 (H1N1), lipopolysaccharide (LPS), or house dust mite (HDM) for 48 h. In the presence of virus, type I and II IFN significantly (p < 0.05) decreased following treatment with at least one concentration of all extracts compared to the untreated cell controls, along with significant increases in pro-inflammatory cytokines (IL-1β, IL-6, IL-8). In the presence of LPS, extracts from TV reduced IL-1β compared to untreated cells. In the presence of HDM, the concentration of IL-5 and/or IL-13 was significantly decreased with at least one dose of all extracts. MMEs exert differential effects on the release of inflammatory and antiviral mediators in vitro. Reduced type 2 cytokine responses to HDM may be beneficial in conditions where allergic inflammation is present, including asthma, allergic rhinitis, and eczema. Further research is needed to examine extracts in vivo.
Collapse
Affiliation(s)
- Lily M Williams
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Bronwyn S Berthon
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Isobel L Stoodley
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Evan J Williams
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa G Wood
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
3
|
Arunachalam K, Sasidharan SP, Yang X. A concise review of mushrooms antiviral and immunomodulatory properties that may combat against COVID-19. FOOD CHEMISTRY ADVANCES 2022; 1:100023. [PMID: 36686330 PMCID: PMC8887958 DOI: 10.1016/j.focha.2022.100023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 01/25/2023]
Abstract
The World Health Organization (WHO) declared COVID-19 as a pandemic on March 11, 2020, because of its widespread transmission and infection rates. The unique severe disease was found in Wuhan, China, since December 2019, and swiftly spread throughout the world. Natural chemicals derived from herbal medicines and medicinal mushrooms provide a significant resource for the development of novel antiviral drugs. Many natural drugs have been proven to have antiviral properties against a variety of virus strains, such as the coronavirus and the herpes simplex virus (HSV).. In this research, successful dietary treatments for different COVID illnesses were compared to potential of mushroom products in its therapy. In Google Scholar, Science Direct, PubMed, and Scopus, search keywords like COVID, COVID-19, SARS, MERS, mushrooms, and their compounds were utilized. In this review of the literature we foucsed popular mushrooms such as Agaricus subrufescens Peck, Agaricus blazei Murill, Cordyceps sinensis (Berk.) Sacc., Ganoderma lucidum (Curtis.) P. Karst., Grifola frondosa (Dicks.) Gray, Hericium erinaceus (Bull.) Pers., Inonotus obliquus (Arch. Ex Pers.) Pilát., Lentinula edodes (Berk.) Pegler, Pleurotus ostreatus (Jacq.) P. Kumm., Poria cocos F.A. Wolf, and Trametes versicolor (L.) Lloyd.,. Changed forms of β-Glucan seem to have a good impact on viral replication suppression and might be used in future studies. However, the results seems terpenoids, lectins, glycoproteins, lentinan, galactomannan, and polysaccharides from mushrooms are promising prophylactic or therapeutic agents against COVID-19.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors at: Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | | | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors at: Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
4
|
Current Uses of Mushrooms in Cancer Treatment and Their Anticancer Mechanisms. Int J Mol Sci 2022; 23:ijms231810502. [PMID: 36142412 PMCID: PMC9504980 DOI: 10.3390/ijms231810502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Various chemotherapeutic drugs have been extensively used for cancer treatment. However, current anticancer drugs cause severe side effects and induce resistance. Therefore, the development of novel and effective anticancer agents with minimal or no side effects is important. Notably, natural compounds have been highlighted as anticancer drugs. Among them, many researchers have focused on mushrooms that have biological activities, including antitumor activity. The aim of this review is to discuss the anticancer potential of different mushrooms and the underlying molecular mechanisms. We provide information regarding the current clinical status and possible modes of molecular actions of various mushrooms and mushroom-derived compounds. This review will help researchers and clinicians in designing evidence-based preclinical and clinical studies to test the anticancer potential of mushrooms and their active compounds in different types of cancers.
Collapse
|
5
|
Dietary Agaricus blazei Spent Substrate Improves Disease Resistance of Nile Tilapia (Oreochromis niloticus) against Streptococcus agalactiae In Vivo. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study evaluated the effects of the feeding of spent mushroom substrate from Agaricus blazei on Nile tilapia (Oreochromis niloticus). The safety of 0–1000 μg/mL A. blazei spent substrate water extract (ABSSE) was demonstrated in the primary hepatic and splenic macrophages and the THK cell line (a cell line with characteristics of melanomacrophages) using a cytotoxicity assay. Here, 10 μg/mL of crude ABSSE promoted the phagocytic activity of macrophages and THK cells. Stimulating ABSSE-primed THK cells with lipopolysaccharides or peptidoglycan resulted in higher expression levels of four cytokine genes (e.g., interleukinz (IL)-1β, IL-12b, IL-8 and tumor necrosis factor α (TNFα)) and one cytokine gene (TNFα), respectively. An in vitro bacterial growth inhibition assay demonstrated that ABSSE could inhibit the growth of Streptococcus agalactiae. In the first feeding trial, Nile tilapia were fed with experimental feed containing 0, 1, or 5% of A. blazei spent substrate (ABSS) for seven and fourteen days followed by bacterial challenge assay. The best result was obtained when Nile tilapia were continuously fed for seven days on a diet containing 1% ABSS, with the survival rate being higher than in groups with 0% and 5% ABSS after challenge with S. agalactiae. In the second trial, fish were fed diets supplemented with 0% or 1% ABSS for seven days, and then all the groups were given the control feed for several days prior to bacterial challenge in order to investigate the duration of the protective effect provided by ABSS. The results showed that the protective effects were sustained at day 7 after the feed was switched. Overall, spent mushroom substrate from A. blazei is a cost-effective feed additive for Nile tilapia that protects fish from S. agalactiae infection.
Collapse
|
6
|
de Groot N, Fariñas F, Fabà L, Hambrecht E, Cabrera-Gómez CG, Pallares FJ, Ramis G. Fermented rye with Agaricus subrufescens and mannan-rich hydrolysate based feed additive to modulate post-weaning piglet immune response. Porcine Health Manag 2021; 7:60. [PMID: 34886904 PMCID: PMC8656036 DOI: 10.1186/s40813-021-00241-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The process of weaning in piglets is often associated with an increased inflammation response in the intestine and compromised intestinal integrity and morphology, favoring a delay in intestinal maturation and a predisposal to diseases. Research has shown the potential of different nutritional strategies to reduce the production of pro-inflammatory cytokines, with the main goal to manipulate health and performance of pigs. Promising examples of nutritional strategies are fungal fermented products and their derivatives which are described to contain several compounds that may play a role in gastrointestinal health and pathogenic bacteria control. Products from Agaricus subrufescens mushroom are reported to contain prophylactic and therapeutic properties including antimicrobial and immunomodulatory properties. RESULTS This study analysed the post-weaning immune status in intestinal tissue and blood of piglets, with the objective to evaluate the gastrointestinal health and immune modulation response induced by a blend of mannan-rich hydrolyzed copra meal and fermented rye with A. subrufescens. Intestinal histomorphology demonstrated a villus height reduction in jejunum and increase in ileum on day 15, while increased villous height in jejunum and ileum on day 30. The results showed that in post-weaning piglets, the feed additive stimulates an immunomodulation effect most evident at 15 days post-weaning, with significant lower expression of cytokines Interferon (IFN) γ, Interleukin (IL) 1α, IL-1β, IL-6, IL-8, IL-10 and Transforming Growth Factor (TGF) β in jejunum, accompanied with an increase in peripheral blood mononuclear cells (PBMC) cytokine gene expression of IL-1β, IL-6, IL-8, IL-10, IL-12p35 (IL-12α), IL-12p40 (IL-12β), Tumor Necrosis Factor (TNF) α, IFN-α, and TGF-β. In piglets fed the feed additive, the quantity of Immunoglobulin (Ig) A producing cells in jejunum, ileum was reduced on day 15 and 30 post-weaning, and on day 30 and 45 post-weaning in colon tissue. Natural Killer (NK) cells count in blood were increased on day 15 post-weaning in the piglets fed the feed additive. CONCLUSION This study implies the potential of the blend including mannan-rich hydrolyzed copra meal and fermented rye with A. subrufescens on immune modulation in the intestine of post-weaning piglets.
Collapse
Affiliation(s)
- Nienke de Groot
- Trouw Nutrition Innovation, Amersfoort, 3811 MH, The Netherlands.
- Dpto. Producción Animal, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain.
| | - Fernando Fariñas
- Instituto de Inmunología Clínica y Enfermedades Infecciosas, Málaga, Spain
| | - Lluís Fabà
- Trouw Nutrition Innovation, Amersfoort, 3811 MH, The Netherlands
| | - Ellen Hambrecht
- Trouw Nutrition Innovation, Amersfoort, 3811 MH, The Netherlands
| | | | - Francisco J Pallares
- Dpto. Anatomía y Anatomía Patológica Comparadas, Universidad de Murcia, Murcia, Spain
| | - Guillermo Ramis
- Dpto. Producción Animal, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
7
|
Cognigni V, Ranallo N, Tronconi F, Morgese F, Berardi R. Potential benefit of β-glucans as adjuvant therapy in immuno-oncology: a review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:122-138. [PMID: 36046144 PMCID: PMC9400766 DOI: 10.37349/etat.2021.00036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/26/2021] [Indexed: 01/15/2023] Open
Abstract
Fungal compounds have long been used for centuries as food supplements. β-glucans have been identified as the most interesting molecules with beneficial effects in several chronic diseases. In vitro studies have shown that they are able to elicit the immune cells maturation and activation with the result of an increased release of proinflammatory cytokines and chemokines and a stimulation of anti-bacterial activity of macrophages and neutrophils. As β-glucans enhance pathogen elimination through non-self antigens identification, they can also direct immune response against tumor cells. These compounds also stimulate the activity on adaptive immune cells and they have been regarded as biological response modifiers. In this way, β-glucans can be exploited as adjuvant cancer therapy, in particular by a synergic action with chemotherapy or immunotherapy. In the immuno-oncology era, the need is to identify innovative drugs that can simultaneously target and inhibit different biological processes relevant for cancer cells survivors. Recent clinical studies showed promising results about the combination of β-glucans and immune checkpoint inhibitors for patients affected by different solid tumors. This review aims to investigate molecular mechanisms of action of β-glucans and is focused on their application in clinical practice as immune-adjuvants for treatment of cancer patients.
Collapse
Affiliation(s)
- Valeria Cognigni
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, 60126 Ancona, Italy
| | - Nicoletta Ranallo
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, 60126 Ancona, Italy
| | - Francesca Tronconi
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, 60126 Ancona, Italy
| | - Francesca Morgese
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, 60126 Ancona, Italy
| | - Rossana Berardi
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, 60126 Ancona, Italy
| |
Collapse
|
8
|
Jeitler M, Michalsen A, Frings D, Hübner M, Fischer M, Koppold-Liebscher DA, Murthy V, Kessler CS. Significance of Medicinal Mushrooms in Integrative Oncology: A Narrative Review. Front Pharmacol 2020; 11:580656. [PMID: 33424591 PMCID: PMC7794004 DOI: 10.3389/fphar.2020.580656] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Medicinal mushrooms are widely used in East Asia for the treatment of various diseases, especially in complementary cancer care. While there is a growing interest in medicinal mushrooms in Western countries and an increasing number of pre-clinical studies indicate distinct anti-cancer and regenerative properties, little is known about their potential relevance for clinical practice. This review aims to provide an overview of the clinical evidence, significance and potential role of medicinal mushrooms in complementary cancer care. Scientific databases for (randomized) controlled clinical trials evaluating whole spectrum formulations of medicinal mushrooms (mushroom powder and mushroom extracts) in cancer patients during and/or after conventional oncological treatment were searched. Eight studies met our inclusion criteria (eight randomized controlled trials, one controlled clinical trial). The medicinal mushrooms investigated were Agaricus sylvaticus (two trials), Agaricus blazei murill (two trials), Antrodia cinnamomea (one trial), Coriolus versicolor (one trial) and Ganoderma lucidum (three trials); all were compared to placebo and administered orally. A variety of cancer entities, outcomes and treatment durations were observed. Study results suggested beneficial effects of medicinal mushrooms, particularly quality of life and reduction of adverse effects of conventional therapies. Also, positive effects on antitumor activity and immunomodulation were reported, e.g., an increased activity of natural killer cells. In addition, results might suggest a longer survival of cancer patients receiving mushroom preparations, although in most studies this was not significant when compared to placebo. Adverse events of treatment with medicinal mushrooms were poorly reported; gastrointestinal reactions and a decrease in platelet cell count occurred in some cases. The methodological quality of most studies was generally unsatisfying and most results were insufficiently reported in several respects. Medicinal mushrooms may have a therapeutic potential for cancer patients during and after conventional oncological care with regards to quality of life, reduction of adverse effects of conventional care and possibly other surrogate parameters like immune function. There is an urgent need to investigate the safety and possible interactions of medicinal mushrooms. High-quality clinical research is warranted in order to clarify the potential of medicinal mushrooms in cancer therapy.
Collapse
Affiliation(s)
- Michael Jeitler
- Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, Berlin, Germany
| | - Andreas Michalsen
- Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, Berlin, Germany
| | - Daniela Frings
- Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marisa Hübner
- Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Moritz Fischer
- Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Daniela A. Koppold-Liebscher
- Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vijay Murthy
- Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Sydney, NSW, Australia
| | - Christian S. Kessler
- Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, Berlin, Germany
| |
Collapse
|
9
|
Matsushita Y, Furutani Y, Matsuoka R, Furukawa T. Hot water extract of Agaricus blazei Murrill specifically inhibits growth and induces apoptosis in human pancreatic cancer cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:319. [PMID: 30514293 PMCID: PMC6280349 DOI: 10.1186/s12906-018-2385-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/26/2018] [Indexed: 02/18/2023]
Abstract
Background Pancreatic cancer is one of the most aggressive human malignancies. The development of a novel drug to treat pancreatic cancer is imperative, and it is thought that complementary and alternative medicine (CAM) could yield such a candidate. Agaricus blazei Murrill is a CAM that has been tested as an anticancer drug, but its efficacy against pancreatic cancer is poorly understood. To study the potential of A. blazei in the treatment of pancreatic cancer, we examined the effects of its hot water extract on the proliferation and global gene expression profile of human pancreatic cancer cells. Methods Three distinct human pancreatic cancer cell lines, MIAPaCa-2, PCI-35, and PK-8, and the immortalized human pancreatic duct-epithelial cell line, HPDE, were employed. The cells were incubated with the appropriate growth medium supplemented with the hot water extract of A. blazei at final concentrations of 0.005, 0.015%, or 0.045%, and cellular proliferation was assessed for five consecutive days using an MTT assay. Apoptosis was examined by using flow cytometry and the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Caspase-dependent apoptosis was assayed using immunoblotting. Global gene expression profiles were examined using a whole human genome 44 K microarray, and the microarray results were validated by using real-time reverse transcription PCR. Results The hot water extract of A. blazei significantly inhibited the proliferation of cultured pancreatic cancer cells through the induction of G0/G1 cell cycle arrest and caspase-dependent apoptosis; the effect was the smallest in HPDE cells. Furthermore, significant alterations in the global gene expression profiles of pancreatic cancer cells occurred following treatment with the hot water extract of A. blazei. Genes associated with kinetochore function, spindle formation, and centromere maintenance were particularly affected, as well as cyclins and cyclin-dependent kinases that are essential for cell cycle progression. In addition, proapoptotic genes were upregulated. Conclusions The hot water extract of A. blazei may be useful for the treatment of pancreatic cancer and is a potential candidate for the isolation of novel, active compounds specific for mitotic spindle dysfunction. Electronic supplementary material The online version of this article (10.1186/s12906-018-2385-4) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Ayeka PA. Potential of Mushroom Compounds as Immunomodulators in Cancer Immunotherapy: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:7271509. [PMID: 29849725 PMCID: PMC5937616 DOI: 10.1155/2018/7271509] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/12/2018] [Accepted: 03/15/2018] [Indexed: 12/22/2022]
Abstract
Since time immemorial, plants and their compounds have been used in the treatment and management of various ailments. Currently, most of conventional drugs used for treatment of diseases are either directly or indirectly obtained from plant sources. The fungal group of plants is of significance, which not only provides food directly to man but also has been source of important drugs. For instance, commonly used antibiotics are derived from fungi. Fungi have also been utilized in the food industry, baking, and alcohol production. Apart from the economic importance of the microfungi, macrofungi have been utilized directly as food, which is usually got from their fruiting bodies, commonly known as mushrooms. Due to their richness in proteins, minerals, and other nutrients, mushrooms have also been associated with boosting the immune system. This makes mushrooms an important food source, especially for vegetarians and immunosuppressed individuals including the HIV/AIDS persons. In complementary and alternative medicines (CAMs), mushrooms are increasingly being accepted for treatment of various diseases. Mushrooms have been shown to have the ability to stimulate the immune system, modulate humoral and cellular immunity, and potentiate antimutagenic and antitumorigenic activity, as well as rejuvenating the immune system weakened by radiotherapy and chemotherapy in cancer treatment. This potential of mushrooms, therefore, qualifies them as candidates for immunomodulation and immunotherapy in cancer and other diseases' treatment. However, a critical review on mushroom's immune modulating potential in cancer has not been sufficiently addressed. This review puts forward insights into the immune activities of mushroom associated with anticancer activities.
Collapse
Affiliation(s)
- Peter Amwoga Ayeka
- Department of Biological Sciences, Faculty of Science, Egerton University, P.O. Box 536-20115, Egerton, Kenya
| |
Collapse
|
11
|
Martins PR, de Campos Soares ÂMV, da Silva Pinto Domeneghini AV, Golim MA, Kaneno R. Agaricus brasiliensis polysaccharides stimulate human monocytes to capture Candida albicans, express toll-like receptors 2 and 4, and produce pro-inflammatory cytokines. J Venom Anim Toxins Incl Trop Dis 2017; 23:17. [PMID: 28344593 PMCID: PMC5364684 DOI: 10.1186/s40409-017-0102-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/21/2017] [Indexed: 01/16/2023] Open
Abstract
Background Agaricus brasiliensis is a medicinal mushroom with immunomodulatory and antitumor activities attributed to the β-glucans presented in the polysaccharide fraction of its fruiting body. Since β-glucans enhance cellular immunoresponsiveness, in this study we aimed to evaluate the effect of an acid-treated polysaccharide-rich fraction (ATF) of A. brasiliensis on the ability of human monocytes to adhere/phagocyte C. albicans yeast cells, their expression of pattern recognition receptors and their ability to produce cytokines. Methods Adhesion/phagocytosis of FITC-labeled C. albicans was evaluated by flow cytometry. Cells were incubated with specific fluorochrome-labeled antibodies for TLR2 and 4, βGR and MR and also evaluated by flow cytometry. Monocytes were cultured with ATF, and culture supernatants were collected for analysis of in vitro cytokine production by ELISA (TNF-α, IL-1β, IL-12 and IL-10). Results ATF significantly increased the adherence/phagocytosis of C. albicans by monocytes and this was associated with enhanced expression of TLR2 and TLR4, while no effect was observed on βGR or MR. Moreover, expression of TLR4 and TLR2 was associated with higher levels of in vitro production of TNF-α and IL-1, respectively. Production of IL-10 was also increased by ATF treatment, but we found no association between its production and the expression of Toll-like receptors. Conclusion Our results provided us with evidence that A. brasiliensis polysaccharides affect human monocytes probably through the modulation of Toll-like receptors.
Collapse
Affiliation(s)
- Priscila Raquel Martins
- Department of Microbiology and Immunology, Botucatu Biosciences Institute, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil.,Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | | | | | - Márjorie Assis Golim
- Blood Bank Division, Botucatu Medical School, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | - Ramon Kaneno
- Department of Microbiology and Immunology, Botucatu Biosciences Institute, São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| |
Collapse
|
12
|
Hetland G, Eide DM, Tangen JM, Haugen MH, Mirlashari MR, Paulsen JE. The Agaricus blazei-Based Mushroom Extract, Andosan™, Protects against Intestinal Tumorigenesis in the A/J Min/+ Mouse. PLoS One 2016; 11:e0167754. [PMID: 28002446 PMCID: PMC5176274 DOI: 10.1371/journal.pone.0167754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/18/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The novel A/J Min/+ mouse, which is a model for human Familial Adenomatous Polyposis (FAP), develops spontaneously multiple adenocarcinomas in the colon as well as in the small intestine. Agaricus blazei Murill (AbM) is an edible Basidiomycetes mushroom that has been used in traditional medicine against cancer and other diseases. The mushroom contains immunomodulating β-glucans and is shown to have antitumor effects in murine cancer models. Andosan™ is a water extract based on AbM (82%), but it also contains the medicinal Basidiomycetes mushrooms Hericeum erinaceus and Grifola frondosa. METHODS AND FINDINGS Tap water with 10% Andosan™ was provided as the only drinking water for 15 or 22 weeks to A/J Min/+ mice and A/J wild-type mice (one single-nucleotide polymorphism (SNP) difference), which then were exsanguinated and their intestines preserved in formaldehyde and the serum frozen. The intestines were examined blindly by microscopy and also stained for the tumor-associated protease, legumain. Serum cytokines (pro- and anti-inflammatory, Th1-, Th2 -and Th17 type) were measured by Luminex multiplex analysis. Andosan™ treated A/J Min/+ mice had a significantly lower number of adenocarcinomas in the intestines, as well as a 60% significantly reduced intestinal tumor load (number of tumors x size) compared to control. There was also reduced legumain expression in intestines from Andosan™ treated animals. Moreover, Andosan™ had a significant cytotoxic effect correlating with apoptosis on the human cancer colon cell line, Caco-2, in vitro. When examining serum from both A/J Min/+ and wild type mice, there was a significant increase in anti-tumor Th1 type and pro-inflammatory cytokines in the Andosan™ treated mice. CONCLUSIONS The results from this mouse model for colorectal cancer shows significant protection of orally administered Andosan™ against development of intestinal cancer. This is supported by the finding of less legumain in intestines of Andosan™ treated mice and increased systemic Th1 cytokine response. The mechanism is probably both immuno-modulatory and growth inhibition of tumor cells by induction of apoptosis.
Collapse
Affiliation(s)
- Geir Hetland
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag M. Eide
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon M. Tangen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Acute Medicine & National CBRNE Medical and Advisory Centre–Norway, Oslo University Hospital, Oslo, Norway
| | - Mads H. Haugen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital – The Norwegian Radium Hospital, Oslo, Norway
| | | | - Jan E. Paulsen
- Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, Oslo, Norway
| |
Collapse
|
13
|
Abstract
There is significant interest in the use of mushrooms and/or mushroom extracts as dietary supplements based on theories that they enhance immune function and promote health. To some extent, select mushrooms have been shown to have stimulatory action on immune responsiveness, particularly when studied in vitro. However, despite their widespread use for potential health benefits, there is a surprising paucity of epidemiologic and experimental studies that address the biologic activities of mushrooms after oral administration to animals or humans. There have been a number of studies that have addressed the ability of mushrooms to modulate mononuclear cell activation and the phenotypic expression of cytokines and their cognate receptors. There have also been a number of attempts to determine antitumor activities of mushrooms. Such studies are important because many of the components of mushrooms do potentially have significant biologic activity. All data, however, should be tempered by the Possibility that there are toxic levels of metals, including arsenic, lead, cadmium, and mercury as well as the presence of radioactive contamination with 137Cs. In this review, we will Present the comparative biology with respect to both immunological and antitumor activities of mushroom extracts and also highlight the need for further evidence-based research.
Collapse
Affiliation(s)
- Andrea T Borchers
- Rheumatology, Allergy, and Clinical Immunology, University of California-Davis School of Medicine, Davis, California 95616, USA
| | | | | |
Collapse
|
14
|
Lima CU, Gris EF, Karnikowski MG. Antimicrobial properties of the mushroom Agaricus blazei – integrative review. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2016.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Effect of a Medicinal Agaricus blazei Murill-Based Mushroom Extract, AndoSan™, on Symptoms, Fatigue and Quality of Life in Patients with Ulcerative Colitis in a Randomized Single-Blinded Placebo Controlled Study. PLoS One 2016; 11:e0150191. [PMID: 26933886 PMCID: PMC4774976 DOI: 10.1371/journal.pone.0150191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/09/2016] [Indexed: 11/19/2022] Open
Abstract
Background Ingestion of AndoSan™, based on the mushroom Agaricus blazei Murill, has previously been shown to exhibit anti-inflammatory effects because of reduction of pro-inflammatory cytokines in healthy individuals and patients with ulcerative colitis. In this randomized single-blinded placebo controlled study we examined whether intake of AndoSan™ also resulted in clinical effects. Methods and Findings 50 patients with symptomatic ulcerative colitis were block-randomized and blinded for oral daily intake of AndoSan™ or placebo for the 21 days’ experimental period. The patients reported scores for symptoms, fatigue and health related quality of life (HRQoL) at days 0, 14 and 21. Fecal calprotectin and general blood parameters were also analyzed. In the AndoSan™ group (n = 24) symptoms improved from baseline (day 0) to days 14 and 21, with respective mean scores (95% CI) of 5.88 (4.92–6.83), 4.71 (3.90–5.52) (p = 0.002) and 4.50 (3.70–5.30) (p = 0.001). Corresponding improved mean scores (±SD) for total fatigue were 16.6 (5.59), 14.1 (4.50) (p = 0.001) and 15.1 (4.09) (p = 0.023). These scores in the placebo group (n = 26) were not improved. When comparing the two study groups using mixed model statistics, we found significant better scores for the AndoSan™-patients. HRQoL for dimensions bodily pain, vitality, social functioning and mental health improved in the AndoSan™ group. There were no alterations in general blood samples and fecal calprotectin. Conclusions Beneficiary effects on symptoms, fatigue and HRQoL from AndoSan™ consumption were demonstrated in this per-protocol study, supporting its use as a supplement to conventional medication for patients with mild to moderate symptoms from ulcerative colitis. The patients did not report any harms or unintended effects of AndoSan™ in this study. Trial Registration ClinicalTrials.gov NCT01496053
Collapse
|
16
|
Zhai FH, Han JR. Mycelial biomass and intracellular polysaccharides yield of edible mushroom Agaricus blazei produced in wheat extract medium. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Kang IS, Kim RI, Kim GS, Kim NR, Shin JY, Kim C. Effects of Agaricus blazei Murill Water Extract on Immune Response in BALB/c Mice. ACTA ACUST UNITED AC 2015. [DOI: 10.3746/jkfn.2015.44.11.1629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Val CH, Brant F, Miranda AS, Rodrigues FG, Oliveira BCL, Santos EA, Assis DRR, Esper L, Silva BC, Rachid MA, Tanowitz HB, Teixeira AL, Teixeira MM, Régis WCB, Machado FS. Effect of mushroom Agaricus blazei on immune response and development of experimental cerebral malaria. Malar J 2015; 14:311. [PMID: 26260055 PMCID: PMC4531523 DOI: 10.1186/s12936-015-0832-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebral malaria (CM) is debilitating and sometimes fatal. Disease severity has been associated with poor treatment access, therapeutic complexity and drug resistance and, thus, alternative therapies are increasingly necessary. In this study, the effect of the administration of Agaricus blazei, a mushroom of Brazilian origin in a model of CM caused by Plasmodium berghei, strain ANKA, was investigated in mice. METHODS C57BL/6 mice were pre-treated with aqueous extract or fractions of A. blazei, or chloroquine, infected with P. berghei ANKA and then followed by daily administration of A. blazei or chloroquine. Parasitaemia, body weight, survival and clinical signs of the disease were evaluated periodically. The concentration of pro-and anti-inflammatory cytokines, histopathology and in vitro analyses were performed. RESULTS Mice treated with A. blazei aqueous extract or fraction C, that shows antioxidant activity, displayed lower parasitaemia, increased survival, reduced weight loss and protection against the development of CM. The administration of A. blazei resulted in reduced levels of TNF, IL-1β and IL-6 production when compared to untreated P. berghei-infected mice. Agaricus blazei (aqueous extract or fraction C) treated infected mice displayed reduction of brain lesions. Although chloroquine treatment reduced parasitaemia, there was increased production of proinflammatory cytokines and damage in the CNS not observed with A. blazei treatment. Moreover, the in vitro pretreatment of infected erythrocytes followed by in vivo infection resulted in lower parasitaemia, increased survival, and little evidence of clinical signs of disease. CONCLUSIONS This study strongly suggests that the administration of A. blazei (aqueous extract or fraction C) was effective in improving the consequences of CM in mice and may provide novel therapeutic strategies.
Collapse
Affiliation(s)
- Cynthia H Val
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Bloco O4, 190 Av. Antônio Carlos, 6627-Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Fátima Brant
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Bloco O4, 190 Av. Antônio Carlos, 6627-Pampulha, Belo Horizonte, MG, 31270-901, Brazil. .,Programme in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Aline S Miranda
- Programme in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Flávia G Rodrigues
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Bloco O4, 190 Av. Antônio Carlos, 6627-Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Bruno C L Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Bloco O4, 190 Av. Antônio Carlos, 6627-Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Elândia A Santos
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Bloco O4, 190 Av. Antônio Carlos, 6627-Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Diego R R Assis
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Bloco O4, 190 Av. Antônio Carlos, 6627-Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Lísia Esper
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Bloco O4, 190 Av. Antônio Carlos, 6627-Pampulha, Belo Horizonte, MG, 31270-901, Brazil. .,Programme in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Bruno C Silva
- Department of Pathology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Milene A Rachid
- Department of Pathology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Herbert B Tanowitz
- Department of Pathology and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Antônio L Teixeira
- Programme in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Bloco O4, 190 Av. Antônio Carlos, 6627-Pampulha, Belo Horizonte, MG, 31270-901, Brazil. .,Programme in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Wiliam C B Régis
- Programa de Pós Graduação em Biologia de Vertebrados da Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Fabiana S Machado
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Bloco O4, 190 Av. Antônio Carlos, 6627-Pampulha, Belo Horizonte, MG, 31270-901, Brazil. .,Programme in Health Sciences: Infectious Diseases and Tropical Medicine, Medical School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
19
|
Epsilon-caprolactone modified polyethylenimine for highly efficient antigen delivery and chemical exchange saturation transfer functional MR imaging. Biomaterials 2015; 56:219-28. [DOI: 10.1016/j.biomaterials.2015.03.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 11/21/2022]
|
20
|
Navegantes KC, Albuquerque RFV, Dalla-Santa HS, Soccol CR, Monteiro MC. Agaricus brasiliensismycelium and its polysaccharide modulate the parameters of innate and adaptive immunity. FOOD AGR IMMUNOL 2013. [DOI: 10.1080/09540105.2012.691089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
21
|
de Miranda AM, Ribeiro GM, Cunha AC, Silva LS, dos Santos RC, Pedrosa ML, Silva ME. Hypolipidemic effect of the edible mushroom Agaricus blazei in rats subjected to a hypercholesterolemic diet. J Physiol Biochem 2013; 70:215-24. [PMID: 24203633 DOI: 10.1007/s13105-013-0295-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 10/14/2013] [Indexed: 11/24/2022]
Abstract
The effects of Agaricus blazei intake on the lipid profile of animals fed a hypercholesterolemic diet were evaluated. Thirty-two female Fisher rats were divided into four groups and given the standard AIN-93 M diet (C), this diet + 1 % A. blazei (CAb), a hypercholesterolemic diet with 25 % soybean oil and 1 % cholesterol (H) or this diet + 1 % A. blazei (HAb) for 6 weeks. Food intake, weight gain, liver and serum lipid profiles, activity of aminotransferases [alanine aminotransferase (ALT) and aspartate aminotransferase (AST)], and creatinine and urea levels as well as abdominal fat weight were measured. Histological analysis of kidney and liver tissue was also performed. The HAb group had a higher food intake, but a lower weight gain as compared to group H. This resulted in a significant decrease in abdominal fat weight, to values close to those of groups C and CAb. Supplementing the hypercholesterolemic diet with A. blazei promoted a significant reduction in total and non-HDL cholesterol, as well as in the atherogenic index, as compared to group H, and this effect was more pronounced in the serum. There was no hepatotoxic effect caused by the supplementation of the diets with the mushroom. We conclude that in our experimental model and in the concentration used, A. blazei was effective in improving the lipid profile of the animals.
Collapse
Affiliation(s)
- Aline M de Miranda
- Research in Biological Sciences/NUPEB, Ouro Preto University, Ouro Preto, Minas Gerais, Brazil,
| | | | | | | | | | | | | |
Collapse
|
22
|
Ohno S, Sumiyoshi Y, Hashine K, Shirato A, Kyo S, Inoue M. Quality of life improvements among cancer patients in remission following the consumption of Agaricus blazei Murill mushroom extract. Complement Ther Med 2013; 21:460-7. [DOI: 10.1016/j.ctim.2013.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 03/07/2013] [Accepted: 07/10/2013] [Indexed: 11/15/2022] Open
|
23
|
Dalla-Santa HS, Rubel R, Vitola FM, Buchi D, Di-Bernardi RP, Moreno AN, Lima-Filho JH, Dalla-Santa OR, Gern JC, Monteiro MC, Fernandes LC, Soccol CR. Agaricus brasiliensismycelium supplementation in Sarcoma 180tumour-bearing mice reverses the immune response induced by the tumour. FOOD AGR IMMUNOL 2013. [DOI: 10.1080/09540105.2012.665438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
24
|
Nam S, Rhee YK, Hong HD, Lee YC, Kim YC, Shin KS, Cho CW. Immuno-Modulatory Activity of the Crude Polysaccharide from Wild Ginseng Adventitious Root. ACTA ACUST UNITED AC 2012. [DOI: 10.9799/ksfan.2012.25.4.755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Johnson E, Førland DT, Hetland G, Sætre L, Olstad OK, Lyberg T. Effect of AndoSan™ on expression of adhesion molecules and production of reactive oxygen species in human monocytes and granulocytes in vivo. Scand J Gastroenterol 2012; 47:984-92. [PMID: 22564240 DOI: 10.3109/00365521.2012.660544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Oral intake (60 ml daily) over 12 days in eight healthy volunteers of an immunostimulatory extract based on the medicinal mushroom Agaricus blazei Murill (AbM (AndoSan™)), reduced the monocyte and granulocyte release of mainly proinflammatory cytokines in vivo, suggesting an anti-inflammatory effect. In this foremost in vivo study, the aim was to examine the effect of such AndoSan™ consumption on the expression of adhesion molecules CD11b, CD11c and CD62L and production of reactive oxygen species (ROS) in leukocytes. METHODOLOGY/PRINCIPAL FINDINGS As shown by flow cytometry, there was a significant increase of CD62L expression on monocytes and granulocytes from before (day 0) compared with 12 days after daily AndoSan™ consumption. However, only minor alterations and no clear trend in the expression of CD11b and CD11c were detected. Intracellular ROS (mainly superoxide ion) were significantly reduced in these cells from days 0 to 12. CONCLUSIONS/SIGNIFICANCE These results support that oral intake of AndoSan™ exhibits an anti-inflammatory effect in humans in vivo.
Collapse
Affiliation(s)
- Egil Johnson
- Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
26
|
Huang TT, Ojcius DM, Young JD, Wu YH, Ko YF, Wong TY, Wu CY, Lu CC, Lai HC. The anti-tumorigenic mushroom Agaricus blazei Murill enhances IL-1β production and activates the NLRP3 inflammasome in human macrophages. PLoS One 2012; 7:e41383. [PMID: 22844468 PMCID: PMC3402498 DOI: 10.1371/journal.pone.0041383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/20/2012] [Indexed: 01/31/2023] Open
Abstract
Agaricus blazei Murill (AbM) has been reported to possess immune activity against tumors and infections through stimulation of mononuclear phagocytes. Recently, AbM extract was shown to induce the production of the pro-inflammatory cytokine, interleukin-1β (IL-1β), in human monocytes. IL-1β is a key pro-inflammatory cytokine produced by activated macrophages and monocytes and its secretion is strictly controlled by the inflammasome. The purpose of this study is to investigate the effect of AbM water extracts on the regulation of IL-1β production and activation of the NLRP3 inflammasome in human THP-1 macrophages. The NLRP3 inflammasome consists of an NLRP3 receptor, an adaptor protein called ASC, and the inflammatory protease, caspase-1. Typically, stimulation of immune cells with microbial products results in production of pro-IL-1β, but a second stress-related signal activates the inflammasome and caspase-1, leading to processing and secretion of IL-1β. Our results show that AbM enhances transcription of IL-1β and triggers NLRP3 inflammasome-mediated IL-1β secretion in human THP-1 macrophages. AbM-mediated IL-1β secretion was markedly reduced in macrophages deficient in NLRP3 and ASC, demonstrating that the NLRP3 inflammasome is essential for AbM-induced IL-1β secretion. In addition, caspase-1 was activated and involved in proteolytic cleavage and secretion of IL-1β in AbM-treated macrophages. AbM-mediated IL-1β secretion also decreased in cells treated with cathepsin B inhibitor, suggesting that AbM can induce the release of cathepsin B. Furthermore, our data show that AbM-induced inflammasome activation requires the release of ATP, binding of extracellular ATP to the purinergic receptor P2X7, the generation of reactive oxygen species, and efflux of potassium. Taken together, these findings reveal that AbM activates the NLRP3 inflammasome via multiple mechanisms, resulting in the secretion of IL-1β.
Collapse
Affiliation(s)
- Tsung-Teng Huang
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Health Sciences Research Institute and School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - John D. Young
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, United States of America
- Biochemical Engineering Research Center, Mingchi University of Technology, Taipei, Taiwan, Republic of China
| | - Yi-Hui Wu
- Cancer Research Center, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of China
| | - Yun-Fei Ko
- Biochemical Engineering Research Center, Mingchi University of Technology, Taipei, Taiwan, Republic of China
| | - Tsui-Yin Wong
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Laboratory of Nanomaterials, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, Taipei, Taiwan, Republic of China
| | - Hsin-Chih Lai
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
27
|
Valadares DG, Duarte MC, Ramírez L, Chávez-Fumagalli MA, Martins VT, Costa LE, Lage PS, Ribeiro TG, Castilho RO, Fernandes AP, Régis WCB, Soto M, Tavares CAP, Coelho EAF. Prophylactic or therapeutic administration of Agaricus blazei Murill is effective in treatment of murine visceral leishmaniasis. Exp Parasitol 2012; 132:228-36. [PMID: 22824583 DOI: 10.1016/j.exppara.2012.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/11/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
The present study aimed to investigate the in vitro antileishmanial activity of five fractions obtained from Agaricus blazei water extract (AbM), namely, Fab1, Fab2, Fab3, Fab4, and Fab5; and use the selected leishmanicidal fraction to treat BALB/c mice infected with Leishmania chagasi. A curve dose-titration was performed to obtain the concentration to be test in infected animals. In this context, Fab5 fraction and AbM were used in the doses of 20 and 100 mg/kg/day, respectively, with the product been administered once a day. The effect induced by a chemo-prophylactic regimen, based on the administration Fab5 fraction and AbM 5 days before infection, and maintained for an additional 20 days post-infection was compared to a therapeutic regimen, in which the compounds were administered from 0 to 20 days of infection. Control animals were either treated with amphotericin B deoxycholate (AmpB) or received distilled water. All groups were followed up for 10 weeks post-infection, when parasitological and immunological parameters were analyzed. The Fab5 presented the best results of in vitro leishmanicidal activity. In the in vivo experiments, the use of Fab5 or AbM, as compared to control groups, resulted in significant reduced parasite burdens in the liver, spleen, and draining lymph nodes of the infected animals, as compared to control groups. A Type 1 immune response was observed in the Fab5 or AbM treated animals. No significant toxicity was observed. The chemo-prophylactic regimen proved to be more effective to induce theses responses. In this context, the data presented in this study showed the potential of the purified Fab5 fraction of AbM as a therapeutic alternative to treat visceral leishmaniasis. In addition, it can be postulated that this fraction can be also employed in a chemo-prophylactic regimen associated or not with other therapeutic products.
Collapse
Affiliation(s)
- Diogo G Valadares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901 Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Therapeutic efficacy induced by the oral administration of Agaricus blazei Murill against Leishmania amazonensis. Parasitol Res 2012; 111:1807-16. [DOI: 10.1007/s00436-012-3028-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 06/24/2012] [Indexed: 11/24/2022]
|
29
|
Wisitrassameewong K, Karunarathna SC, Thongklang N, Zhao R, Callac P, Moukha S, Férandon C, Chukeatirote E, Hyde KD. Agaricus subrufescens: A review. Saudi J Biol Sci 2012; 19:131-46. [PMID: 23961172 PMCID: PMC3730566 DOI: 10.1016/j.sjbs.2012.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 01/13/2023] Open
Abstract
Medicinal mushrooms have currently become a hot issue due to their various therapeutic properties. Of these, Agaricus subrufescens, also known as the "almond mushroom", has long been valued by many societies (i.e., Brazil, China, France, and USA). Since its discovery in 1893, this mushroom has been cultivated throughout the world, especially in Brazil where several strains of A. subrufescens have been developed and used as health food and alternative medicine. This article presents up-to-date information on this mushroom including its taxonomy and health promoting benefits. Medicinal properties of A. subrufescens are emphasized in several studies which are reviewed here. In addition, safety issues concerning the use of this fungus will be discussed.
Collapse
Affiliation(s)
- Komsit Wisitrassameewong
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Mushroom Research Foundation, Chiang Mai 50150, Thailand
| | - Samantha C. Karunarathna
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Mushroom Research Foundation, Chiang Mai 50150, Thailand
| | | | - Ruilin Zhao
- Faculty of Biology Conservation, Southwest Forestry University, Bailongsi, Kunming, Yunnan 650224, China
| | - Philippe Callac
- INRA, UR1264, Mycologie et Sécurité des Aliments, BP81, 33883 Villenave d Ornon, France
| | - Serge Moukha
- INRA, UR1264, Mycologie et Sécurité des Aliments, BP81, 33883 Villenave d Ornon, France
- Department of Toxicology, UFR des Sciences, Pharmaceutiques-Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Cyril Férandon
- Department of Toxicology, UFR des Sciences, Pharmaceutiques-Université Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | - Kevin D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Mushroom Research Foundation, Chiang Mai 50150, Thailand
| |
Collapse
|
30
|
Tung YC, Su ZY, Kuo ML, Sheen LY. Ethanolic Extract of Agaricus blazei Fermentation Product Inhibits the Growth and Invasion of Human Hepatoma HA22T/VGH and SK-Hep-1 Cells. J Tradit Complement Med 2012; 2:145-53. [PMID: 24716127 PMCID: PMC3942917 DOI: 10.1016/s2225-4110(16)30088-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hepatoma is a leading cause of death in the world. SK-Hep-1 and HA22T/VGH cells are poorly differentiated human hepatocellular carcinoma cell lines with invasive and migratory abilities. Agaricus blazei (AB) is a mushroom with many biological effects and active ingredients, and the ethanolic extract of AB fermentation product (AB-pE) was demonstrated to inhibit the growth of hepatoma Hep3B and HepG2 cells in our previous study. In this study, we further investigated the anticancer and anti-invasive abctivities of the AB-pE. Results showed that the AB-pE inhibited the growth of SK-Hep1 and HA22T/VGH cells (with IC50 values of 26.8 and 28.7 μg/mL, respectively) and led cells toward apoptosis after 48 h of treatment. Activation of caspase-3 by AB-pE (12.5~200 μg/mL) in a dose-dependent manner was observed in both cell lines using fluorescence microscopy and flow cytometry. The apoptosis triggered by the AB-pE was regulated by the increased expression of Bax, the activation of caspase-3, caspase-9, and PARP, and the decreased expression of Bcl-2. Additionally, the AB-pE showed the potential ability to inhibit invasion of SK-Hep1 and HA22T/VGH cells according to the results of a Matrigel invasion assay. Our results suggested that the AB-pE may be a further developed for its potential against hepatoma due to its antiproliferative (via apoptosis) and anti-invasive activities in hepatoma cells.
Collapse
Affiliation(s)
- Yen-Chen Tung
- Graduate Institute of Food Science and Technology, National Taiwan University, Taiwan, R.O.C
| | - Zheng-Yuan Su
- Graduate Institute of Food Science and Technology, National Taiwan University, Taiwan, R.O.C
| | - Min-Liang Kuo
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Lee-Yan Sheen
- Graduate Institute of Food Science and Technology, National Taiwan University, Taiwan, R.O.C
| |
Collapse
|
31
|
Ji RC. Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis. Cell Mol Life Sci 2012; 69:897-914. [PMID: 21984600 PMCID: PMC11114502 DOI: 10.1007/s00018-011-0848-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/26/2011] [Accepted: 09/22/2011] [Indexed: 01/13/2023]
Abstract
The lymphatic system provides important functions for tissue fluid homeostasis and immune response. Lymphangiogenesis, the formation of new lymphatics, comprises a series of complex cellular events in vitro or in vivo, e.g., proliferation, differentiation, and sprouting. Recent evidence has implied that macrophages act as a direct structural contributor to lymphatic endothelial walls or secret VEGF-C/-D and VEGF-A to initiate lymphangiogenesis in inflamed or tumor tissues. Bone marrow-derived macrophages are versatile cells that express different functional programs in response to exposure to microenvironmental signals, and can be identified by specific expression of a number of proteins, F4/80, CD11b, and CD68. Several causative factors, e.g., NF-κB, IL-1β, TNF-α, SDF-1, M-CSF, especially TonEBP/VEGF-C signaling, may be actively involved in macrophage-induced lymphangiogenesis. Alteration of macrophage phenotype and function has a profound effect on the development and progression of inflammation and malignancy, and macrophage depletion for controlling lymphangiogenesis may provide a novel approach for prevention and treatment of lymphatic-associated diseases.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Department of Human Anatomy, Oita University Faculty of Medicine, Oita 879-5593, Japan.
| |
Collapse
|
32
|
Lima CUJO, Souza VC, Morita MC, Chiarello MD, de Oliveira Karnikowski MG. Agaricus blazei Murrill and Inflammatory Mediators in Elderly Women: A Randomized Clinical Trial. Scand J Immunol 2012; 75:336-41. [DOI: 10.1111/j.1365-3083.2011.02656.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Huang M, Zhang S, Zhang M, Ou S, Pan Z. Effects of polysaccharides from Morchella conica on nitric oxide production in lipopolysaccharide-treated macrophages. Appl Microbiol Biotechnol 2011; 94:763-71. [DOI: 10.1007/s00253-011-3711-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/20/2011] [Accepted: 11/05/2011] [Indexed: 01/20/2023]
|
34
|
Yamanaka D, Motoi M, Ishibashi KI, Miura NN, Adachi Y, Ohno N. Effect of Agaricus brasiliensis-derived cold water extract on Toll-like receptor 2-dependent cytokine production in vitro. Immunopharmacol Immunotoxicol 2011; 34:561-70. [PMID: 22126586 DOI: 10.3109/08923973.2011.633526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Agaricus brasiliensis (Agaricus blazei Murrill) is well known as a medicinal mushroom. Fruit body of A. brasiliensis is rich in β-glucan and has shown benefits for various diseases. Both hot and cold water extraction are traditional methods for intake of this mushroom extract. In the present study, we prepared cold water extract of the fruit body of A. brasiliensis (ACWS). The 1,3-β-glucan segment of this fraction was too small and did not interact with the 1,3-β-glucan receptor, dectin-1. However, ACWS could induce production of various cytokines including IL-6 from murine splenocytes. Therefore, we aimed to identify the receptor that modulates IL-6 production using ACWS. We focused our attention on Toll-like receptors (TLRs) and examined them as follows. (i) The interaction between TLRs and ACWS was screened using HEK293 cells transfected with TLR plasmid. (ii) IL-6 production from splenocytes induced by ACWS was inhibited by treatment of anti-TLR antibodies. (iii) Direct binding activity between TLR protein and ACWS was assessed by ELISA-like assay. ACWS was found to activate HEK293 cells via TLR2, 4 and 5. However, only anti-TLR2 monoclonal antibody suppressed IL-6 production from splenocytes. In addition, ACWS has the ability to bind directly to TLR2 protein. Accordingly, we suggest that fruit body of A. brasiliensis has some water-soluble TLR ligand complexes, and TLR2 on splenocytes strongly induces IL-6 production.
Collapse
Affiliation(s)
- Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Gonçalves JL, Roma EH, Gomes-Santos AC, Aguilar EC, Cisalpino D, Fernandes LR, Vieira AT, Oliveira DR, Cardoso VN, Teixeira MM, Alvarez-Leite JI. Pro-inflammatory effects of the mushroom Agaricus blazei and its consequences on atherosclerosis development. Eur J Nutr 2011; 51:927-37. [PMID: 22086299 DOI: 10.1007/s00394-011-0270-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/21/2011] [Indexed: 02/06/2023]
Abstract
PURPOSE Extracts of the mushroom Agaricus blazei (A. blazei) have been described as possessing immunomodulatory and potentially cancer-protective activities. However, these effects of A. blazei as a functional food have not been fully investigated in vivo. METHODS Using apolipoprotein E-deficient (ApoE(-/-)) mice, an experimental model of atherosclerosis, we evaluated the effects of 6 or 12 weeks of A. blazei supplementation on the activation of immune cells in the spleen and blood and on the development of atherosclerosis. RESULTS Food intake, weight gain, blood lipid profile, and glycemia were similar between the groups. To evaluate leukocyte homing and activation, mice were injected with (99m)Tc-radiolabeled leukocytes, which showed enhanced leukocyte migration to the spleen and heart of A. blazei-supplemented animals. Analysis of the spleen showed higher levels of activation of neutrophils, NKT cells, and monocytes as well as increased production of TNF-α and IFN-γ. Circulating NKT cells and monocytes were also more activated in the supplemented group. Atherosclerotic lesion areas were larger in the aorta of supplemented mice and exhibited increased numbers of macrophages and neutrophils and a thinner fibrous cap. A. blazei-induced transcriptional upregulation of molecules linked to macrophage activation (CD36, TLR4), neutrophil chemotaxy (CXCL1), leukocyte adhesion (VCAM-1), and plaque vulnerability (MMP9) were seen after 12 weeks of supplementation. CONCLUSIONS This is the first in vivo study showing that the immunostimulatory effect of A. blazei has proatherogenic repercussions. A. blazei enhances local and systemic inflammation, upregulating pro-inflammatory molecules, and enhancing leukocyte homing to atherosclerosis sites without affecting the lipoprotein profile.
Collapse
Affiliation(s)
- Juliana L Gonçalves
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
The Mushroom Agaricus blazei Murill Elicits Medicinal Effects on Tumor, Infection, Allergy, and Inflammation through Its Modulation of Innate Immunity and Amelioration of Th1/Th2 Imbalance and Inflammation. Adv Pharmacol Sci 2011; 2011:157015. [PMID: 21912538 PMCID: PMC3168293 DOI: 10.1155/2011/157015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/23/2011] [Indexed: 11/18/2022] Open
Abstract
The medicinal mushroom Agaricus blazei Murill from the Brazilian rain forest has been used in traditional medicine and as health food for the prevention of a range of diseases, including infection, allergy, and cancer. Other scientists and we have examined whether there is scientific evidence behind such postulations. Agaricus blazei M is rich in the immunomodulating polysaccharides, β-glucans, and has been shown to have antitumor, anti-infection, and antiallergic/-asthmatic properties in mouse models, in addition to anti-inflammatory effects in inflammatory bowel disease patients. These effects are mediated through the mushroom's stimulation of innate immune cells, such as monocytes, NK cells, and dendritic cells, and the amelioration of a skewed Th1/Th2 balance and inflammation.
Collapse
|
37
|
Koge T, Komatsu W, Sorimachi K. Heat stability of agaritine in water extracts from Agaricus blazei and other edible fungi, and removal of agaritine by ethanol fractionation. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.11.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Su ZY, Tung YC, Hwang LS, Sheen LY. Blazeispirol A from Agaricus blazei fermentation product induces cell death in human hepatoma Hep 3B cells through caspase-dependent and caspase-independent pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5109-5116. [PMID: 21417302 DOI: 10.1021/jf104700j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Currently, liver cancer is a leading cause of cancer-related death in the world. Hepatocellular carcinoma is the most common type of liver cancer. Previously, it was reported that blazeispirol A (BA) is the most active antihepatoma compound in an ethanolic extract of Agaricus blazei fermentation product. The aim of this study was to understand the antihepatoma mechanism of BA in human liver cancer Hep 3B cells. The results showed that BA inhibited the growth of Hep 3B cells and increased the percentage of cells in sub-G1 phase in a concentration- and time-dependent manner. In addition, BA treatment resulted in DNA fragmentation, caspase-9 and caspase-3 activations, poly(ADP-ribose)polymerase (PARP) degradation, down-regulation of Bcl-2 and Bcl-xL expressions, up-regulation of Bax expression, and disruption of the mitochondrial membrane potential (MMP) in Hep 3B cells. Furthermore, z-VAD-fmk, a caspase inhibitor, did not enhance the viability of BA-treated Hep 3B cells, and BA induced the release of HtrA2/Omi and apoptosis-inducing factor (AIF) from mitochondria into the cytosol. These findings suggested that BA with novel chemopreventive and chemotherapeutic potentials causes both caspase-dependent and caspase-independent cell death in Hep 3B cells.
Collapse
Affiliation(s)
- Zheng-Yuan Su
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
39
|
Førland DT, Johnson E, Saetre L, Lyberg T, Lygren I, Hetland G. Effect of an extract based on the medicinal mushroom Agaricus blazei Murill on expression of cytokines and calprotectin in patients with ulcerative colitis and Crohn's disease. Scand J Immunol 2011; 73:66-75. [PMID: 21129005 DOI: 10.1111/j.1365-3083.2010.02477.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An immunomodulatory extract (AndoSan™) based on the medicinal mushroom Agaricus blazei Murill (AbM) has shown to reduce blood cytokine levels in healthy volunteers after 12 days' ingestion, pointing to an anti-inflammatory effect. The aim was to study whether AndoSan™ had similar effects on cytokines in patients with ulcerative colitis (UC) and Crohn's disease (CD). Calprotectin, a marker for inflammatory bowel disease (IBD), was also measured. Patients with CD (n = 11) and with UC (n = 10) consumed 60 ml/day of AndoSan™. Patient blood plasma was harvested before and after 6 h LPS (1 ng/ml) stimulation ex vivo. Plasma and faecal calprotectin levels were analysed using ELISA and 17 cytokines [IL-2, IFN-γ, IL-12 (Th1), IL-4, IL-5, IL-13 (Th2), IL-7, IL-17, IL-1β, IL-6, TNF-α, IL-8, MIP-1β, MCP-1, G-CSF, GM-CSF and IL-10] by multiplex assay. After 12 days' ingestion of AndoSan™, baseline plasma cytokine levels in UC was reduced for MCP-1 (40%) and in LPS-stimulated blood for MIP-1β (78%), IL-6 (44%), IL-1β (41%), IL-8 (30%), G-CSF (29%), MCP-1 (18%) and GM-CSF (17%). There were corresponding reductions in CD: IL-2 (100%), IL-17 (55%) and IL-8 (29%) and for IL-1β (35%), MIP-1β (30%), MCP-1 (22%), IL-8 (18%), IL-17 (17%) and G-CSF (14%), respectively. Baseline concentrations for the 17 cytokines in the UC and CD patient groups were largely similar. Faecal calprotectin was reduced in the UC group. Ingestion of an AbM-based medicinal mushroom by patients with IBD resulted in interesting anti-inflammatory effects as demonstrated by declined levels of pathogenic cytokines in blood and calprotectin in faeces.
Collapse
Affiliation(s)
- D T Førland
- Department of Gastroenterological Surgery, Oslo University Hospital, Ullevål, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
40
|
Niwa A, Tajiri T, Higashino H. Ipomoea batatas and Agarics blazei ameliorate diabetic disorders with therapeutic antioxidant potential in streptozotocin-induced diabetic rats. J Clin Biochem Nutr 2011; 48:194-202. [PMID: 21562638 PMCID: PMC3082073 DOI: 10.3164/jcbn.10-78] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/09/2010] [Indexed: 12/11/2022] Open
Abstract
Ipomoea batatas, Agaricus blazei and Smallanthus sonchifolius are known to favorably influence diabetes mellitus. To clarify their antidiabetic efficacy and hypoglycemic mechanisms, we treated streptozotocin-induced diabetic rats with daily oral feeding of powdered Ipomoea batatas (5 g kg−1 d−1), Agaricus blazei (1 g kg−1 d−1) or Smallanthus sonchifolius (4 g kg−1 d−1) for 2 months. Treatments with Ipomoea batatas or Agaricus blazei, but not Smallanthus sonchifolius, significantly suppressed the increases of fasting plasma glucose and hemoglobin A1c levels, and restored body weight loss during diabetes. Serum insulin levels after oral glucose administration tests increased along the treatments of Ipomoea batatas or Agaricus blazei. Moreover, Ipomoea batatas and Agaricus blazei reduced superoxide production from leukocytes and vascular homogenates, serum 8-oxo-2'-deoxyguanosine, and vascular nitrotyrosine formation of diabetic rats to comparable levels of normal control animals. Stress- and inflammation-related p38 mitogen-activated protein kinase activity and tumor necrosis factor-α production of diabetic rats were significantly depressed by Ipomoea batatas administration. Histological examination also exhibited improvement of pancreatic β-cells mass after treatments with Ipomoea batatas or Agaricus blazei. These results suggest that hypoglycemic effects of Ipomoea batatas or Agaricus blazei result from their suppression of oxidative stress and proinflammatory cytokine production followed by improvement of pancreatic β-cells mass.
Collapse
Affiliation(s)
- Atsuko Niwa
- Department of Pharmacology, Kinki University School of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | | | | |
Collapse
|
41
|
Lima CUJO, Cordova CODA, Nóbrega ODT, Funghetto SS, Karnikowski MGDO. Does the Agaricus blazei Murill mushroom have properties that affect the immune system? An integrative review. J Med Food 2010; 14:2-8. [PMID: 21128829 DOI: 10.1089/jmf.2010.0017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There has been a significant increase in the use of mushrooms for therapeutic and medicinal purposes, in particular, use of the species Agaricus blazei Murrill, a basidiomycota of Brazilian origin. The objective of this study was to identify scientific evidence regarding the influence of A. blazei Murrill on the immune system. We undertook an integrative review of indexed publications published between 2000 and 2009, using the following question as a guideline: "What evidence can be found in the literature regarding the influence of A. blazei Murrill on the immune system?" Fourteen studies verified that there is in vitro and in vivo research demonstrating this mushroom's influence on the immune system. All research was characterized as evidence level 7 (preclinical study [animals/in vitro]). The research shows that A. blazei Murrill functions through bioactive compounds via mechanisms that are not yet entirely clear, although it has been shown that they promote action on the innate and adaptive immunological response, activation of the complement system, and synthesis of pro- and anti-inflammatory cytokines and even aid in diapedesis. Despite broad scientific evidence demonstrating relevant immunomodulatory properties of A. blazei Murrill, randomized clinical trials with human subjects are still needed in order for the mushroom to be put into clinical practice.
Collapse
|
42
|
Bouike G, Nishitani Y, Shiomi H, Yoshida M, Azuma T, Hashimoto T, Kanazawa K, Mizuno M. Oral Treatment with Extract of Agaricus blazei Murill Enhanced Th1 Response through Intestinal Epithelial Cells and Suppressed OVA-Sensitized Allergy in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2010; 2011:532180. [PMID: 20953432 PMCID: PMC2952310 DOI: 10.1155/2011/532180] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 08/28/2010] [Indexed: 11/17/2022]
Abstract
To clarify the mechanism of the antiallergic activity of Agaricus blazei Murill extract (ABME), the present paper used an in vivo allergy model and an in vitro intestinal gut model. During OVA sensitization, the serum IgE levels decreased significantly in ABME group. Interleukin (IL)-4 and -5 produced from OVA-restimulated splenocytes was significantly decreased, and anti-CD3ε/CD28 antibody treatment also reduced IL-10, -4, and -5 production and increased IFN-γ production in ABME group. These results suggest that oral administration of ABME improves Th1/Th2 balance. Moreover, a coculture system constructed of Caco-2 cells and splenocytes from OT-II mice or RAW 264.7 cells indicated that the significant increases in IFN-γ production by ABME treatment. Therefore, it was concluded that the antiallergic activity of ABME was due to the activation of macrophages by epithelial cells and the promotion of the differentiation of naïve T cells into Th1 cells in the immune.
Collapse
Affiliation(s)
- Go Bouike
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Yosuke Nishitani
- Health Bioscience Team, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Hideyuki Shiomi
- Department of Internal Medicine, Graduate school of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Masaru Yoshida
- Department of Internal Medicine, Graduate school of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Takeshi Azuma
- Department of Internal Medicine, Graduate school of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Takashi Hashimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Kazuki Kanazawa
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Masashi Mizuno
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
43
|
Volman JJ, Helsper JPFG, Wei S, Baars JJP, van Griensven LJLD, Sonnenberg ASM, Mensink RP, Plat J. Effects of mushroom-derived β-glucan-rich polysaccharide extracts on nitric oxide production by bone marrow-derived macrophages and nuclear factor-κB transactivation in Caco-2 reporter cells: Can effects be explained by structure? Mol Nutr Food Res 2010; 54:268-76. [DOI: 10.1002/mnfr.200900009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Ichinohe T, Ainai A, Nakamura T, Akiyama Y, Maeyama JI, Odagiri T, Tashiro M, Takahashi H, Sawa H, Tamura SI, Chiba J, Kurata T, Sata T, Hasegawa H. Induction of cross-protective immunity against influenza A virus H5N1 by an intranasal vaccine with extracts of mushroom mycelia. J Med Virol 2010; 82:128-37. [DOI: 10.1002/jmv.21670] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Jumes FMD, Lugarini D, Pereira ALB, de Oliveira A, Christoff ADO, Linde GA, do Valle JS, Colauto NB, Acco A. Effects of Agaricus brasiliensis mushroom in Walker-256 tumor-bearing rats. Can J Physiol Pharmacol 2010; 88:21-7. [DOI: 10.1139/y09-111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Agaricus brasiliensis is a mushroom native to São Paulo State, Brazil, that is studied for its medicinal proprieties. This work aimed to investigate the antitumoral activity of A. brasiliensis extracts and pure powdered basidiocarp preparation using Walker-256 (W256) tumor-bearing rats, a model for cancer-related cachexia studies. The rats were treated for 14 days by gavage (136 mg/kg) and at the end of the experiment tumors were collected to calculate mass and volume. Blood was collected for determination of plasma glucose, albumin, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Hepatic and tumor enzymes indicating oxidative stress were also evaluated. The results showed that all 4 treatments (pure powdered basidiocarp and aqueous, acid, and alkaline extracts) significantly reduced tumor size and promoted gain in body weight. Plasmatic analysis showed a reduction in AST level and increased glycemia in the treated rats. Pure basidiocarp preparations improved the liver catalase and superoxide dismutase activity, but did not change the glutathione S-transferase activity. The data collected from the W256 tumor-bearing rats revealed the beneficial effects of A. brasiliensis in tumor treatment, mainly related to cachexia. The benefits can be partly related to antioxidant activity and to reduction of weight loss and tumor growth.
Collapse
Affiliation(s)
- Fernanda Menon Dias Jumes
- Pharmacology Department, Federal University of Paraná, Jardim das Américas, C.P. 19031, 81531-900 Curitiba – PR, Brazil
- Molecular Biology Laboratory, Paranaense University, Praça Mascarenhas de Moraes, 4282, C.P. 224, 87502-210 Umuarama – PR, Brazil
| | - Daiana Lugarini
- Pharmacology Department, Federal University of Paraná, Jardim das Américas, C.P. 19031, 81531-900 Curitiba – PR, Brazil
- Molecular Biology Laboratory, Paranaense University, Praça Mascarenhas de Moraes, 4282, C.P. 224, 87502-210 Umuarama – PR, Brazil
| | - Amanda Leite Bastos Pereira
- Pharmacology Department, Federal University of Paraná, Jardim das Américas, C.P. 19031, 81531-900 Curitiba – PR, Brazil
- Molecular Biology Laboratory, Paranaense University, Praça Mascarenhas de Moraes, 4282, C.P. 224, 87502-210 Umuarama – PR, Brazil
| | - Anabel de Oliveira
- Pharmacology Department, Federal University of Paraná, Jardim das Américas, C.P. 19031, 81531-900 Curitiba – PR, Brazil
- Molecular Biology Laboratory, Paranaense University, Praça Mascarenhas de Moraes, 4282, C.P. 224, 87502-210 Umuarama – PR, Brazil
| | - Adriana de Oliveira Christoff
- Pharmacology Department, Federal University of Paraná, Jardim das Américas, C.P. 19031, 81531-900 Curitiba – PR, Brazil
- Molecular Biology Laboratory, Paranaense University, Praça Mascarenhas de Moraes, 4282, C.P. 224, 87502-210 Umuarama – PR, Brazil
| | - Giani Andrea Linde
- Pharmacology Department, Federal University of Paraná, Jardim das Américas, C.P. 19031, 81531-900 Curitiba – PR, Brazil
- Molecular Biology Laboratory, Paranaense University, Praça Mascarenhas de Moraes, 4282, C.P. 224, 87502-210 Umuarama – PR, Brazil
| | - Juliana Silveira do Valle
- Pharmacology Department, Federal University of Paraná, Jardim das Américas, C.P. 19031, 81531-900 Curitiba – PR, Brazil
- Molecular Biology Laboratory, Paranaense University, Praça Mascarenhas de Moraes, 4282, C.P. 224, 87502-210 Umuarama – PR, Brazil
| | - Nelson Barros Colauto
- Pharmacology Department, Federal University of Paraná, Jardim das Américas, C.P. 19031, 81531-900 Curitiba – PR, Brazil
- Molecular Biology Laboratory, Paranaense University, Praça Mascarenhas de Moraes, 4282, C.P. 224, 87502-210 Umuarama – PR, Brazil
| | - Alexandra Acco
- Pharmacology Department, Federal University of Paraná, Jardim das Américas, C.P. 19031, 81531-900 Curitiba – PR, Brazil
- Molecular Biology Laboratory, Paranaense University, Praça Mascarenhas de Moraes, 4282, C.P. 224, 87502-210 Umuarama – PR, Brazil
| |
Collapse
|
46
|
Førland DT, Johnson E, Tryggestad AMA, Lyberg T, Hetland G. An extract based on the medicinal mushroom Agaricus blazei Murill stimulates monocyte-derived dendritic cells to cytokine and chemokine production in vitro. Cytokine 2009; 49:245-50. [PMID: 20036142 DOI: 10.1016/j.cyto.2009.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 08/20/2009] [Accepted: 09/02/2009] [Indexed: 01/10/2023]
Abstract
The edible mushroom Agaricus blazei Murill (AbM), which has been used in traditional medicine against a range of diseases and possess immunomodulating properties, probably due to its high content of beta-glucans. Others and we have demonstrated stimulatory effects of extracts of this mushroom on different immune cells. Dendritic cells are major directors of immune function. We wanted to examine the effect of AbM stimulation on signal substance release from monocyte-derived dendritic cells (MDDC). After 6d incubation with IL-4 and GM-CSF, the cells were true MDDC. Then the cells were further incubated with up to 10% of the AbM-based extract, AndoSan, LPS (0.5 microg/ml) or PBS control. We found that the AbM extract promoted dose-dependent increased levels of IL-8, G-CSF, TNFalpha, IL-1beta, IL-6 and MIP-1beta, in that order. The synthesis of IL-2, IL-8 and IFNgamma were similar for the AbM extract and LPS. However, AndoSan induced a 10- to 2-fold higher production than did LPS of G-CSF, TNFalpha and IL-1beta, respectively. AbM did not induce increased synthesis of Th2 or anti-inflammatory cytokines or the Th1 cytokine IL-12. We conclude that stimulation of MDDC with an AbM-based extract resulted in increased production of proinflammatory, chemotactic and some Th1-type cytokines in vitro.
Collapse
Affiliation(s)
- D T Førland
- Department of Gastroenterological Surgery, Oslo University Hospital, Ulleval, Norway
| | | | | | | | | |
Collapse
|
47
|
Liu J, Miao S, Wen X, Sun Y. Optimization of polysaccharides (ABP) extraction from the fruiting bodies of Agaricus blazei Murill using response surface methodology (RSM). Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2009.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Johnson E, Førland DT, Saetre L, Bernardshaw SV, Lyberg T, Hetland G. Effect of an extract based on the medicinal mushroom Agaricus blazei murill on release of cytokines, chemokines and leukocyte growth factors in human blood ex vivo and in vivo. Scand J Immunol 2009; 69:242-50. [PMID: 19281536 DOI: 10.1111/j.1365-3083.2008.02218.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An immunostimulatory extract based on the medicinal mushroom Agaricus blazei Murill (AbM) has been shown to stimulate mononuclear phagocytes in vitro to produce pro-inflammatory cytokines, and to protect against lethal peritonitis in mice. The present aim was to study the effect of AbM on release of several cytokines in human whole blood both after stimulation ex vivo and in vivo after oral intake over several days in healthy volunteers. The 17 signal substances examined were; T helper 1 (Th1) cytokines [interleukin (IL)-2, interferon (IFN)-gamma and IL-12], T helper 2 cytokines (IL-4, IL-5 and IL-13), pleiotropic (IL-7, IL-17), pro-inflammatory [IL-1beta, IL-6, tumour necrosis factor (TNF)-alpha (mainly produced by Th1 cells)]--and anti-inflammatory (IL-10) cytokines, chemokines [IL-8, macrophage inhibitory protein (MIP)-1beta and monocyte chemoattractant protein (MCP)-1] and leukocyte growth factors [granulocyte colony-stimulating factor (G-CSF), granulocyte/macrophage colony stimulating factor]. After stimulation of whole blood ex vivo with 0.5-5.0% of a mushroom extract, AndoSan mainly containing AbM, there was a dose-dependent increase in all the cytokines studied, ranging from two to 399-fold (TNF-alpha). However, in vivo in the eight volunteers who completed the daily intake (60 ml) of this AbM extract for 12 days, a significant reduction was observed in levels of IL-1beta (97%), TNF-alpha (84%), IL-17 (50%) and IL-2 (46%). Although not significant, there was a trend towards reduced levels for IL-8, IFN-gamma and G-CSF, whilst those of the remaining nine cytokines tested, were unaltered. The discrepant results on cytokine release ex vivo and in vivo may partly be explained by the antioxidant activity of AbM in vivo and limited absorption of its large, complex and bioactive beta-glucans across the intestinal mucosa to the reticuloendothelial system and blood.
Collapse
Affiliation(s)
- E Johnson
- Department of Gastroenterological Surgery, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
49
|
LEE IP. Multi-Potential Cancer Preventive Efficacy and the Current Safety Status of Agaricus blazei Murill Products. ACTA ACUST UNITED AC 2009. [DOI: 10.1625/jcam.6.75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- I. P. LEE
- Visiting Professor, Department of Complimentary and Alternative Medicine, Graduate Faculty of Medical Sciences, Kanazawa University
| |
Collapse
|
50
|
Su ZY, Hwang LS, Kuo YH, Shu CH, Sheen LY. Black soybean promotes the formation of active components with antihepatoma activity in the fermentation product of Agaricus blazei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:9447-54. [PMID: 18808146 DOI: 10.1021/jf8015392] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The antihepatoma activity and related active components in the fermentation products of Agaricus blazei (AB) cultured in the medium containing soybean (S) or black soybean (BS) were investigated. AB(BS)-pE and AB(S)-pE were the ethanolic extracts from the fermentation products of AB(BS) and AB(S), respectively. According to the IC 50 values, AB(BS)-pE (161.1 and 24.0 microg/mL for Hep 3B and Hep G2 cells, respectively) exhibited stronger cytotoxicities against hepatoma cells than AB(S)-pE (>200 and 99.9 microg/mL for Hep 3B and Hep G2 cells, respectively). AB(BS)-pE was separated by silica gel column chromatography and eluted with n-hexane/ethyl acetate/methanol gradient solvent system into 21 fractions. Fraction 3 [AB(BS)-pE-F3], eluted with n-hexane/ethyl acetate (97:3 and 19:1, v/v), was the most active fraction having inhibitory activity on the proliferation of Hep 3B and Hep G2 cells (IC 50 of 3.6 and 1.9 microg/mL, respectively). Three major compounds, compounds 1- 3, were further isolated from the AB(BS)-pE-F3 fraction by reversed-phase semipreparative high-performance liquid chromatography. Compounds 2 and 3 gave better antihepatoma activity than that of compound 1. The IC 50 values of compounds 2 and 3 were 2.8 and 4.5 microg/mL for Hep 3B cells and 1.4 and 2.0 microg/mL for Hep G2 cells, respectively. The structures of compounds 2 and 3 were identified by UV, IR, electron impact mass spectrometry, and (1)H and (13)C NMR to be blazeispirols A and C, respectively. Blazeispirols A and C existed in the mycelia but not in the broth and were more in AB(BS)-pE (49.9 +/- 8.9 and 14.2 +/- 2.4 mg/g, respectively) than AB(S)-pE (15.9 +/- 1.7 and 3.9 +/- 0.6 mg/g, respectively). Additionally, the result shows that the production of blazeispirols A and C was increased after cultivation in the medium containing black soybean on day 6 and reached the maximum on day 12, and the contents of blazeispirols A and C were negatively correlated with Hep 3B and Hep G2 cell viabilities ( r = -0.84 to -0.93, P < 0.01). It suggests that blazeispirols A and C could be used as biomarkers to produce the fermentation product of A. blazei with antihepatoma activity.
Collapse
Affiliation(s)
- Zheng-Yuan Su
- Graduate Institute of Food Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, 106 Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|