1
|
Monselise EBI, Vyazmensky M, Scherf T, Batushansky A, Fishov I. D-Glutamate production by stressed Escherichia coli gives a clue for the hypothetical induction mechanism of the ALS disease. Sci Rep 2024; 14:18247. [PMID: 39107374 PMCID: PMC11303787 DOI: 10.1038/s41598-024-68645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
In the search for the origin of Amyotrophic Lateral Sclerosis disease (ALS), we hypothesized earlier (Monselise, 2019) that D-amino acids produced by stressed microbiome may serve as inducers of the disease development. Many examples of D-amino acid accumulation under various stress conditions were demonstrated in prokaryotic and eukaryotic cells. In this work, wild-type Escherichia coli, members of the digestive system, were subjected to carbon and nitrogen starvation stress. Using NMR and LC-MS techniques, we found for the first time that D-glutamate accumulated in the stressed bacteria but not in control cells. These results together with the existing knowledge, allow us to suggest a new insight into the pathway of ALS development: D-glutamate, produced by the stressed microbiome, induces neurobiochemical miscommunication setting on C1q of the complement system. Proving this insight may have great importance in preventive medicine of such MND modern-age diseases as ALS, Alzheimer, and Parkinson.
Collapse
Affiliation(s)
- Edna Ben-Izhak Monselise
- Department of Life Science, Bergman Campus, Ben-Gurion University of the Negev, 8441901, Beer-Sheva, Israel.
| | - Maria Vyazmensky
- Department of Life Science, Bergman Campus, Ben-Gurion University of the Negev, 8441901, Beer-Sheva, Israel
| | - Tali Scherf
- Department of Chemical Research Support, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Albert Batushansky
- Ilse Katz Institute for Nanoscale Science & Technology, Marcus Campus, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Itzhak Fishov
- Department of Life Science, Bergman Campus, Ben-Gurion University of the Negev, 8441901, Beer-Sheva, Israel.
| |
Collapse
|
2
|
Yamaguchi Y, Ikeba K, Yoshida MA, Takagi W. Molecular basis of the unique osmoregulatory strategy in the inshore hagfish, Eptatretus burgeri. Am J Physiol Regul Integr Comp Physiol 2024; 327:R208-R233. [PMID: 38105762 DOI: 10.1152/ajpregu.00166.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Hagfishes are characterized by omo- and iono-conforming nature similar to marine invertebrates. Conventionally, hagfishes had been recognized as the most primitive living vertebrate that retains plesiomorphic features. However, some of the "ancestral" features of hagfishes, such as rudimentary eyes and the lack of vertebrae, have been proven to be deceptive. Similarly, by the principle of maximum parsimony, the unique body fluid regulatory strategy of hagfishes seems to be apomorphic, since the lamprey, another cyclostome, adopts osmo- and iono-regulatory mechanisms as in jawed vertebrates. Although hagfishes are unequivocally important in discussing the origin and evolution of the vertebrate osmoregulatory system, the molecular basis for the body fluid homeostasis in hagfishes has been poorly understood. In the present study, we explored this matter in the inshore hagfish, Eptatretus burgeri, by analyzing the transcriptomes obtained from the gill, kidney, and muscle of the animals acclimated to distinct environmental salinities. Together with the measurement of parameters in the muscular fluid compartment, our data indicate that the hagfish possesses an ability to conduct free amino acid (FAA)-based osmoregulation at a cellular level, which is in coordination with the renal and branchial FAA absorption. We also revealed that the hagfish does possess the orthologs of the known osmoregulatory genes and that the transepithelial movement of inorganic ions in the hagfish gill and kidney is more complex than previously thought. These observations pose a challenge to the conventional view that the physiological features of hagfishes have been inherited from the last common ancestor of the extant vertebrates.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Kiriko Ikeba
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Masa-Aki Yoshida
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Okinoshima, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
3
|
Yoshikawa N, Yoshitomi N, Nakada K. Effects of eyestalk ablation and seawater temperature on d-glutamate levels in the reproductive tissues of male kuruma prawn Marsupenaeus japonicus. J Biochem 2024; 176:167-174. [PMID: 38776941 DOI: 10.1093/jb/mvae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 05/25/2024] Open
Abstract
D-Glutamate, a novel d-amino acid found in animal tissues, exclusively exists in the male reproductive tissues of the kuruma prawn, Marsupenaeus japonicus. Herein, changes in the d-glutamate content were determined in the male reproductive tissues of M. japonicus during acclimation to breeding seawater temperatures of 18-22°C and unilateral eyestalk ablation. The d-glutamate content in the testis increased with increasing seawater temperature and with unilateral eyestalk ablation. This suggests that both stimulations induced d-glutamate synthesis in the testis. Although the d-alanine content in the testis increased after unilateral eyestalk ablation, it did not change with elevated seawater temperature. Furthermore, we determined the d-glutamate distribution in the M. japonicus spermatophore. This indicates that d-glutamate is crucial in prawn fertilization.
Collapse
Affiliation(s)
- Naoko Yoshikawa
- Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, Fukuroi, Shizuoka 437-8555, Japan
| | - Natsuki Yoshitomi
- Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, Fukuroi, Shizuoka 437-8555, Japan
| | - Kazuki Nakada
- Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, Fukuroi, Shizuoka 437-8555, Japan
| |
Collapse
|
4
|
Ma B, Zhao X, Zhang X, Yang B, Cai Z, Xing Z, Xu M, Mi L, Zhang J, Wang L, Zhao Y, Liu X. The acute neurotoxicity of inorganic mercury in Mactra chinensis philippi. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106896. [PMID: 38490093 DOI: 10.1016/j.aquatox.2024.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Inorganic mercury (IHg) is hazardous to marine organisms especially resulting in neurotoxicity, bivalves are sensitive to pollutants as "ocean sentinel", but data on the neurotoxicity of IHg in bivalves are sparse. So we chosed M. chinensis philippi with typical neural structures in bivalves to investigate the neurotoxicity of IHg, which could be helpful to understand the specificity of neural regulation and the response characteristics of bivalves. After acute exposed to IHg (HgCl2) for 24 h, the metabolites of ganglion tissues in M. chinensis philippi were evaluated using 1H-nuclear magnetic resonance based metabolomics; Ca2+, neurotransmitters (nitric oxide, glutamate, acetylcholine) and related enzymes (calcineurin, nitric oxide synthase and acetylcholinesterase) were measured using biochemical detection. Compared to the control group, the levels of the nitric oxide (81.04 ± 12.84 μmol/g prot) and acetylcholine (30.93 ± 12.57 μg/mg prot) in M. chinensis philippi of IHg-treated were decreased, while glutamate (2.11 ± 0.61 mmol/L) increased significantly; the activity of nitric oxide synthase (679.34 ± 135.33 U/mg prot) was increased, while acetylcholinesterase (1.39 ± 0.44 U/mg prot) decreased significantly, and the activity of calcineurin (0.52 ± 0.02 U/mg prot) had a statistically insignificant increasing tendency. The concentration of Ca2+ (0.92 ± 0.46 mmol/g prot) in the IHg-treated group was significantly higher than that in the control group. OPLS-DA was performed to reveal the difference in metabolites between the control and IHg-challenged groups, the metabolites of glucose, glutamine, inosine, succinate, glutamate, homarine, and alanine were sensitive to IHg, subsequently metabolic pathways that were affected including glucose metabolism, glutamine metabolism, nucleotide metabolism, Krebs cycle, amino acid metabolism and osmotic regulation. In our study, IHg interfered with metabolites in M. chinensis philippi, thus the corresponding metabolic pathways were changed, which influenced the neurotransmitters subsequently. Furthermore, Ca2+overload affected the synthesis or degradation of the neurotransmitters, and then the altered neurotransmitters involved in changes in metabolic pathways again. Overall, we hypothesized that the neurotoxic effects of IHg on bivalve were in close contact with metabolism, neurotransmitters, related enzymes and Ca2+, which could be effective neurotoxic biomarkers for marine environmental quality assessment, and also provide effective data for the study of the regulatory mechanism of the nervous system in response to IHg in bivalves.
Collapse
Affiliation(s)
- Bangguo Ma
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Xiaoli Zhao
- Center for Reproductive Medicine, Yantai Yuhuangding Hospital, Yantai 264000, PR China
| | - Xiaoning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| | - Bowen Yang
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Zimin Cai
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Zihan Xing
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Mingzhe Xu
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Liuya Mi
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | | | - Lei Wang
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Yancui Zhao
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Xiaoli Liu
- School of Life Sciences, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
5
|
Yoshikawa N, Yoshitomi N, Nakada K, Sawada N. Distribution and role of d-glutamate, a novel d-amino acid identified in animals, in the reproductive tissues of male kuruma prawn Marsupenaeus japonicus. J Biochem 2023; 175:95-100. [PMID: 37787512 DOI: 10.1093/jb/mvad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
Some aquatic invertebrates contain free d-alanine. We previously showed copious amounts of free d-glutamate, a novel d-amino acid, in the tissue of the male reproductive organs of Marsupenaeus japonicus. Herein, we clarified the distribution and potential role of d-glutamate and d-alanine in male reproductive tissues, namely the testis, vas deferens and seminal receptacle at different growth stages of M. japonicus. The percentage of d-glutamate to total glutamate was over 50% in these tissues. In particular, the content of d-glutamate was the most abundant in the vas deferens, the ratio of d-glutamate to total glutamate was approximately 80%. In contrast, d-alanine content was the lowest in the vas deferens among these tissues. d-Glutamate content was the highest when the prawn weighed 12 g, indicating that d-glutamate is actively synthesized in the younger stage. Our findings suggest that d-glutamate plays an important role in the reproductive functions of M. japonicus.
Collapse
Affiliation(s)
- Naoko Yoshikawa
- Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, Fukuroi, Shizuoka 437-8555, Japan
| | - Natsuki Yoshitomi
- Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, Fukuroi, Shizuoka 437-8555, Japan
| | - Kazuki Nakada
- Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, Fukuroi, Shizuoka 437-8555, Japan
| | - Naomi Sawada
- Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, Fukuroi, Shizuoka 437-8555, Japan
| |
Collapse
|
6
|
Du S, Wey M, Armstrong DW. d-Amino acids in biological systems. Chirality 2023; 35:508-534. [PMID: 37074214 DOI: 10.1002/chir.23562] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/20/2023]
Abstract
Investigations on the occurrence and biochemical roles of free D-amino acids and D-amino acid-containing peptides and proteins in living systems have increased in frequency and significance. Their occurrence and roles may vary substantially with progression from microbiotic to evermore advanced macrobiotic systems. We now understand many of the biosynthetic and regulatory pathways, which are outlined herein. Important uses for D-amino acids in plants, invertebrates, and vertebrates are reviewed. Given its importance, a separate section on the occurrence and role of D-amino acids in human disease is presented.
Collapse
Affiliation(s)
- Siqi Du
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Michael Wey
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
7
|
Huo D, Zhang L, Yang H, Sun L. Adaptation to hypoxic stress involves amino acid metabolism: A case in sea cucumber. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121766. [PMID: 37142211 DOI: 10.1016/j.envpol.2023.121766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Low dissolved oxygen (LO) in seawater negatively affects aquatic animals and has received considerable attention. However, there is still much to learn about how echinoderms, which are keystone species in benthic ecosystems, respond to hypoxic stress. Here, we detected differentially expressed metabolites (DEMs) in sea cucumber (Apositchopus japonicus) between normoxic conditions (NC group) and hypoxic conditions (2 mg L-1) for 3 and 7 days (i.e., LO3 and LO7 groups). A total of 156, 180, and 95 DEMs were found in the NC versus LO3, NC vs. LO7, and LO3 vs. LO7 comparisons, respectively. Amino acids were the most abundant class of DEMs, and "biosynthesis of amino acids" was an enriched pathway in all three comparisons. Most of the enriched metabolite sets under hypoxic stress were related to metabolism. As the duration of the hypoxia treatment extended, the metabolism-related process maintained an upward trend, and signaling pathways maintained a downward trend. Thus, metabolism-related processes are affected in hypoxia-stressed sea cucumber, and amino acid metabolism is the most important process for adaption to hypoxic conditions, potentially function in osmotic regulation and energy regulation. Our results shed light on the adaptative strategies of sea cucumber to challenging environmental conditions.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China.
| |
Collapse
|
8
|
Camacho C, Correia T, Teixeira B, Mendes R, Valente LM, Pessoa MF, Nunes ML, Gonçalves A. Nucleotides and free amino acids in sea urchin Paracentrotus lividus gonads: Contributions for freshness and overall taste. Food Chem 2023; 404:134505. [DOI: 10.1016/j.foodchem.2022.134505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
|
9
|
Su H, Li Y, Ma D, Fan J, Zhong Z, Zhu H. Metabolism responses in the intestine of Oreochromis mossambicus exposed to salinity, alkalinity and salt-alkalinity stress using LC-MS/MS-based metabolomics. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101044. [PMID: 36495832 DOI: 10.1016/j.cbd.2022.101044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Multiple abiotic stresses are imposed on fish as a result of unprecedented changes in temperature and precipitation patterns in recent decades. It is unclear how teleosts respond to severe ambient salinity, alkalinity, and saline-alkalinity in terms of their metabolic and molecular osmoregulation processes. The metabolic reactions in the intestine of Oreochromis mossambicus under salinity (25 g/L, S_C), alkalinity (4 g/L, A_C), and saline-alkalinity (salinity: 25 g/L & alkalinity: 4 g/L, SA_C) stresses were examined in this research utilizing LC-MS/MS-based metabolomics. The findings demonstrated that the three osmotic-stressed groups' metabolic profiles were considerably different from those of the control group. Osmolytes, energy sources, free amino acids, and several intermediate metabolites were all synthetically adjusted as part of the osmoregulation associated with the salinity, alkalinity, and saline-alkalinity stress. Following osmotic stress, osmoregulation-related pathways, including the mTOR signaling pathway, TCA cycle, glycolysis/gluconeogenesis, etc., were also discovered in the intestine of O. mossambicus. Overall, our findings can assist in better comprehending the molecular regulatory mechanism in euryhaline fish under various osmotic pressures and can offer a preliminary profile of osmotic regulation.
Collapse
Affiliation(s)
- Huanhuan Su
- Shanghai Ocean University, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Yaya Li
- Shanghai Ocean University, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Dongmei Ma
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Jiajia Fan
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Zaixuan Zhong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Huaping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China.
| |
Collapse
|
10
|
Qiu X, Gu Y, Du G, Zhang J, Xu P, Li J. Conferring thermotolerant phenotype to wild-type Yarrowia lipolytica improves cell growth and erythritol production. Biotechnol Bioeng 2021; 118:3117-3127. [PMID: 34009652 DOI: 10.1002/bit.27835] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/22/2021] [Accepted: 05/09/2021] [Indexed: 12/19/2022]
Abstract
In microbial engineering, heat stress is an important environmental factor modulating cell growth, metabolic flux distribution and the synthesis of target products. Yarrowia lipolytica, as a GARS (generally recognized as safe) nonconventional yeast, has been widely used in the food industry, especially as the host of erythritol production. Biomanufacturing economics is limited by the high operational cost of cooling energy in large-scale fermentation. It is of great significance to select thermotolerant Y. lipolytica to reduce the cooling cost and elucidate the heat-resistant mechanism at molecular level. For this purpose, we performed adaptive evolution and obtained a thermotolerant strain named Y. lipolytica BBE-18. Transcriptome analysis allows us to identify four genes in thiamine metabolism pathway that are responsible for the complicated thermotolerant phenotype. The heat-resistant phenotype was validated with the model strain Y. lipolytica Po1f by overexpression of single and combined genes. Then, conferring the thermotolerant phenotype to the wild-type Y. lipolytica BBE-17 enable the strain to produce three-times more erythritol of the control strain with 3°C higher than optimal cultivation temperature. To our knowledge, this is the first report on engineering heat-resistant phenotype to improve the erythritol production in Y. lipolytica. However, due to the increase of culture temperature, a large amount of adenosine triphosphate is consumed to ensure the life activities of Y. lipolytica which limits the potential of cell synthetic products to a certain extent. Even so, this study provides a reference for Y. lipolytica to produce other products under high temperature.
Collapse
Affiliation(s)
- Xueliang Qiu
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yang Gu
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Juan Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Peng Xu
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Jianghua Li
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
11
|
Differences in the fecal microbiota due to the sexual niche segregation of captive Gentoo penguins Pygoscelis papua. Polar Biol 2021. [DOI: 10.1007/s00300-021-02812-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Li Y, Niu D, Wu Y, Dong Z, Li J. Integrated analysis of transcriptomic and metabolomic data to evaluate responses to hypersalinity stress in the gill of the razor clam (Sinonovacula constricta). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100793. [PMID: 33513539 DOI: 10.1016/j.cbd.2021.100793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/01/2023]
Abstract
Salinity is an important ecological factor that affects physiological metabolism, survival, and distribution of marine organisms. Despite changes in the osmolarity and composition of the cytosol during salinity shifts, marine mollusks are able to maintain their metabolic function. The razor clam (Sinonovacula constricta) survives the wide range of salinity in the intertidal zone via changes in behavior and physiology. To explore the stress responses and mechanisms of salinity tolerance in razor clams, we collected transcriptomic and metabolomic data from a control group (salinity 20‰, S20) and a salinity-stress group (salinity 35‰, S35). The transcriptome data showed that genes related to the immune system, cytoskeleton remodeling, and signal transduction pathways dominated in the S35 group to counteract hypersalinity stress in the gill. The metabolomic analysis showed that 142 metabolites were significantly different between the S35 and S20 groups and that amino acid and carbohydrate metabolism were affected by hypersalinity stress. Levels of amino acids and energy substances, such as l-proline, isoleucine, and fructose, were higher in the gill of the S35 group. The combination of transcriptomic and metabolomic data indicated that metabolism of amino acids, carbohydrates, and lipids was enhanced in the gill during adaptation to high salinity. These results clarified the complex physiological processes involved in the response to hyperosmotic stress and maintenance of metabolism in the gill of razor clams. These findings provide a reference for further study of the biological responses of euryhaline shellfish to hyperosmotic stress and a molecular basis for the search for populations with high salinity tolerance.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| | - Yinghan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiguo Dong
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China.
| |
Collapse
|
13
|
Oberbauer AM, Larsen JA. Amino Acids in Dog Nutrition and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:199-216. [PMID: 33770408 DOI: 10.1007/978-3-030-54462-1_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The dog has assumed a prominent role in human society. Associated with that status, diet choices for companion dogs have begun to reflect the personal preferences of the owners, with greater emphasis on specialty diets such as organic, vegan/vegetarian, and omission or inclusion of specific ingredients. Despite consumer preferences and many marketing strategies employed, the diets must ensure nutritional adequacy for the dog; if not, health becomes compromised, sometimes severely. The most frequent consideration of consumers and dog food manufacturers is protein source and concentration with a growing emphasis on amino acid composition and bioavailability. Amino acids in general play diverse and critical roles in the dog, with specific amino acids being essential. This review covers what is known regarding amino acids in dog nutrition.
Collapse
Affiliation(s)
- Anita M Oberbauer
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, USA.
| | - Jennifer A Larsen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
14
|
Chinopoulos C. From Glucose to Lactate and Transiting Intermediates Through Mitochondria, Bypassing Pyruvate Kinase: Considerations for Cells Exhibiting Dimeric PKM2 or Otherwise Inhibited Kinase Activity. Front Physiol 2020; 11:543564. [PMID: 33335484 PMCID: PMC7736077 DOI: 10.3389/fphys.2020.543564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
A metabolic hallmark of many cancers is the increase in glucose consumption coupled to excessive lactate production. Mindful that L-lactate originates only from pyruvate, the question arises as to how can this be sustained in those tissues where pyruvate kinase activity is reduced due to dimerization of PKM2 isoform or inhibited by oxidative/nitrosative stress, posttranslational modifications or mutations, all widely reported findings in the very same cells. Hereby 17 pathways connecting glucose to lactate bypassing pyruvate kinase are reviewed, some of which transit through the mitochondrial matrix. An additional 69 converging pathways leading to pyruvate and lactate, but not commencing from glucose, are also examined. The minor production of pyruvate and lactate by glutaminolysis is scrutinized separately. The present review aims to highlight the ways through which L-lactate can still be produced from pyruvate using carbon atoms originating from glucose or other substrates in cells with kinetically impaired pyruvate kinase and underscore the importance of mitochondria in cancer metabolism irrespective of oxidative phosphorylation.
Collapse
|
15
|
Lee CJ, Qiu TA, Sweedler JV. d-Alanine: Distribution, origin, physiological relevance, and implications in disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140482. [DOI: 10.1016/j.bbapap.2020.140482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023]
|
16
|
Chahkandi B, Chahkandi M. A reconnaissance DFT study of the full conformational analysis of N-formyl-L-serine-L-alanine-NH 2 dipeptide. J Mol Model 2020; 26:151. [PMID: 32447525 DOI: 10.1007/s00894-020-04382-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022]
Abstract
Theoretical conformational analysis of N-formyl-L-serine-L-alanine-NH2 dipeptide model was investigated using B3LYP/6-311+G(d,p) and M06-2X/6-311+G(d,p) calculations. In this research, 243 total possible conformations of the dipeptide model were optimized including 87 stable conformers and the other disappeared ones migrated to more stable geometries. Migration pattern suggests more stability of the dipeptide model with the serine (ser) in βL, γL, and γD and the alanine (ala) in γD and γL configurations, along with 26 of the found conformers having β-turn structures. Our calculations reveal that the most stable conformer, γL+γD, is in β-turn region of Ramachandran map; therefore, serine-alanine (ser-ala) dipeptide model should be adopted with a β-turn conformation. The atoms in molecules (AIM) topological analysis was carried out to characterize the nature of the intramolecular hydrogen bonding in β-turn structures. The γL+γD, including three hydrogen bonds, has the highest stability, while αLaγL as the most unstable β-turn conformer bears two and one hydrogen bonds at the B3LYP/6-311+G(d,p) and M06-2X/6-311+G(d,p) levels of theory, respectively. Graphical abstract.
Collapse
Affiliation(s)
- Behzad Chahkandi
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| | - Mohammad Chahkandi
- Department of Chemistry, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran
| |
Collapse
|
17
|
Shibata K, Sugaya N, Kuboki Y, Matsuda H, Abe K, Takahashi S, Kera Y. Aspartate racemase and d-aspartate in starfish; possible involvement in testicular maturation. Biosci Biotechnol Biochem 2020; 84:95-102. [DOI: 10.1080/09168451.2019.1660614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ABSTRACT
d-Aspartate, aspartate racemase activity, and d-aspartate oxidase activity were detected in tissues from several types of starfish. Aspartate racemase activity in male testes of Patiria pectinifera was significantly elevated in the summer months of the breeding season compared with spring months. We also compared aspartate racemase activity with the gonad index and found that activity in individuals with a gonad index ≥6% was four-fold higher than that of individuals with a gonad index <6%. The ratio of the D-form of aspartate to total aspartate was approximately 25% in testes with a gonad index <6% and this increased to approximately 40% in testes with a gonad index ≥6%. However, such changes were not observed in female ovaries. Administration of d-aspartate into male starfish caused testicular growth. These results indicate the possible involvement of aspartate racemase and d-aspartate in testicular maturation in echinoderm starfish.
Collapse
Affiliation(s)
- Kimihiko Shibata
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Noriko Sugaya
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Yuko Kuboki
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Hiroko Matsuda
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Katsumasa Abe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
18
|
Kovacevic V, Simpson AJ, Simpson MJ. Metabolic profiling of Daphnia magna exposure to a mixture of hydrophobic organic contaminants in the presence of dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1252-1262. [PMID: 31726555 DOI: 10.1016/j.scitotenv.2019.06.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
The hydrophobic organic contaminants triclosan, triphenyl phosphate (TPhP) and diazinon sorb to dissolved organic matter (DOM) and this may alter their bioavailability and toxicity. 1H nuclear magnetic resonance (NMR)-based metabolomics was used to investigate how DOM at 1 and 5 mg organic carbon/L may alter the metabolome of Daphnia magna from exposure to equitoxic mixtures of triclosan, TPhP and diazinon. These contaminants have different modes of action toward D. magna. The contaminant concentrations in each mixture were an equal percentage of their lethal concentration to 50% of the population (LC50) values, which equates to 1250 μg/L TPhP, 330 μg/L triclosan and 0.9 μg/L diazinon. The ternary mixture exposure at 1% LC50 values did not alter the D. magna metabolome. Contaminant mixture exposures at 5%, 10%, and 15% LC50 values decreased glucose, serine and glycine concentrations and increased asparagine and threonine concentrations, suggesting disruptions in energy metabolism. The contaminant mixture had a unique mode of action in D. magna and DOM at 1 and 5 mg organic carbon/L did not change this mode of action. The estimated sorption of triclosan, TPhP or diazinon to DOM at 1 or 5 mg organic carbon/L in this experimental design was calculated to be <50% for each contaminant. This suggests that the mode of action of the contaminant mixture was not altered by DOM because the two environmentally relevant concentrations of DOM may have not substantially altered contaminant bioavailability. Our results indicate that DOM may not inevitably mitigate or alter the sub-lethal toxicity of a mixture of hydrophobic organic contaminants. This indicates the complexity of predicting the molecular-level toxicity of environmental mixtures. For adequate risk assessment of freshwater ecosystems, it is vital to account for the combined sub-lethal toxicity of an environmental mixture of contaminants.
Collapse
Affiliation(s)
- Vera Kovacevic
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - André J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
19
|
Kuncha SK, Kruparani SP, Sankaranarayanan R. Chiral checkpoints during protein biosynthesis. J Biol Chem 2019; 294:16535-16548. [PMID: 31591268 DOI: 10.1074/jbc.rev119.008166] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein chains contain only l-amino acids, with the exception of the achiral glycine, making the chains homochiral. This homochirality is a prerequisite for proper protein folding and, hence, normal cellular function. The importance of d-amino acids as a component of the bacterial cell wall and their roles in neurotransmission in higher eukaryotes are well-established. However, the wider presence and the corresponding physiological roles of these specific amino acid stereoisomers have been appreciated only recently. Therefore, it is expected that enantiomeric fidelity has to be a key component of all of the steps in translation. Cells employ various molecular mechanisms for keeping d-amino acids away from the synthesis of nascent polypeptide chains. The major factors involved in this exclusion are aminoacyl-tRNA synthetases (aaRSs), elongation factor thermo-unstable (EF-Tu), the ribosome, and d-aminoacyl-tRNA deacylase (DTD). aaRS, EF-Tu, and the ribosome act as "chiral checkpoints" by preferentially binding to l-amino acids or l-aminoacyl-tRNAs, thereby excluding d-amino acids. Interestingly, DTD, which is conserved across all life forms, performs "chiral proofreading," as it removes d-amino acids erroneously added to tRNA. Here, we comprehensively review d-amino acids with respect to their occurrence and physiological roles, implications for chiral checkpoints required for translation fidelity, and potential use in synthetic biology.
Collapse
Affiliation(s)
- Santosh Kumar Kuncha
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India.,Academy of Scientific and Innovative Research, CSIR-CCMB Campus, Hyderabad, Telangana 500007, India
| | - Shobha P Kruparani
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| | - Rajan Sankaranarayanan
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| |
Collapse
|
20
|
Bernatchez S, Xuereb A, Laporte M, Benestan L, Steeves R, Laflamme M, Bernatchez L, Mallet MA. Seascape genomics of eastern oyster ( Crassostrea virginica) along the Atlantic coast of Canada. Evol Appl 2019; 12:587-609. [PMID: 30828376 PMCID: PMC6383708 DOI: 10.1111/eva.12741] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
Interactions between environmental factors and complex life-history characteristics of marine organisms produce the genetic diversity and structure observed within species. Our main goal was to test for genetic differentiation among eastern oyster populations from the coastal region of Canadian Maritimes against expected genetic homogeneity caused by historical events, taking into account spatial and environmental (temperature, salinity, turbidity) variation. This was achieved by genotyping 486 individuals originating from 13 locations using RADSeq. A total of 11,321 filtered SNPs were used in a combination of population genomics and environmental association analyses. We revealed significant neutral genetic differentiation (mean F ST = 0.009) between sampling locations, and the occurrence of six major genetic clusters within the studied system. Redundancy analyses (RDAs) revealed that spatial and environmental variables explained 3.1% and 4.9% of the neutral genetic variation and 38.6% and 12.2% of the putatively adaptive genetic variation, respectively. These results indicate that these environmental factors play a role in the distribution of both neutral and putatively adaptive genetic diversity in the system. Moreover, polygenic selection was suggested by genotype-environment association analysis and significant correlations between additive polygenic scores and temperature and salinity. We discuss our results in the context of their conservation and management implications for the eastern oyster.
Collapse
Affiliation(s)
- Simon Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Fisheries and Oceans CanadaMonctonNew BrunswickCanada
- L’Étang Ruisseau Bar Ltd.ShippaganNew BrunswickCanada
| | - Amanda Xuereb
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Laura Benestan
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Royce Steeves
- Fisheries and Oceans CanadaMonctonNew BrunswickCanada
| | - Mark Laflamme
- Fisheries and Oceans CanadaMonctonNew BrunswickCanada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | | |
Collapse
|
21
|
Jiang W, Tian X, Fang Z, Li L, Dong S, Li H, Zhao K. Metabolic responses in the gills of tongue sole (Cynoglossus semilaevis) exposed to salinity stress using NMR-based metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:465-474. [PMID: 30412891 DOI: 10.1016/j.scitotenv.2018.10.404] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
Salinity is an important environmental factor affecting fish physiology. Tongue sole (Cynoglossus semilaevis) is a euryhaline species that can survive in a wide range of salinity, and might be used as a promising model animal for environmental science. In this study, by using the nuclear magnetic resonance (1H NMR)-based metabolomics, amino acids analysis and real-time quantitative PCR assay, we investigated the metabolic responses in the gills and plasma of tongue sole subjected to hypo- (0 ppt, S0) and hyper-osmotic stress (50 ppt, S50) from isosmotic environment (30 ppt, S30). The results showed that the metabolic profiles of S50 were significantly different from those of S0 and S30 groups, and a clear overlap was found between the latter two groups. Ten metabolites were significantly different between the salt stress groups and the isosmotic group. Taurine and creatine elevated in both S0 and S50 groups. Choline decreased in S50 group while increased in S0 group. Amino acids and energy compounds were higher in the gills of S50 group. The metabolic network showed that ten metabolic pathways were all found in S50 group, while seven pathways were observed in S0 group. Meanwhile, the transcript levels of the Tau-T and ATP synthase in the gills increased with increasing salinity. Aspartate and methionine exhibited significant differences in the plasma among the groups, but did not show differences in the gills. Comparatively, glutamate exhibited significant differences both in the plasma and the gills. Overall, these findings provide a preliminary profile of osmotic regulation in euryhaline fish.
Collapse
Affiliation(s)
- Wenwen Jiang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| | - Xiangli Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266100, People's Republic of China.
| | - Ziheng Fang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| | - Li Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266100, People's Republic of China
| | - Shuanglin Dong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266100, People's Republic of China
| | - Haidong Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| | - Kun Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| |
Collapse
|
22
|
Jones RM, Popham DL, Schmidt AL, Neidle EL, Stabb EV. Vibrio fischeri DarR Directs Responses to d-Aspartate and Represents a Group of Similar LysR-Type Transcriptional Regulators. J Bacteriol 2018; 200:e00773-17. [PMID: 29437849 PMCID: PMC6040199 DOI: 10.1128/jb.00773-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/24/2018] [Indexed: 01/11/2023] Open
Abstract
Mounting evidence suggests that d-amino acids play previously underappreciated roles in diverse organisms. In bacteria, even d-amino acids that are absent from canonical peptidoglycan (PG) may act as growth substrates, as signals, or in other functions. Given these proposed roles and the ubiquity of d-amino acids, the paucity of known d-amino-acid-responsive transcriptional control mechanisms in bacteria suggests that such regulation awaits discovery. We found that DarR, a LysR-type transcriptional regulator (LTTR), activates transcription in response to d-Asp. The d-Glu auxotrophy of a Vibrio fischerimurI::Tn mutant was suppressed, with the wild-type PG structure maintained, by a point mutation in darR This darR mutation resulted in the overexpression of an adjacent operon encoding a putative aspartate racemase, RacD, which compensated for the loss of the glutamate racemase encoded by murI Using transcriptional reporters, we found that wild-type DarR activated racD transcription in response to exogenous d-Asp but not upon the addition of l-Asp, l-Glu, or d-Glu. A DNA sequence typical of LTTR-binding sites was identified between darR and the divergently oriented racD operon, and scrambling this sequence eliminated activation of the reporter in response to d-Asp. In several proteobacteria, genes encoding LTTRs similar to DarR are linked to genes with predicted roles in d- and/or l-Asp metabolism. To test the functional similarities in another bacterium, darR and racD mutants were also generated in Acinetobacter baylyi In V. fischeri and A. baylyi, growth on d-Asp required the presence of both darR and racD Our results suggest that multiple bacteria have the ability to sense and respond to d-Asp.IMPORTANCE d-Amino acids are prevalent in the environment and are generated by organisms from all domains of life. Although some biological roles for d-amino acids are understood, in other cases, their functions remain uncertain. Given the ubiquity of d-amino acids, it seems likely that bacteria will initiate transcriptional responses to them. Elucidating d-amino acid-responsive regulators along with the genes they control will help uncover bacterial uses of d-amino acids. Here, we report the discovery of DarR, a novel LTTR in V. fischeri that mediates a transcriptional response to environmental d-Asp and underpins the catabolism of d-Asp. DarR represents the founding member of a group of bacterial homologs that we hypothesize control aspects of aspartate metabolism in response to d-Asp and/or to d-Asp-containing peptides.
Collapse
Affiliation(s)
- Richard M Jones
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - David L Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Alicia L Schmidt
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
23
|
Kawakami R, Ohshida T, Sakuraba H, Ohshima T. A Novel PLP-Dependent Alanine/Serine Racemase From the Hyperthermophilic Archaeon Pyrococcus horikoshii OT-3. Front Microbiol 2018; 9:1481. [PMID: 30038603 PMCID: PMC6047364 DOI: 10.3389/fmicb.2018.01481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/13/2018] [Indexed: 01/05/2023] Open
Abstract
We recently identified and characterized a novel broad substrate specificity amino acid racemase (BAR) from the hyperthermophilic archaeon Pyrococcus horikoshii OT-3. Three genes, PH0782, PH1423, and PH1501, encoding homologs exhibiting about 45% sequence identity with BAR were present in the P. horikoshii genome. In this study, we detected pyridoxal 5′-phosphate (PLP)-dependent amino acid racemase activity in the protein encoded by PH0782. The enzyme showed activity toward Ala, Ser, Thr, and Val, but the catalytic efficiency with Thr or Val was much lower than with Ala or Ser. The enzyme was therefore designated Ala/Ser racemase (ASR). Like BAR, ASR was highly stable at high temperatures and over a wide range of pHs, though its hexameric structure differed from the dimeric structure of BAR. No activity was detected in K291A or D234A ASR mutants. This suggests that, as in Ile 2-epimerase (ILEP) from Lactobacillus buchneri JCM1115, these residues are involved in Schiff base formation and substrate interaction, respectively. Unlike BAR, enhanced ASR activity was not detected in P. horikoshii cells cultivated in the presence of D-Ala or D-Ser. This is the first description of a PLP-dependent fold type I ASR in archaea.
Collapse
Affiliation(s)
- Ryushi Kawakami
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Tatsuya Ohshida
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, Osaka, Japan
| |
Collapse
|
24
|
Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology. Keio J Med 2018; 68:1-16. [PMID: 29794368 DOI: 10.2302/kjm.2018-0001-ir] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Living organisms enantioselectively employ L-amino acids as the molecular architecture of protein synthesized in the ribosome. Although L-amino acids are dominantly utilized in most biological processes, accumulating evidence points to the distinctive roles of D-amino acids in non-ribosomal physiology. Among the three domains of life, bacteria have the greatest capacity to produce a wide variety of D-amino acids. In contrast, archaea and eukaryotes are thought generally to synthesize only two kinds of D-amino acids: D-serine and D-aspartate. In mammals, D-serine is critical for neurotransmission as an endogenous coagonist of N-methyl D-aspartate receptors. Additionally, D-aspartate is associated with neurogenesis and endocrine systems. Furthermore, recognition of D-amino acids originating in bacteria is linked to systemic and mucosal innate immunity. Among the roles played by D-amino acids in human pathology, the dysfunction of neurotransmission mediated by D-serine is implicated in psychiatric and neurological disorders. Non-enzymatic conversion of L-aspartate or L-serine residues to their D-configurations is involved in age-associated protein degeneration. Moreover, the measurement of plasma or urinary D-/L-serine or D-/L-aspartate levels may have diagnostic or prognostic value in the treatment of kidney diseases. This review aims to summarize current understanding of D-amino-acid-associated biology with a major focus on mammalian physiology and pathology.
Collapse
|
25
|
Kovacevic V, Simpson AJ, Simpson MJ. Investigation of Daphnia magna Sub-Lethal Exposure to Organophosphate Esters in the Presence of Dissolved Organic Matter Using ¹H NMR-Based Metabolomics. Metabolites 2018; 8:metabo8020034. [PMID: 29783758 PMCID: PMC6027453 DOI: 10.3390/metabo8020034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Organophosphate esters (OPEs) are frequently detected in aquatic environments. Hydrophobic OPEs with high octanol-water partition coefficients (Log KOW) will likely sorb to dissolved organic matter (DOM) and consequently alter OPE bioavailability and sub-lethal toxicity. 1H nuclear magnetic resonance (NMR)-based metabolomics was used to evaluate how DOM (5 mg organic carbon/L) alters the metabolic response of Daphnia magna exposed to sub-lethal concentrations of three individual OPEs with varying hydrophobicity. D. magna exposed to the hydrophilic contaminant (Log KOW = 1.43) tris(2-chloroethyl) phosphate (TCEP) did not have substantial metabolic changes and DOM did not alter the metabolic response. There were significant increases in amino acids and a decrease in glucose from exposure to the hydrophobic contaminant (Log KOW = 3.65) tris(2-butoxyethyl) phosphate (TBOEP) which DOM did not mitigate, likely due to the high sub-lethal toxicity of TBOEP. Exposure to DOM and the hydrophobic contaminant (Log KOW = 4.76) triphenyl phosphate (TPhP) resulted in a unique metabolic response which was unlike TPhP only exposure, perhaps because DOM may be an additional stressor with TPhP exposure. Therefore, Log KOW values may not always predict how sub-lethal contaminant toxicity will change with DOM and there should be more consideration to incorporate DOM in sub-lethal ecotoxicology testing.
Collapse
Affiliation(s)
- Vera Kovacevic
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - André J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
26
|
Zheng J, Lan X, Huang L, Zhang Y, Wang Z. Kinetic resolution of N-acetyl-DL-alanine methyl ester using immobilized Escherichia coli cells bearing recombinant esterase from Bacillus cereus. Chirality 2018; 30:907-912. [PMID: 29676476 DOI: 10.1002/chir.22863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/04/2018] [Accepted: 03/14/2018] [Indexed: 12/18/2022]
Abstract
D-alanine is widely used in medicine, food, additives, cosmetics, and other consumer items. Esterase derived from Bacillus cereus WZZ001 exhibits high hydrolytic activity and stereoselectivity. In this study, we expressed the esterase gene in Escherichia coli BL21 (DE3). We analyzed the biocatalytic resolution of N-acetyl-DL-alanine methyl ester by immobilized whole E. coli BL21 (DE3) cells, which were prepared through embedding and cross-linking. We analyzed biocatalytic resolution under the optimal conditions of pH of 7.0, temperature of 40°C and substrate concentration of at 700 mM with an enantiomeric excess of 99.99% and e.e.p of 99.50%. The immobilized recombinant B. cereus esterase E. coli BL21 (DE3) cells exhibited excellent reusability and retained 86.04% of their initial activity after 15 cycles of repeated reactions. The immobilized cells are efficient and stable biocatalysts for the preparation of N-acetyl-D-alanine methyl esters.
Collapse
Affiliation(s)
- Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xing Lan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lijuan Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
27
|
Sanchís J, Llorca M, Olmos M, Schirinzi GF, Bosch-Orea C, Abad E, Barceló D, Farré M. Metabolic Responses of Mytilus galloprovincialis to Fullerenes in Mesocosm Exposure Experiments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1002-1013. [PMID: 29244952 DOI: 10.1021/acs.est.7b04089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, Mediterranean mussels (Mytilus galloprovincialis) were exposed through the diet to fullerene soot at three concentrations in parallel to a control group. Their metabolomics response was assessed by high-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS). The experiments were conducted in marine mesocosms, during 35 days (7 days of acclimatization, 21 days of exposure, and 7 days of depuration). Real conditions were emulated in terms of physicochemical conditions of the habitat. Results confirmed the bioaccumulation of fullerenes, and the metabolome of the exposed organisms revealed significant differences in the concentrations of seven free amino acids in comparison to the control group. An increase in small nonpolar amino acids (e.g., alanine) and branched chain amino acids (leucine and isoleucine) were observed. Also, glutamine concentrations decreased significantly, suggesting the activation of facultative anaerobic energy metabolism. Branched chain amino acids, such as leucine and isoleucine, followed the opposite trend after the highest level of exposure, which can imply hormesis effects. Other significant differences were observed on lipids content, such as the general increase of free fatty acids, i.e., long-chain fatty acids (lauric, myristic, and palmitic acids) when the concentration of exposure was increased. These results were consistent with hypoxia and oxidative stress.
Collapse
Affiliation(s)
- Josep Sanchís
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| | - Marta Llorca
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| | - Mar Olmos
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| | - Gabriella F Schirinzi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| | - Cristina Bosch-Orea
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| | - Esteban Abad
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
- Catalan Institute of Water Research (ICRA) , C/Emili Grahit 101, 17003 Girona, Catalonia, Spain
| | - Marinella Farré
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain
| |
Collapse
|
28
|
Duque E, Daddaoua A, Cordero BF, De la Torre J, Antonia Molina-Henares M, Ramos JL. Identification and elucidation of in vivo function of two alanine racemases from Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:581-588. [PMID: 28799718 DOI: 10.1111/1758-2229.12576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
The genome of Pseudomonas putida KT2440 contains two open reading frames (ORFs), PP_3722 and PP_5269, that encode proteins with a Pyridoxal phosphate binding motif and a high similarity to alanine racemases. Alanine racemases play a key role in the biosynthesis of D-alanine, a crucial amino acid in the peptidoglycan layer. For these ORFs, we generated single and double mutants and found that inactivation of PP_5269 resulted in D-alanine auxotrophy, while inactivation of PP_3722 did not. Furthermore, as expected, the PP_3722/PP_5269 double mutant was a strict auxotroph for D-alanine. These results indicate that PP_5269 is an alr allele and that it is the essential alanine racemase in P. putida. We observed that the PP_5269 mutant grew very slowly, while the double PP_5269/PP_3722 mutant did not grow at all. This suggests that PP_3722 may replace PP_5269 in vivo. In fact, when the ORF encoding PP_3772 was cloned into a wide host range expression vector, ORF PP_3722 successfully complemented P. putida PP_5269 mutants. We purified both proteins to homogeneity and while they exhibit similar KM values, the Vmax of PP_5269 is fourfold higher than that of PP_3722. Here, we propose that PP_5269 and PP_3722 encode functional alanine racemases and that these genes be named alr-1 and alr-2 respectively.
Collapse
Affiliation(s)
- Estrella Duque
- Department of Environmental Protection, CSIC-Estación Experimental del Zaidín, Granada, Spain
| | - Abdelali Daddaoua
- Department of Environmental Protection, CSIC-Estación Experimental del Zaidín, Granada, Spain
| | - Baldo F Cordero
- Department of Environmental Protection, CSIC-Estación Experimental del Zaidín, Granada, Spain
| | - Jesús De la Torre
- Department of Environmental Protection, CSIC-Estación Experimental del Zaidín, Granada, Spain
| | | | - Juan-Luis Ramos
- Department of Environmental Protection, CSIC-Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
29
|
Ito T, Yu Z, Yoshino I, Hirozawa Y, Yamamoto K, Shinoda K, Watanabe A, Hemmi H, Asada Y, Yoshimura T. Occurrence of the (2R,3S)-Isomer of 2-Amino-3,4-dihydroxybutanoic Acid in the Mushroom Hypsizygus marmoreus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6131-6139. [PMID: 28686838 DOI: 10.1021/acs.jafc.7b01893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, we report the occurrence of the (2R,3S)-isomer of 2-amino-3,4-dihydroxybutanoic acid (d-ADHB) in the fruiting body of an edible mushroom, Hypsizygus marmoreus. This is an unusual example of the accumulation of a d-amino acid whose enantiomer is not a proteinogenic amino acid. We show that d-ADHB occurs specifically in the mushroom H. marmoreus. Other edible mushrooms examined, including Pholiota microspora, Pleurotus eryngii, Mycena chlorophos, Sparassis crispa, Grifola frondosa, Pleurotus ostreatus, and Flammulina velutipes, do not contain detectable levels of d-ADHB. The concentration of d-ADHB in the fruiting body of H. marmoreus is relatively high (approximately 1.3 mg/g of fruiting body) and is comparable to the concentration of some of the most abundant free proteinogenic amino acids. Quantitative analysis of d-ADHB during fruiting body development demonstrated that the amino acid is synthesized during the fruiting body formation period. The absence of the putative precursors of d-ADHB, the (2S,3S)-isomer of ADHB and 2-oxo-tetronate, and the enzyme activities of d-ADHB racemase (2-epimerase) and transaminase suggested that d-ADHB is synthesized by a unique mechanism in this organism. Our data also suggested that the lack of or low expression of a d-ADHB degradation enzyme is a key determinant of d-ADHB accumulation in H. marmoreus.
Collapse
Affiliation(s)
- Tomokazu Ito
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University , Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Zhuoer Yu
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University , Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Issei Yoshino
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University , Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Yurina Hirozawa
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University , Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Kana Yamamoto
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University , Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| | | | - Akira Watanabe
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University , Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Hisashi Hemmi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University , Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Yasuhiko Asada
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University , Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Tohru Yoshimura
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University , Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
30
|
Triple serine loop region regulates the aspartate racemase activity of the serine/aspartate racemase family. Amino Acids 2017; 49:1743-1754. [PMID: 28744579 DOI: 10.1007/s00726-017-2472-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/20/2017] [Indexed: 02/02/2023]
Abstract
Recently, we cloned and characterized eleven serine and aspartate racemases (SerR and AspR, respectively) from animals. These SerRs and AspRs are not separated by their racemase functions and form a serine/aspartate racemase family cluster based on phylogenetic analysis. Moreover, we have proposed that the AspR-specific triple serine loop region at amino acid positions 150-152 may be responsible for the large AspR activity. In the present study, to test this hypothesis, we prepared and characterized fourteen mutants in this region of animal SerRs and AspRs. The large AspR activity in Acropora and Crassostrea AspR was reduced to <0.04% of wild-type after substitution of the triple serine loop region. Conversely, introducing the triple serine loop region into Acropora, Crassostrea, and Penaeus SerR drastically increased the AspR activity. Those mutants showed similar or higher substrate affinity for aspartate than serine and showed 11-683-fold higher k cat and 28-351-fold higher k cat/K m values for aspartate than serine racemization. Furthermore, we introduced serine residues in all combinations at position 150-152 in mouse SerR. These mutants revealed that a change in the enzyme function from SerR to AspR can be caused by introduction of Ser151 and Ser152, and addition of the third serine residue at position 150 further enhances the enzyme specificity for aspartate due to a decrease in the serine racemase and serine dehydratase activity. Here, we provide convincing evidence that the AspR gene has evolved from the SerR gene by acquisition of the triple serine loop region.
Collapse
|
31
|
An Expanded Transposon Mutant Library Reveals that Vibrio fischeri δ-Aminolevulinate Auxotrophs Can Colonize Euprymna scolopes. Appl Environ Microbiol 2017; 83:AEM.02470-16. [PMID: 28003196 DOI: 10.1128/aem.02470-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/14/2016] [Indexed: 11/20/2022] Open
Abstract
Libraries of defined mutants are valuable research tools but necessarily lack gene knockouts that are lethal under the conditions used in library construction. In this study, we augmented a Vibrio fischeri mutant library generated on a rich medium (LBS, which contains [per liter] 10 g of tryptone, 5 g of yeast extract, 20 g of NaCl, and 50 mM Tris [pH 7.5]) by selecting transposon insertion mutants on supplemented LBS and screening for those unable to grow on LBS. We isolated strains with insertions in alr, glr (murI), glmS, several heme biosynthesis genes, and ftsA, as well as a mutant disrupted 14 bp upstream of ftsQ Mutants with insertions in ftsA or upstream of ftsQ were recovered by addition of Mg2+ to LBS, but their cell morphology and motility were affected. The ftsA mutant was more strongly affected and formed cells or chains of cells that appeared to wind back on themselves helically. Growth of mutants with insertions in glmS, alr, or glr was recovered with N-acetylglucosamine (NAG), d-alanine, or d-glutamate, respectively. We hypothesized that NAG, d-alanine, or d-glutamate might be available to V. fischeri in the Euprymna scolopes light organ; however, none of these mutants colonized the host effectively. In contrast, hemA and hemL mutants, which are auxotrophic for δ-aminolevulinate (ALA), colonized at wild-type levels, although mutants later in the heme biosynthetic pathway were severely impaired or unable to colonize. Our findings parallel observations that legume hosts provide Bradyrhizobium symbionts with ALA, but they contrast with virulence phenotypes of hemA mutants in some pathogens. The results further inform our understanding of the symbiotic light organ environment.IMPORTANCE By supplementing a rich yeast-based medium, we were able to recover V. fischeri mutants with insertions in conditionally essential genes, and further characterization of these mutants provided new insights into this bacterium's symbiotic environment. Most notably, we show evidence that the squid host can provide V. fischeri with enough ALA to support its growth in the light organ, paralleling the finding that legumes provide Bradyrhizobium ALA in symbiotic nodules. Taken together, our results show how a simple method of augmenting already rich media can expand the reach and utility of defined mutant libraries.
Collapse
|
32
|
Naranjo-Ortíz MA, Brock M, Brunke S, Hube B, Marcet-Houben M, Gabaldón T. Widespread Inter- and Intra-Domain Horizontal Gene Transfer of d-Amino Acid Metabolism Enzymes in Eukaryotes. Front Microbiol 2016; 7:2001. [PMID: 28066338 PMCID: PMC5169069 DOI: 10.3389/fmicb.2016.02001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/29/2016] [Indexed: 01/22/2023] Open
Abstract
Analysis of the growing number of available fully-sequenced genomes has shown that Horizontal Gene Transfer (HGT) in eukaryotes is more common than previously thought. It has been proposed that genes with certain functions may be more prone to HGT than others, but we still have a very poor understanding of the selective forces driving eukaryotic HGT. Recent work uncovered that d-amino acid racemases have been commonly transferred from bacteria to fungi, but their role in the receiving organisms is currently unknown. Here, we set out to assess whether d-amino acid racemases are commonly transferred to and between eukaryotic groups. For this we performed a global survey that used a novel automated phylogeny-based HGT-detection algorithm (Abaccus). Our results revealed that at least 7.0% of the total eukaryotic racemase repertoire is the result of inter- or intra-domain HGT. These transfers are significantly enriched in plant-associated fungi. For these, we hypothesize a possible role for the acquired racemases allowing to exploit minoritary nitrogen sources in plant biomass, a nitrogen-poor environment. Finally, we performed experiments on a transferred aspartate-glutamate racemase in the fungal human pathogen Candida glabrata, which however revealed no obvious biological role.
Collapse
Affiliation(s)
- Miguel A Naranjo-Ortíz
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain
| | - Matthias Brock
- Fungal Genetics and Biology Group, School of Life Sciences, University of Nottingham Nottingham, UK
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute Jena Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute JenaJena, Germany; Friedrich Schiller UniversityJena, Germany; Center for Sepsis Control and Care, University HospitalJena, Germany
| | - Marina Marcet-Houben
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelona, Spain; Universitat Pompeu FabraBarcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain
| |
Collapse
|
33
|
Kim AR, Alam MJ, Yoon TH, Lee SR, Park H, Kim DN, An DH, Lee JB, Lee CI, Kim HW. Molecular characterization of an adiponectin receptor homolog in the white leg shrimp, Litopenaeus vannamei. PeerJ 2016; 4:e2221. [PMID: 27478708 PMCID: PMC4950565 DOI: 10.7717/peerj.2221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/15/2016] [Indexed: 12/02/2022] Open
Abstract
Adiponectin (AdipoQ) and its receptors (AdipoRs) are strongly related to growth and development of skeletal muscle, as well as glucose and lipid metabolism in vertebrates. Herein we report the identification of the first full-length cDNA encoding an AdipoR homolog (Liv-AdipoR) from the decapod crustacean Litopenaeus vannamei using a combination of next generation sequencing (NGS) technology and bioinformatics analysis. The full-length Liv-AdipoR (1,245 bp) encoded a protein that exhibited the canonical seven transmembrane domains (7TMs) and the inversed topology that characterize members of the progestin and adipoQ receptor (PAQR) family. Based on the obtained sequence information, only a single orthologous AdipoR gene appears to exist in arthropods, whereas two paralogs, AdipoR1 and AdipoR2, have evolved in vertebrates. Transcriptional analysis suggested that the single Liv-AdipoR gene appears to serve the functions of two mammalian AdipoRs. At 72 h after injection of 50 pmol Liv-AdipoR dsRNA (340 bp) into L. vannamei thoracic muscle and deep abdominal muscle, transcription levels of Liv-AdipoR decreased by 93% and 97%, respectively. This confirmed optimal conditions for RNAi of Liv-AdipoR. Knockdown of Liv-AdipoR resulted in significant changes in the plasma levels of ammonia, 3-methylhistine, and ornithine, but not plasma glucose, suggesting that that Liv-AdipoR is important for maintaining muscle fibers. The chronic effect of Liv-AdipoR dsRNA injection was increased mortality. Transcriptomic analysis showed that 804 contigs were upregulated and 212 contigs were downregulated by the knockdown of Liv-AdipoR in deep abdominal muscle. The significantly upregulated genes were categorized as four main functional groups: RNA-editing and transcriptional regulators, molecular chaperones, metabolic regulators, and channel proteins.
Collapse
Affiliation(s)
- Ah Ran Kim
- Interdiciplinary Program of Biomedical Engineering, Pukyong National University , Busan , South Korea
| | - Md Jobaidul Alam
- Department of Marine Biology, Pukyong National University , Busan , South Korea
| | - Tae-Ho Yoon
- Interdiciplinary Program of Biomedical Engineering, Pukyong National University , Busan , South Korea
| | - Soo Rin Lee
- Interdiciplinary Program of Biomedical Engineering, Pukyong National University , Busan , South Korea
| | - Hyun Park
- Korea Polar Research Institute, Korea Ocean Research and Development Institute , Incheon , Republic of Korea
| | - Doo-Nam Kim
- Distant-Water Fisheries Resources Research Division, National Institute of Fisheries Science , Busan , Republic of Korea
| | - Doo-Hae An
- Distant-Water Fisheries Resources Research Division, National Institute of Fisheries Science , Busan , Republic of Korea
| | - Jae-Bong Lee
- Distant-Water Fisheries Resources Research Division, National Institute of Fisheries Science , Busan , Republic of Korea
| | - Chung Il Lee
- Department of Marine Bioscience, Gangneung-Wonju National University , Gangneung , Republic of Korea
| | - Hyun-Woo Kim
- Interdiciplinary Program of Biomedical Engineering, Pukyong National University, Busan, South Korea; Department of Marine Biology, Pukyong National University, Busan, South Korea
| |
Collapse
|
34
|
Kadyshevich EA, Ostrovskii VE. Natural Mechanism of Origination and Conservation of Monochirality of Amino Acids. Chirality 2015; 28:153-7. [PMID: 26708355 DOI: 10.1002/chir.22560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 11/10/2022]
Abstract
The proteins belonging to different organisms as well as the natural amino acids as incorporated into proteins occurring free in tissues and lymphatic fluids are, as a rule, levorotatory. This article contains a simple explanation of this structural discrimination and of the extremely slow racemization of natural organic substances.
Collapse
|
35
|
Svensson E, Schouten S, Stam A, Middelburg JJ, Sinninghe Damsté JS. Compound-specific stable isotope analysis of nitrogen-containing intact polar lipids. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:2263-2271. [PMID: 26522319 DOI: 10.1002/rcm.7393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 08/12/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Compound-specific isotope analysis (CSIA) of nitrogen in amino acids has proven a valuable tool in many fields (e.g. ecology). Several intact polar lipids (IPLs) also contain nitrogen, and their nitrogen isotope ratios have the potential to elucidate food-web interactions or metabolic pathways. Here we have developed novel methodology for the determination of δ(15)N values of nitrogen-containing headgroups of IPLs using gas chromatography coupled with isotope-ratio mass spectrometry. METHODS Intact polar lipids with nitrogen-containing headgroups were hydrolyzed and the resulting compounds were derivatized by (1) acetylation with pivaloyl chloride for compounds with amine and hydroxyl groups or (2) esterification using acidified 2-propanol followed by acetylation with pivaloyl chloride for compounds with both carboxyl and amine groups. The δ(15)N values of the derivatives were subsequently determined using gas chromatography/combustion/isotope-ratio mass spectrometry. RESULTS Intact polar lipids with ethanolamine and amino acid headgroups, such as phosphatidylethanolamine and phosphatidylserine, were successfully released from the IPLs and derivatized. Using commercially available pure compounds it was established that δ(15)N values of ethanolamine and glycine were not statistically different from the offline-determined values. Application of the technique to microbial cultures and a microbial mat showed that the method works well for the release and derivatization of the headgroup of phosphatidylethanolamine, a common IPL in bacteria. CONCLUSIONS A method to enable CSIA of nitrogen of selected IPLs has been developed. The method is suitable for measuring natural stable nitrogen isotope ratios in microbial lipids, in particular phosphatidylethanolamine, and will be especially useful for tracing the fate of nitrogen in deliberate tracer experiments.
Collapse
Affiliation(s)
- Elisabeth Svensson
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg (Texel), The Netherlands
| | - Stefan Schouten
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg (Texel), The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O. Box 80021, 3508 TA, Utrecht, The Netherlands
| | - Axel Stam
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg (Texel), The Netherlands
| | - Jack J Middelburg
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O. Box 80021, 3508 TA, Utrecht, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg (Texel), The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O. Box 80021, 3508 TA, Utrecht, The Netherlands
| |
Collapse
|
36
|
Effects of high-salinity seawater acclimation on the levels of d-alanine in the muscle and hepatopancreas of kuruma prawn, Marsupenaeus japonicus. J Pharm Biomed Anal 2015; 116:53-8. [DOI: 10.1016/j.jpba.2015.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 11/21/2022]
|
37
|
Distribution and evolution of the serine/aspartate racemase family in invertebrates. Amino Acids 2015; 48:387-402. [DOI: 10.1007/s00726-015-2092-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/28/2015] [Indexed: 02/02/2023]
|
38
|
Affiliation(s)
- Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Udhagamandalam, Tamil Nadu, India
| | - Unni Jayaram
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Udhagamandalam, Tamil Nadu, India
| |
Collapse
|
39
|
Monselise EBI, Levkovitz A, Kost D. Ultraviolet radiation induces stress in etiolated Landoltia punctata, as evidenced by the presence of alanine, a universal stress signal: a ¹⁵N NMR study. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17 Suppl 1:101-107. [PMID: 24889211 DOI: 10.1111/plb.12198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Analysis with (15) N NMR revealed that alanine, a universal cellular stress signal, accumulates in etiolated duckweed plants exposed to 15-min pulsed UV light, but not in the absence of UV irradiation. The addition of 10 mm vitamin C, a radical scavenger, reduced alanine levels to zero, indicating the involvement of free radicals. Free D-alanine was detected in (15) N NMR analysis of the chiral amino acid content, using D-tartaric acid as solvent. The accumulation of D-alanine under stress conditions presents a new perspective on the biochemical processes taking place in prokaryote and eukaryote cells.
Collapse
Affiliation(s)
- E B-I Monselise
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
40
|
Azúa I, Goiriena I, Baña Z, Iriberri J, Unanue M. Release and consumption of D-amino acids during growth of marine prokaryotes. MICROBIAL ECOLOGY 2014; 67:1-12. [PMID: 24057323 DOI: 10.1007/s00248-013-0294-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/09/2013] [Indexed: 06/02/2023]
Abstract
Analysis of the composition of the marine-dissolved organic matter has highlighted the importance of D-amino acids, whose origin is attributed mainly to the remains of bacterial peptidoglycan released as a result of grazing or viral lysis. However, very few studies have focused on the active release of D-amino acids by bacteria. With this purpose, we measured the concentration of dissolved amino acids in both enantiomeric forms with two levels of complexity: axenic cultures of Vibrio furnissii and Vibrio alginolyticus and microcosms created from marine microbial assemblages (Biscay Bay, Cantabrian Sea) with and without heterotrophic nanoflagellates (HNFs). Axenic cultures showed that only D-Ala was significantly released and accumulated in the medium up to a concentration of 120 nM, probably as a consequence of the rearrangement of peptidoglycan. The marine microbial assemblages showed that only two D-amino acids significantly accumulated in the environment, D-Ala and D-aspartic acid (Asp), in both the absence and presence of HNFs. The D/L ratio increased during the incubation and reached maximum values of 3.0 to 4.3 for Ala and 0.4 to 10.6 for Asp and correlated with prokaryotic and HNF abundance as well as the rate of prokaryotic thymidine and leucine incorporation. Prokaryotes preferentially consumed L-amino acids, but the relative uptake rates of D-Ala significantly increased in the growth phase. These results demonstrate that bacteria can release and consume D-amino acids at high rates during growth, even in the absence of viruses and grazers, highlighting the importance of bacteria as producers of dissolved organic matter (DOM) in the sea.
Collapse
Affiliation(s)
- Iñigo Azúa
- Departamento de Inmunología, Microbiología y Parasitología, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080, Bilbao, Spain,
| | | | | | | | | |
Collapse
|
41
|
Soma H, Furuya R, Kaneko R, Tsukamoto A, Shirasu K, Tanigawa M, Nagata Y. D-Amino acid oxidase and presence of D-proline in Xenopus laevis. Comp Biochem Physiol B Biochem Mol Biol 2013; 166:165-71. [PMID: 23994361 DOI: 10.1016/j.cbpb.2013.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 11/16/2022]
Abstract
We purified D-amino acid oxidase (EC 1.4.3.3, DAO) from Xenopus laevis tadpoles. The optimal temperature and pH for enzyme activity were 35-40 °C and 8.3-9.0, respectively, depending on the substrate amino acids available to the enzyme; the highest activity was observed with D-proline followed by D-phenylalanine. Activity was significantly inhibited by p-hydroxymercuribenzoate, but only moderately by p-chloromercuribenzoate or benzoate. Enzyme activity was increased until the final tadpole stage, but was reduced to one-third in the adult and was localized primarily in the kidney. The tadpoles contained high concentrations of D-proline close to the final developmental stage and nearly no D-amino acids were detected in the adult frog, indicating that D-amino acid oxidase functions in metamorphosis.
Collapse
Affiliation(s)
- Hiroki Soma
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-Ward, Tokyo 101-8308, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
- Physiological Functions of Amino Acids. Amino Acids 2013. [DOI: 10.1201/b14661-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Shinji J, Okutsu T, Jayasankar V, Jasmani S, Wilder MN. Metabolism of amino acids during hyposmotic adaptation in the whiteleg shrimp, Litopenaeus vannamei. Amino Acids 2012; 43:1945-54. [DOI: 10.1007/s00726-012-1266-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 03/05/2012] [Indexed: 11/24/2022]
|
44
|
HPLC determination of the distribution of d-amino acids and effects of ecdysis on alanine racemase activity in kuruma prawn Marsupenaeus japonicus. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3283-8. [DOI: 10.1016/j.jchromb.2011.04.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/20/2011] [Accepted: 04/20/2011] [Indexed: 11/23/2022]
|
45
|
Conti P, Tamborini L, Pinto A, Blondel A, Minoprio P, Mozzarelli A, De Micheli C. Drug Discovery Targeting Amino Acid Racemases. Chem Rev 2011; 111:6919-46. [DOI: 10.1021/cr2000702] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Paola Conti
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Lucia Tamborini
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Andrea Pinto
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Arnaud Blondel
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS-URA 2185, Département de Biologie Structurale et Chimie, 25 rue du Dr. Roux, 75724 Paris, France
| | - Paola Minoprio
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosoma; Département d’Infection et Epidémiologie; 25 rue du Dr. Roux, 75724 Paris, France
| | - Andrea Mozzarelli
- Dipartimento di Biochimica e Biologia Molecolare, via G. P. Usberti 23/A, 43100 Parma, Italy
- Istituto di Biostrutture e Biosistemi, viale Medaglie d’oro, Roma, Italy
| | - Carlo De Micheli
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| |
Collapse
|
46
|
Zhang L, Liu X, You L, Zhou D, Wang Q, Li F, Cong M, Li L, Zhao J, Liu D, Yu J, Wu H. Benzo(a)pyrene-induced metabolic responses in Manila clam Ruditapes philippinarum by proton nuclear magnetic resonance ((1)H NMR) based metabolomics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 32:218-225. [PMID: 21843802 DOI: 10.1016/j.etap.2011.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/17/2011] [Accepted: 05/20/2011] [Indexed: 05/31/2023]
Abstract
Benzo(a)pyrene is an important polycyclic aromatic hydrocarbon (PAH) which causes carcinogenic, teratogenic and mutagenic effects in various species and the level of contamination of this toxic agent in the marine environment is of great concern. In this study, metabolic responses induced by two doses (0.02 and 0.2μM) of BaP were characterized in the gill tissues of Manila clam Ruditapes philippinarum after exposure for 24, 48 and 96h. The high dose (0.2μM) of BaP induced the disturbances in energy metabolism and osmotic regulation based on the metabolic biomarkers such as succinate, alanine, glucose, glycogen, branched chain amino acids, betaine, taurine, homarine, and dimethylamine in clam gills after 24h of exposure. In addition, hormesis induced by BaP was found in clams exposed to both doses of BaP. Overall, our results demonstrated the applicability of metabolomics for the elucidation of toxicological effects of marine environmental contaminants in a selected bioindicator species such as the Manila clam.
Collapse
Affiliation(s)
- Linbao Zhang
- Key Laboratory of Coastal Zone Environment Processes, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yokoyama T, Amano M, Sekine M, Homma H, Tokuda M, Sato M. Immunohistochemical localization of endogenous D-Aspartate in the marine brown Alga Sargassum fusiforme. Biosci Biotechnol Biochem 2011; 75:1481-4. [PMID: 21821953 DOI: 10.1271/bbb.110184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Immunohistochemical localization (cellular localization) of endogenous D-aspartate in the marine brown alga Sargassum fusiforme was investigated by the use of a specific polyclonal antibody raised against D-aspartate. D-Aspartate immunoreactivity was evident in the medullary layer in the blade of the alga, and weak staining was found in the cortical layer, whereas epidermal cells were found to lack D-aspartate. Within the cells of the layers, immunoreactivity was confirmed only in the cytosol and not in the cell wall, chloroplast, or vacuole. These results suggest that D-aspartate is present in S. fusiforme cells, and excludes the possibility that it is derived from attached or symbiotic organisms such as marine bacteria. This is the first report describing the localization of free D-aspartate in plant cells.
Collapse
Affiliation(s)
- Takehiko Yokoyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Liu X, Zhang L, You L, Yu J, Zhao J, Li L, Wang Q, Li F, Li C, Liu D, Wu H. Differential toxicological effects induced by mercury in gills from three pedigrees of Manila clam Ruditapes philippinarum by NMR-based metabolomics. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:177-86. [PMID: 21080220 DOI: 10.1007/s10646-010-0569-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/02/2010] [Indexed: 05/24/2023]
Abstract
Mercury is a hazardous pollutant in the Bohai marine environments due to its high toxicity to the marine organisms and subsequent ecological risk. Manila clam Ruditapes philippinarum is one of important sentinel organisms in 'Mussel Watch Program' launched in China and therefore used as a bioindicator in marine and coastal ecotoxicology. There are dominantly distributed three pedigrees of clam (White, Liangdao Red and Zebra) in Yantai population endowed with different tolerances to environmental stressors. In this study, gill tissues were collected from both untreated and mercury exposed White, Liangdao Red and Zebra clams, and the extracts were analyzed by NMR-based metabolomics to compare the original metabolomes and the toxicological effects induced by mercury exposure in three pedigrees. The major abundant metabolites in White clam sample were branched-chain amino acids, lactate, alanine, arginine, acetoacetate, glutamate, succinate, citrate, malonate and taurine, while the metabolite profile of Liangdao Red clam sample comprises relative high levels of alanine, arginine, glutamate, succinate and glycogen. For Zebra clam sample, the metabolite profile exhibited relatively high amount of aspartate, acetylcholine and homarine. After 48 h exposure of 20 μg l(-1) Hg(2+), the metabolic profiles from all the three pedigrees of clams commonly showed significant increases in alanine, arginine, glutamate, aspartate, α-ketoglutarate, glycine and ATP/ADP, and decreases in citrate, taurine and homarine. The unique metabolic differences between the metabolomes of gill tissues from Hg(2+)-exposed White, Liangdao Red and Zebra clams were found, including elevated acetylcholine and branched-chain amino acids in White clams, and the declined succinate in both White and Liangdao Red samples as well as the declined betaine in Zebra and White clams. Overall, our findings showed the differential toxicological responses to mercury exposure and that White clams could be a preferable bioindicator for the metal pollution monitoring based on the metabolic changes from gill compared with other two (Liangdao Red and Zebra) pedigrees of clams.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Coastal Zone Environment Processes, CAS, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Martínez-Rodríguez S, Martínez-Gómez A, Rodríguez-Vico F, Clemente-Jiménez J, Las Heras-Vázquez F. Natural Occurrence and Industrial Applications of d-Amino Acids: An Overview. Chem Biodivers 2010; 7:1531-48. [DOI: 10.1002/cbdv.200900245] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Taylor J, Cooper C, Mommsen T. Implications of GI function for gas exchange, acid–base balance and nitrogen metabolism. FISH PHYSIOLOGY 2010. [DOI: 10.1016/s1546-5098(10)03006-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|