1
|
Effects of Amino Acids Supplementation on Lipid and Glucose Metabolism in HepG2 Cells. Nutrients 2022; 14:nu14153050. [PMID: 35893906 PMCID: PMC9332103 DOI: 10.3390/nu14153050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/22/2023] Open
Abstract
Non-alcoholic fatty liver disease and type 2 diabetes are representing symptoms of metabolic syndrome, which is often accompanied with hepatic fat accumulation and insulin resistance. Since liver is the major site of glucose and lipid metabolism, this study aimed to understand the effects of SCAAs and BCAAs supplementations on glucose and lipid metabolism in HepG2 cells. These cells were pretreated with SAMe, betaine, taurine, and BCAA for 24 h, followed by treatments of a high concentration of glucose (50 mM) or palmitic acid (PA, 0.5 mM) for 48 h to simulate high-glucose and high-fat environments. Pretreatment of BCAA and SCAAs inhibited the fat accumulation. At the transcriptional level, glucose and PA treatment led to significant increase of mRNA gluconeogenic enzyme. The mRNA expression level of GLUT2 was decreased by 20% in the SAMe-treated group and inhibited glucose synthesis by reducing the level of gluconeogenic enzyme. After SAMe or BCAA pretreatment, the mRNA expression of lipogenic enzymes was decreased. The PPAR-γ expression was increased after BCAA pretreatment, but SAMe not only downregulated the expression of PPAR-γ, but also inhibited the expression of ChREBP approximately 20% and SREBP-1c decreased by about 15%. Taken together, the effect of SAMe on glucose and lipid metabolism is significant especially on inhibiting hepatic lipogenesis and gluconeogenesis under the metabolic syndrome environment.
Collapse
|
2
|
Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Spandidos DA, Christodoulou I, Kyriakopoulos AM, Zoumpourlis V. Protective role of taurine against oxidative stress (Review). Mol Med Rep 2021; 24:605. [PMID: 34184084 PMCID: PMC8240184 DOI: 10.3892/mmr.2021.12242] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Taurine is a fundamental mediator of homeostasis that exerts multiple roles to confer protection against oxidant stress. The development of hypertension, muscle/neuro‑associated disorders, hepatic cirrhosis, cardiac dysfunction and ischemia/reperfusion are examples of some injuries that are linked with oxidative stress. The present review gives a comprehensive description of all the underlying mechanisms of taurine, with the aim to explain its anti‑oxidant actions. Taurine is regarded as a cytoprotective molecule due to its ability to sustain normal electron transport chain, maintain glutathione stores, upregulate anti‑oxidant responses, increase membrane stability, eliminate inflammation and prevent calcium accumulation. In parallel, the synergistic effect of taurine with other potential therapeutic modalities in multiple disorders are highlighted. Apart from the results derived from research findings, the current review bridges the gap between bench and bedside, providing mechanistic insights into the biological activity of taurine that supports its potential therapeutic efficacy in clinic. In the future, further clinical studies are required to support the ameliorative effect of taurine against oxidative stress.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Demetrios A. Spandidos
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | | | | |
Collapse
|
3
|
Liu GY, Jiang WX, Sun HT, Gao SX, Yang LP, Liu C, Bai LY. Effects of dietary supplementation with taurine on production performance of Angora rabbits. WORLD RABBIT SCIENCE 2021. [DOI: 10.4995/wrs.2021.13133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
<p>This study aimed to evaluate the effects of dietary supplementation with taurine on production performance, serum biochemistry, immunoglobulin, antioxidant and hormones of Angora rabbits. A total of 160 8-month-old Angora rabbits with similar body weight were randomly assigned to one of four dietary groups, with 40 animals per group. The dietary groups consisted of the following different taurine supplementation levels: 0 (control), 0.1, 0.2, and 0.3% (air-dry basis). The 73-d feeding trial (from July 31 to October 11, 2016 in China) included a 7-d adjustment period and a 66-d experimental period. The results showed that taurine dietary supplementation had effects on feed consumption, hair follicle density and wool yield of the Angora rabbits (<em>P</em><0.05), and adding 0.2% taurine could improve the wool yield. Compared with the control group, serum total cholesterol and low-density lipoprotein levels in supplemented groups were decreased (<em>P</em><0.05). Dietary supplementation with taurine could improve the activity of superoxide dismutase, enhance total antioxidant capacity and reduce the content of malondialdehyde in serum (<em>P</em><0.05). Besides, the serum level of thyroid (T4) hormone and insulin-like growth factor-1 in experimental groups was higher than that in the control group (<em>P</em><0.05). In conclusion, taurine dietary supplementation could reduce the lipid metabolism, enhance the antioxidant capacity and hormone level of Angora rabbits, and adding 0.2% taurine could achieve the effect of increasing wool production.</p>
Collapse
|
4
|
Baliou S, Goulielmaki M, Ioannou P, Cheimonidi C, Trougakos IP, Nagl M, Kyriakopoulos AM, Zoumpourlis V. Bromamine T (BAT) Exerts Stronger Anti-Cancer Properties than Taurine (Tau). Cancers (Basel) 2021; 13:E182. [PMID: 33430276 PMCID: PMC7825693 DOI: 10.3390/cancers13020182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Taurine (Tau) ameliorates cancer pathogenesis. Researchers have focused on the functional properties of bromamine T (BAT), a stable active bromine molecule. Both N-bromotaurine (TauNHBr) and BAT exert potent anti-inflammatory properties, but the landscape remains obscure concerning the anti-cancer effect of BAT. METHODS We used Crystal Violet, colony formation, flow cytometry and Western blot experiments to evaluate the effect of BAT and Tau on the apoptosis and autophagy of cancer cells. Xenograft experiments were used to determine the in vivo cytotoxicity of either agent. RESULTS We demonstrated that both BAT and Tau inhibited the growth of human colon, breast, cervical and skin cancer cell lines. Among them, BAT exerted the greatest cytotoxic effect on both RKO and MDA-MB-468 cells. In particular, BAT increased the phosphorylation of c-Jun N-terminal kinases (JNK½), p38 mitogen-activated protein kinase (MAPK), and extracellular-signal-regulated kinases (ERK½), thereby inducing mitochondrial apoptosis and autophagy in RKO cells. In contrast, Tau exerted its cytotoxic effect by upregulating JNK½ forms, thus triggering mitochondrial apoptosis in RKO cells. Accordingly, colon cancer growth was impaired in vivo. CONCLUSIONS BAT and Tau exerted their anti-tumor properties through the induction of (i) mitochondrial apoptosis, (ii) the MAPK family, and iii) autophagy, providing novel anti-cancer therapeutic modalities.
Collapse
Affiliation(s)
- Stella Baliou
- Biomedical Application Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (S.B.); (M.G.)
| | - Maria Goulielmaki
- Biomedical Application Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (S.B.); (M.G.)
| | - Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Crete, Greece;
| | - Christina Cheimonidi
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (C.C.); (I.P.T.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (C.C.); (I.P.T.)
| | - Markus Nagl
- Department of Hygiene, Microbiology and Public Health, Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Anthony M. Kyriakopoulos
- Department of Research and Development, Nasco AD Biotechnology Laboratory, 11 Sachtouri Str, 18536 Piraeus, Greece;
| | - Vassilis Zoumpourlis
- Biomedical Application Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (S.B.); (M.G.)
| |
Collapse
|
5
|
Lin CJ, Chiu CC, Chen YC, Chen ML, Hsu TC, Tzang BS. Taurine Attenuates Hepatic Inflammation in Chronic Alcohol-Fed Rats Through Inhibition of TLR4/MyD88 Signaling. J Med Food 2015; 18:1291-8. [PMID: 26090712 DOI: 10.1089/jmf.2014.3408] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence indicates that overconsumption of ethanol contributes in many ways to the pathogenesis of hepatic injury. Although studies indicate that taurine decreases lipogenesis, oxidative stress, and inflammatory cytokines, the protective effect of taurine against alcohol-induced liver injury is still unclear. To clarify the precise signaling involved in the beneficial effect of taurine on alcohol-induced liver injury, rats were randomly divided into four treatment groups: (1) control (Ctl), (2) alcohol (Alc), (3) Alc+taurine (Tau), and (4) Alc+silymarin (Sil). The Tau and Sil groups had lower lymphocyte infiltration and significantly lower TLR-4/MyD88 and IκB/NFκB compared to the Alc group. The inducible nitric oxide synthase (iNOS), C-reactive protein (CRP), tumor necrosis factors (TNF)-α, interleukin (IL)-6, and IL-1β were also significantly lower in the Tau and Sil groups than in the Alc group. The experimental results indicated that hepatoprotection against alcohol-induced inflammation may be mediated by decreased TLR-4/MyD88 signaling.
Collapse
Affiliation(s)
- Chao-Jen Lin
- 1 Department of Pediatrics, Changhua Christian Hospital , Changhua, Taiwan
| | - Chun-Ching Chiu
- 2 Institute of Microbiology and Immunology, School of Medicine, Chung Shan Medical University , Taichung, Taiwan .,3 Department of Neurology, Changhua Christian Hospital , Changhua, Taiwan .,4 Department of Medical Intensive Care Unit, Changhua Christian Hospital , Changhua, Taiwan
| | - Yi-Chen Chen
- 5 Department of Animal Science and Technology, National Taiwan University , Taipei, Taiwan
| | - Mu-Lin Chen
- 6 Institute of Biochemistry and Biotechnology, School of Medicine, Chung Shan Medical University , Taichung, Taiwan
| | - Tsai-Ching Hsu
- 2 Institute of Microbiology and Immunology, School of Medicine, Chung Shan Medical University , Taichung, Taiwan .,7 Clinical Laboratory, Chung Shan Medical University Hospital , Taichung, Taiwan
| | - Bor-Show Tzang
- 6 Institute of Biochemistry and Biotechnology, School of Medicine, Chung Shan Medical University , Taichung, Taiwan .,7 Clinical Laboratory, Chung Shan Medical University Hospital , Taichung, Taiwan .,8 Department of Biochemistry, School of Medicine, Chung Shan Medical University , Taichung, Taiwan
| |
Collapse
|
6
|
Liu Y, Mao X, Yu B, He J, Zheng P, Yu J, Luo J, Chen D. Excessive dietary taurine supplementation reduces growth performance, liver and intestinal health of weaned pigs. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Wu G, Yang J, Lin S, Feng Y, Yang Q, Lv Q, Hu J. Taurine and Chinese Traditional Medicine Accelerate Alcohol Metabolism in Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 776:21-8. [DOI: 10.1007/978-1-4614-6093-0_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Chou CH, Chang YY, Tzang BS, Hsu CL, Lin YL, Lin HW, Chen YC. Effects of taurine on hepatic lipid metabolism and anti-inflammation in chronic alcohol-fed rats. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.04.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Chang YY, Chou CH, Chiu CH, Yang KT, Lin YL, Weng WL, Chen YC. Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:450-457. [PMID: 21126079 DOI: 10.1021/jf103167u] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nonalcoholic fatty liver (NAFL) is also called hepatic steatosis and has become an emergent liver disease in developed and developing nations. This study was to exam the preventive effects of taurine (Tau) on the development of hepatic steatosis via a hamster model. Although hepatic steatosis of hamsters was induced by feeding a high-fat/cholesterol diet, drinking water containing 0.35 and 0.7% Tau improved (p < 0.05) the serum lipid profile. Meanwhile, the smaller (p < 0.05) liver sizes and lower (p < 0.05) hepatic lipids in high-fat/cholesterol dietary hamsters drinking Tau may be partially due to higher (p < 0.05) fecal cholesterol, triacylglycerol, and bile acid outputs. In the regulation of lipid homeostasis, drinking a Tau solution upregulated (p < 0.05) low-density lipoprotein receptor and CYP7A1 gene expressions in high-fat/cholesterol dietary hamsters, which result in increased fecal cholesterol and bile acid outputs. Drinking a Tau solution also upregulated (p < 0.05) peroxisome proliferator-activated receptor-α (PPAR-α) and uncoupling protein 2 (UPC2) gene expressions in high-fat/cholesterol dietary hamsters, thus increasing energy expenditure. Besides, Tau also enhanced (p < 0.05) liver antioxidant capacities (GSH, TEAC, SOD, and CAT) and decreased (p < 0.05) lipid peroxidation (MDA), which alleviated liver damage in the high-fat/cholesterol dietary hamsters. Therefore, Tau shows preventive effects on the development of hepatic steatosis induced by a high-fat/cholesterol dietary habit.
Collapse
Affiliation(s)
- Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
10
|
|