1
|
Saruwatari J, Kaneko T, Murata T, Narise H, Kugimoto S, Nishimura E, Tetsuka N, Ando M, Oi M, Ota M, Hamada N, Kaneda K, Furusho S, Sakamoto M, Kajiwara‐Morita A, Oda K, Oniki K, Ueda K, Jono H, Yasui‐Furukori N. Effect of concomitant use of yokukansan on steady-state blood concentrations of donepezil and risperidone in real-world clinical practice. Neuropsychopharmacol Rep 2024; 44:614-619. [PMID: 38978357 PMCID: PMC11544453 DOI: 10.1002/npr2.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 07/10/2024] Open
Abstract
AIM Yokukansan is one of the most frequently used herbal medicines that can improve the behavioral and psychological symptoms of dementia. In this exploratory study, we investigated whether yokukansan affects the steady-state blood concentrations of donepezil, risperidone, and the major metabolites of both drugs in a real-world clinical setting. METHODS A non-randomized, open-label, single-arm study examining drug-drug interactions was conducted. Fifteen dementia patients taking donepezil for at least 4 weeks and eight schizophrenia patients taking risperidone for at least 2 weeks were orally administered 2.5 g of yokukansan three times a day before or between meals, and blood samples were collected before and 8 weeks after starting co-treatment with yokukansan. Plasma concentrations of donepezil, risperidone, and each metabolite were measured using high-performance liquid chromatography-tandem mass spectrometry and compared before and after the 8-week administration of yokukansan. RESULTS The plasma concentrations of donepezil and its metabolites (6-O-desmethyl-donepezil, 5-O-desmethyl-donepezil, and donepezil-N-oxide), risperidone, and its metabolite paliperidone did not differ before and after the 8-week treatment with yokukansan. CONCLUSIONS The findings of this study show that the concomitant use of yokukansan may have little clinical impact on the steady-state blood levels of donepezil and risperidone in patients with dementia or schizophrenia.
Collapse
Affiliation(s)
- Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Tetsuya Kaneko
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
- Department of PharmacyKumamoto University HospitalKumamotoJapan
| | | | - Haruka Narise
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Sawa Kugimoto
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Eri Nishimura
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Natsuki Tetsuka
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Misaki Ando
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Momo Oi
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Masako Ota
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | | | | | | | | | - Ayami Kajiwara‐Morita
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Kazutaka Oda
- Department of PharmacyKumamoto University HospitalKumamotoJapan
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | | | - Hirofumi Jono
- Department of PharmacyKumamoto University HospitalKumamotoJapan
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Norio Yasui‐Furukori
- Department of Psychiatry, School of MedicineDokkyo Medical UniversityTochigiJapan
| |
Collapse
|
2
|
Chen L, Nikolic D, Li G, Liu J, van Breemen RB. In vitro inhibition of human cytochrome P450 enzymes by licoisoflavone B from Glycyrrhiza uralensis Fisch. ex DC. Toxicol Sci 2023; 196:16-24. [PMID: 37535691 PMCID: PMC10613970 DOI: 10.1093/toxsci/kfad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Glycyrrhiza uralensis Fisch. ex DC, one of the 3 pharmacopeial species of licorice and widely used in dietary supplements, can inhibit certain cytochrome P450 (CYP) enzymes. Thereby, G. uralensis preparations have the potential to cause pharmacokinetic drug interactions when consumed along with prescription medicines. One compound (1.34 mg dry weight) responsible for inhibiting CYP2B6, CYP2C8, and CYP2C9 was isolated using bioactivity-guided fractionation from 250 g dried roots, stolons, and rhizomes. The enzyme kinetics and mechanisms of inhibition were determined using human liver microsomes, recombinant enzymes, and UHPLC-MS/MS-based assays. Identified as licoisoflavone B, this compound displayed reversible inhibition of CYP2C8 with an IC50 value of 7.4 ± 1.1 µM and reversible inhibition of CYP2C9 with an IC50 value of 4.9 ± 0.4 µM. The enzyme kinetics indicated that the mechanism of inhibition was competitive for recombinant CYP2C8, with a Ki value of 7.0 ± 0.7 μM, and mixed-type inhibition for recombinant CYP2C9, with a Ki value of 1.2 ± 0.2 μM. Licoisoflavone B moderately inhibited CYP2B6 through a combination of irreversible and reversible mechanisms with an IC50 value of 16.0 ± 3.9 µM.
Collapse
Affiliation(s)
- Luying Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, Chicago, Illinois 60612, USA
| | - Guannan Li
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, Chicago, Illinois 60612, USA
| | - Jialin Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA
| | - Richard B van Breemen
- Department of Pharmaceutical Sciences, College of Pharmacy, Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, Chicago, Illinois 60612, USA
| |
Collapse
|
3
|
Lu S, Zhang F, Gong J, Huang J, Zhu G, Zhao Y, Jia Q, Li Y, Li B, Chen K, Zhu W, Ge G. Design, synthesis and biological evaluation of chalcone derivatives as potent and orally active hCYP3A4 inhibitors. Bioorg Med Chem Lett 2023; 95:129435. [PMID: 37549850 DOI: 10.1016/j.bmcl.2023.129435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Human cytochrome P450 3A4 (hCYP3A4), one of the most important drug-metabolizing enzymes, catalyze the metabolic clearance of ∼50% therapeutic drugs. CYP3A4 inhibitors have been used for improving the in vivo efficacy of hCYP3A4-substrate drugs. However, most of existing hCYP3A4 inhibitors may trigger serious adverse effects or undesirable effects on endogenous metabolism. This study aimed to discover potent and orally active hCYP3A4 inhibitors from chalcone derivatives and to test their anti-hCYP3A4 effects both in vitro and in vivo. Following three rounds of screening and structural optimization, the isoquinoline chalcones were found with excellently anti-hCYP3A4 effects. SAR studies showed that introducing an isoquinoline ring on the A-ring significantly enhanced anti-CYP3A4 effect, generating A10 (IC50 = 102.10 nM) as a promising lead compound. The 2nd round of SAR studies showed that introducing a substituent group at the para position of the carbonyl group on B-ring strongly improved the anti-CYP3A4 effect. As a result, C6 was identified as the most potent hCYP3A4 inhibitor (IC50 = 43.93 nM) in human liver microsomes (HLMs). C6 also displayed potent anti-hCYP3A4 effect in living cells (IC50 = 153.00 nM), which was superior to the positive inhibitor ketoconazole (IC50 = 251.00 nM). Mechanistic studies revealed that C6 could potently inhibit CYP3A4-catalyzed N-ethyl-1,8-naphthalimide (NEN) hydroxylation in a competitive manner (Ki = 30.00 nM). Moreover, C6 exhibited suitable metabolic stability in HLMs and showed good safety profiles in mice. In vivo tests demonstrated that C6 (100 mg/kg, orally administration) significantly increased the AUC(0-inf) of midazolam by 3.63-fold, and strongly prolonged its half-life by 1.66-fold compared with the vehicle group in mice. Collectively, our findings revealed the SARs of chalcone derivatives as hCYP3A4 inhibitors and offered several potent chalcone-type hCYP3A4 inhibitors, while C6 could serve as a good lead compound for developing novel, orally active CYP3A4 inhibitors with improved druglikeness properties.
Collapse
Affiliation(s)
- Shiwei Lu
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Feng Zhang
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiahao Gong
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Huang
- Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, Shanghai, China
| | - Guanghao Zhu
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yitian Zhao
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Qi Jia
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiming Li
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bo Li
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Kaixian Chen
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Guangbo Ge
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Kondža M, Mandić M, Ivančić I, Vladimir-Knežević S, Brizić I. Artemisia annua L. Extracts Irreversibly Inhibit the Activity of CYP2B6 and CYP3A4 Enzymes. Biomedicines 2023; 11:biomedicines11010232. [PMID: 36672740 PMCID: PMC9855681 DOI: 10.3390/biomedicines11010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Artemisia annua L. has long been known for its medicinal properties and isolation of ingredients whose derivatives are used for therapeutic purposes. The CYP2B6 and CYP3A4 enzymes belong to a large family of cytochrome P450 enzymes. These enzymes are involved in the metabolism of drugs and other xeonobiotics. It is known that various compounds can induce or inhibit the activity of these enzymes. The aim of this study was to investigate the nature of the inhibitory effect of Artemisia annua extract on CYP2B6 and CYP3A4 enzymes, as well as the type of inhibition, the presence of reversible or pseudo-irreversible inhibition, and the possible heme destruction. The methanolic extract of Artemisia annua showed an inhibitory effect on CYP2B6 (by almost 90%) and CYP3A4 enzymes (by almost 70%). A significant decrease in heme concentration by 46.8% and 38.2% was observed in different assays. These results clearly indicate that the studied plant extracts significantly inhibited the activity of CYP2B6 and CYP3A4 enzymes. Moreover, they showed irreversible inhibition, which is even more important for possible interactions with drugs and dietary supplements.
Collapse
Affiliation(s)
- Martin Kondža
- Faculty of Pharmacy, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
- Correspondence: ; Tel.: +387-36-312-791
| | - Marta Mandić
- Faculty of Pharmacy, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Ivona Ivančić
- Faculty of Pharmacy, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Sanda Vladimir-Knežević
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Trg Marka Marulića 20, 10000 Zagreb, Croatia
| | - Ivica Brizić
- Faculty of Pharmacy, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
- University Clinical Hospital Mostar, Kralja Tvrtka bb, 88000 Mostar, Bosnia and Herzegovina
| |
Collapse
|
5
|
Qin J, Chen J, Peng F, Sun C, Lei Y, Chen G, Li G, Yin Y, Lin Z, Wu L, Li J, Liu W, Peng C, Xie X. Pharmacological activities and pharmacokinetics of liquiritin: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115257. [PMID: 35395381 DOI: 10.1016/j.jep.2022.115257] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liquiritin is a flavonoid derived from Radix et Rhizoma Glycyrrhizae, which is a widely used traditional Chinese medicine with the effects of invigorating spleen qi, clearing heat, resolving toxins, and dispelling phlegm to stop coughs. AIM OF THE STUDY In this review,the pharmacokinetics and pharmacological activities of liquiritin have been summarized. MATERIALS AND METHODS The information on liquiritin up to 2021 was collected from PubMed, Web of Science, Springer Link, and China National Knowledge Infrastructure databases. The key words were "liquiritin", "nerve", "tumor", "cardiac", etc. RESULTS: The absorption mechanism of liquiritin conforms to the passive diffusion and first-order kinetics while with low bioavailability. Liquiritin can penetrate the blood-brain-barrier. Besides, liquiritin displays numerous pharmacological effects including anti-Alzheimer's disease, antidepressant, antitumor, anti-inflammatory, cardiovascular protection, antitussive, hepatoprotection, and skin protective effects. In addition, the novel preparations, new pharmacological effects,and cdusafty of liquiritin are also discussed in this review. CONCLUSION This review provides a comprehensive state of knowledge on the pharmacokinetics and pharmacological activities of liquiritin, and makes a forecast for its research directions and applications in clinic.
Collapse
Affiliation(s)
- Junyuan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guangru Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gangming Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanpeng Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ziwei Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liujun Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenxiu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Wang Z, Ma J, Yao S, He Y, Miu KK, Xia Q, Fu PP, Ye Y, Lin G. Liquorice Extract and 18β-Glycyrrhetinic Acid Protect Against Experimental Pyrrolizidine Alkaloid-Induced Hepatotoxicity in Rats Through Inhibiting Cytochrome P450-Mediated Metabolic Activation. Front Pharmacol 2022; 13:850859. [PMID: 35370657 PMCID: PMC8966664 DOI: 10.3389/fphar.2022.850859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Misuse of pyrrolizidine alkaloid (PA)-containing plants or consumption of PA-contaminated foodstuffs causes numerous poisoning cases in humans yearly, while effective therapeutic strategies are still limited. PA-induced liver injury was initiated by cytochrome P450 (CYP)-mediated metabolic activation and subsequent formation of adducts with cellular proteins. Liquorice, a hepato-protective herbal medicine, is commonly used concurrently with PA-containing herbs in many compound traditional Chinese medicine formulas, and no PA-poisoning cases have been reported with this combination. The present study aimed to investigate hepato-protective effects of liquorice aqueous extract (EX) and 18β-glycyrrhetinic acid (GA, the primary bioactive constituent of liquorice) against PA-induced hepatotoxicity and the underlying mechanism. Histopathological and biochemical analysis demonstrated that both single- and multiple-treatment of EX (500 mg/kg) or GA (50 mg/kg) significantly attenuated liver damage caused by retrorsine (RTS, a representative hepatotoxic PA). The formation of pyrrole-protein adducts was significantly reduced by single- (30.3% reduction in liver; 50.8% reduction in plasma) and multiple- (32.5% reduction in liver; 56.5% reduction in plasma) treatment of GA in rats. Single- and multiple-treatment of EX also decreased the formation of pyrrole-protein adducts, with 30.2 and 31.1% reduction in rat liver and 51.8 and 53.1% reduction in rat plasma, respectively. In addition, in vitro metabolism assay with rat liver microsomes demonstrated that GA reduced the formation of metabolic activation-derived pyrrole-glutathione conjugate in a dose-dependent manner with the estimated IC50 value of 5.07 µM. Further mechanism study showed that GA inhibited activities of CYPs, especially CYP3A1, the major CYP isoform responsible for the metabolic activation of RTS in rats. Enzymatic kinetic study revealed a competitive inhibition of rat CYP3A1 by GA. In conclusion, our findings demonstrated that both EX and GA exhibited significant hepato-protective effects against RTS-induced hepatotoxicity, mainly through the competitive inhibition of CYP-mediated metabolic activation of RTS.
Collapse
Affiliation(s)
- Zhangting Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sheng Yao
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kai-Kei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Haron MH, Avula B, Ali Z, Chittiboyina AG, Khan IA, Li J, Wang V, Wu C, Khan SI. Assessment of Herb-Drug Interaction Potential of Five Common Species of Licorice and Their Phytochemical Constituents. J Diet Suppl 2022:1-20. [PMID: 35302913 DOI: 10.1080/19390211.2022.2050875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The dried roots and rhizomes of Glycyrrhiza species (G. glabra, G. uralensis and G. inflata), commonly known as licorice, have long been used in traditional medicine. In addition, two other species, G. echinata and G. lepidota are also considered "licorice" in select markets. Currently, licorice is an integral part of several botanical drugs and dietary supplements. To probe the botanicals' safety, herb-drug interaction potential of the hydroethanolic extracts of five Glycyrrhiza species and their key constituents was investigated by determining their effects on pregnane X receptor, aryl hydrocarbon receptor, two major cytochrome P450 isoforms (CYP3A4 and CYP1A2), and the metabolic clearance of antiviral drugs. All extracts enhanced transcriptional activity of PXR and AhR (>2-fold) and increased the enzyme activity of CYP3A4 and CYP1A2. The highest increase in CYP3A4 was seen with G. echinata (4-fold), and the highest increase in CYP1A2 was seen with G. uralensis (18-fold) and G. inflata (16-fold). Among the constituents, glabridin, licoisoflavone A, glyasperin C, and glycycoumarin activated PXR and AhR, glabridin being the most effective (6- and 27-fold increase, respectively). Licoisoflavone A, glyasperin C, and glycycoumarin increased CYP3A4 activity while glabridin, glyasperin C, glycycoumarin, and formononetin increased CYP1A2 activity (>2-fold). The metabolism of antiretroviral drugs (rilpivirine and dolutegravir) was increased by G. uralensis (2.0 and 2.5-fold) and its marker compound glycycoumarin (2.3 and 1.6-fold). The metabolism of dolutegravir was also increased by G. glabra (2.8-fold) but not by its marker compound, glabridin. These results suggest that licorice and its phytochemicals could affect the metabolism and clearance of certain drugs that are substrates of CYP3A4 and CYP1A2.Supplemental data for this article is available online at https://doi.org/10.1080/19390211.2022.2050875 .
Collapse
Affiliation(s)
- Mona H Haron
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Bharathi Avula
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA.,Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Jing Li
- Botanical Review Team, Office of New Drug Product, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vivian Wang
- Botanical Review Team, Office of New Drug Product, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Charles Wu
- Botanical Review Team, Office of New Drug Product, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Shabana I Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA.,Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| |
Collapse
|
8
|
Roemer HC, Kunz L, Botzenhardt S. The influence of excessive consumption of liquorice on phenprocoumon (Marcumar®): a case report. J Int Med Res 2021; 49:3000605211049649. [PMID: 34826377 PMCID: PMC8646198 DOI: 10.1177/03000605211049649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Here, the case of a 92-year-old female patient, who was diagnosed with atrial fibrillation and treated with phenprocoumon (Marcumar®), is reported. Pre-existing comorbidities were arterial hypertension, coronary heart disease, diabetes mellitus type 2, mild senile dementia and renal insufficiency. Despite treatment with phenprocoumon (Marcumar®), the patient experienced an ischaemic stroke. Her measured international normalized ratio (INR)-values during the months before the stroke were within the therapeutic range of 2–3, then suddenly decreased to 1.25. A retrospective inquiry failed to identify any significant changes in behaviour or therapy adherence, other than the consumption of 1.5 kg (3.3 lb) of hard-boiled candy liquorice in the days leading up to the stroke. The sudden decrease in INR-values may be explained by the influence of liquorice and its compounds on the pharmacokinetics of phenprocoumon (Marcumar®). In this context, the most important factors are the susceptibility of vitamin K antagonists to nutrition or metabolic irregularities, the influence of liquorice on the function of isoenzymes of the cytochrome P450 family that may lead to reduced bioavailability of phenprocoumon, and the influence of liquorice on peroxisome proliferator-activated receptor alpha transactivation.
Collapse
Affiliation(s)
- Hermann Casper Roemer
- Institute for General Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Luisa Kunz
- Institute for General Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Suzan Botzenhardt
- Institute for General Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Husain I, Bala K, Khan IA, Khan SI. A review on phytochemicals, pharmacological activities, drug interactions, and associated toxicities of licorice (
Glycyrrhiza
sp.). FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Islam Husain
- National Center for Natural Products Research, School of Pharmacy University of Mississippi, University, MS 38677 USA
| | - Kiran Bala
- Department of P.G. Studies and Research in Biological Science Rani Durgavati University Jabalpur India
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy University of Mississippi, University, MS 38677 USA
- Department of BioMolecular Sciences, School of Pharmacy University of Mississippi, University, MS 38677 USA
| | - Shabana I. Khan
- National Center for Natural Products Research, School of Pharmacy University of Mississippi, University, MS 38677 USA
- Department of BioMolecular Sciences, School of Pharmacy University of Mississippi, University, MS 38677 USA
| |
Collapse
|
10
|
Rehman MU, Farooq A, Ali R, Bashir S, Bashir N, Majeed S, Taifa S, Ahmad SB, Arafah A, Sameer AS, Khan R, Qamar W, Rasool S, Ahmad A. Preclinical Evidence for the Pharmacological Actions of Glycyrrhizic Acid: A Comprehensive Review. Curr Drug Metab 2021; 21:436-465. [PMID: 32562521 DOI: 10.2174/1389200221666200620204914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Glycyrrhiza glabra L. (Family: Fabaceae) is one of the important traditional medicinal plant used extensively in folk medicine. It is known for its ethnopharmacological value in curing a wide variety of ailments. Glycyrrhizin, an active compound of G. glabra, possesses anti-inflammatory activity due to which it is mostly used in traditional herbal medicine for the treatment and management of chronic diseases. The present review is focused extensively on the pharmacology, pharmacokinetics, toxicology, and potential effects of Glycyrrhizic Acid (GA). A thorough literature survey was conducted to identify various studies that reported on the GA on PubMed, Science Direct and Google Scholar.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adil Farooq
- RAKCOPS, RAK Medical and Health Sciences University, Ras AL Khaimah, United Arab Emirates
| | - Rayeesa Ali
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sana Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Nazirah Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Samia Majeed
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Syed Taifa
- Division of Animal Nutrition, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aga Syed Sameer
- Department of Basic Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Centre (KAIMRC), Jeddah, Saudi Arabia
| | - Rehan Khan
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Mana pgement, Faculty of Forestry, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Anas Ahmad
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| |
Collapse
|
11
|
Wang C, Chen L, Xu C, Shi J, Chen S, Tan M, Chen J, Zou L, Chen C, Liu Z, Liu X. A Comprehensive Review for Phytochemical, Pharmacological, and Biosynthesis Studies on Glycyrrhiza spp. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:17-45. [PMID: 31931596 DOI: 10.1142/s0192415x20500020] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Licorice is extensively applied in food as well as herbal medicine across the world, possessing a substantial share in the global market. It has made great progress in chemical and pharmacological research in recent years. Currently, Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., and Glycyrrhiza glabra L. were officially used as Gan-Cao according to the Chinese Pharmacopoeia. Accumulating evidence demonstrated three varieties of licorice have their own special compounds except for two quality markers set by Pharmacopoeia, providing great possibility for better understanding their characteristics, evaluating quality of each species and studying biosynthesis mechanisms of species-specific compounds. As a special "guide drug" in clinic, licorice plays an important role in Chinese herbal formulas. The interaction between licorice with other ingredients and their metabolism in vivo should also be taken into consideration. In addition, draft genome annotation, and success of the final step of glycyrrhizin biosynthesis have paved the way for biosynthesis of other active constituents in licorice, a promising beginning of solving source shortage. Accordingly, we comprehensively explored the nearly 400 chemical compounds found in the three varieties of licorice so far, systematically excavated various pharmacological activities, including metabolism via CYP450 system in vivo, and introduced the complete biosynthesis pathway of glycyrrhizin in licorice. The review will facilitate the further research toward this herbal medicine.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chaoqie Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jingjing Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Shuyu Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Mengxia Tan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jiali Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Cuihua Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zixiu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,Collaborative Innovation Center of Chinese, Medicinal Resources Industrialization, Nanjing 210023, P. R. China.,National and Local Collaborative Engineering, Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
12
|
Bioactive Candy: Effects of Licorice on the Cardiovascular System. Foods 2019; 8:foods8100495. [PMID: 31615045 PMCID: PMC6836258 DOI: 10.3390/foods8100495] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Licorice, today chiefly utilized as a flavoring additive in tea, tobacco and candy, is one of the oldest used herbs for medicinal purposes and consists of up to 300 active compounds. The main active constituent of licorice is the prodrug glycyrrhizin, which is successively converted to 3β-monoglucuronyl-18β-glycyrrhetinic acid (3MGA) and 18β-glycyrrhetinic acid (GA) in the intestines. Despite many reported health benefits, 3MGA and GA inhibit the 11-β-hydrogenase type II enzyme (11β-HSD2) oxidizing cortisol to cortisone. Through activation of mineralocorticoid receptors, high cortisol levels induce a mild form of apparent mineralocorticoid excess in the kidney and increase systemic vascular resistance. Continuous inhibition of 11β-HSD2 related to excess licorice consumption will create a state of hypernatremia, hypokalemia and increased fluid volume, which can cause serious life-threatening complications especially in patients already suffering from cardiovascular diseases. Two recent meta-analyses of 18 and 26 studies investigating the correlation between licorice intake and blood pressure revealed statistically significant increases both in systolic (5.45 mmHg) and in diastolic blood pressure (3.19/1.74 mmHg). This review summarizes and evaluates current literature about the acute and chronic effects of licorice ingestion on the cardiovascular system with special focus on blood pressure. Starting from the molecular actions of licorice (metabolites) inside the cells, it describes how licorice intake is affecting the human body and shows the boundaries between the health benefits of licorice and possible harmful effects.
Collapse
|
13
|
Li N, Zhou T, Wu F, Wang R, Zhao Q, Zhang JQ, Yang BC, Ma BL. Pharmacokinetic mechanisms underlying the detoxification effect of Glycyrrhizae Radix et Rhizoma (Gancao): drug metabolizing enzymes, transporters, and beyond. Expert Opin Drug Metab Toxicol 2019; 15:167-177. [DOI: 10.1080/17425255.2019.1563595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Na Li
- Department of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhou
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Zhao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji-Quan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bai-Can Yang
- Department of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Yurdakok-Dikmen B, Turgut Y, Filazi A. Herbal Bioenhancers in Veterinary Phytomedicine. Front Vet Sci 2018; 5:249. [PMID: 30364115 PMCID: PMC6191517 DOI: 10.3389/fvets.2018.00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Herbal bioenhancers are active phytomolecules that increase the bioavailability, bioefficacy and biological activity of various drugs when coadministered at low concentrations. These valuable compounds reduce the dose, increase the treatment rate, decrease the treatment duration, drug resistance or related adverse reactions which have economical implications in livestock and pet medicine. Eventhough the concept of herbal bioenhancers are known for years through Ayurvedic medicine, the underlying mechanisms remains unclear. The main mechanisms involved are related to drug absorption (effect on solubility, drug efflux and transport proteins, increased permeability in gastrointestinal system) and drug metabolism (inhibition/induction of drug metabolysing enzymes, thermogenic effect). Due to species specific differences in these mechanisms, corresponding data on human and laboratory animal could not be attributed. As multidrug resistance is a major treat to both human and animal health, within "One Health" concept, efficient therapeutical strategies are encouraged by authorities, where focus on herbal supplements as a vast unexploited field remains to be researched within "Bioenhancement Concept." This review brings insight to mechanims involved in bioenhancing effect, examples of herbal extracts and phytoactive compounds and their potential in the veterinary medicine including different classes of drugs such as antibiotics, anticancerous, antiviral, and antituberculosis.
Collapse
|
15
|
Nazari S, Rameshrad M, Hosseinzadeh H. Toxicological Effects of Glycyrrhiza glabra (Licorice): A Review. Phytother Res 2017; 31:1635-1650. [PMID: 28833680 DOI: 10.1002/ptr.5893] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022]
Abstract
Licorice (Glycyrrhiza glabra) has been considered as an herbal drug since ancient time. Nowadays, it is a well-known spice that possesses worth pharmacological effects. However, some relevant articles have revealed negative impacts of licorice in health. By considering the great wishes in using herbal medicine, it is important to show adverse effects of herbal medicine in health. At present, there are misunderstandings toward the safety of herbal medicines. Herein, we gathered scientific research projects on the toxicity effects of licorice and glycyrrhizin to highlight their safety. In this regards, we categorized our findings about the toxicity effects of licorice and glycyrrhizin in acute, sub-acute, sub-chronic, and chronic states. Besides, we discussed on the cytotoxicity, genotoxicity, mutagenicity, and carcinogenicity of licorice and glycyrrhizin as well as their developmental toxicity. This review disclosed that G. glabra and glycyrrhizin salts are moderately toxic. They need to be used with caution during pregnancy. G. glabra and glycyrrhizin possess selective cytotoxic effects on cancerous cells. The most important side effects of licorice and glycyrrhizin are hypertension and hypokalemic-induced secondary disorders. Licorice side effects are increased by hypokalemia, prolonged gastrointestinal transient time, decreased type 2 11-beta-hydroxysteroid dehydrogenase activities, hypertension, anorexia nervosa, old age, and female sex. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Somayeh Nazari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Li G, Simmler C, Chen L, Nikolic D, Chen SN, Pauli GF, van Breemen RB. Cytochrome P450 inhibition by three licorice species and fourteen licorice constituents. Eur J Pharm Sci 2017; 109:182-190. [PMID: 28774812 DOI: 10.1016/j.ejps.2017.07.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/09/2017] [Accepted: 07/30/2017] [Indexed: 02/04/2023]
Abstract
The potential of licorice dietary supplements to interact with drug metabolism was evaluated by testing extracts of three botanically identified licorice species (Glycyrrhiza glabra L., Glycyrrhiza uralensis Fish. ex DC. and Glycyrrhiza inflata Batalin) and 14 isolated licorice compounds for inhibition of 9 cytochrome P450 enzymes using a UHPLC-MS/MS cocktail assay. G. glabra showed moderate inhibitory effects against CYP2B6, CYP2C8, CYP2C9, and CYP2C19, and weak inhibition against CYP3A4 (testosterone). In contrast, G. uralensis strongly inhibited CYP2B6 and moderately inhibited CYP2C8, CYP2C9 and CYP2C19, and G. inflata strongly inhibited CYP2C enzymes and moderately inhibited CYP1A2, CYP2B6, CYP2D6, and CYP3A4 (midazolam). The licorice compounds isoliquiritigenin, licoricidin, licochalcone A, 18β-glycyrrhetinic acid, and glycycoumarin inhibited one or more members of the CYP2C family of enzymes. Glycycoumarin and licochalcone A inhibited CYP1A2, but only glycycoumarin inhibited CYP2B6. Isoliquiritigenin, glabridin and licoricidin competitively inhibited CYP3A4, while licochalcone A (specific to G. inflata roots) was a mechanism-based inhibitor. The three licorice species commonly used in botanical dietary supplements have varying potential for drug-botanical interactions as inhibitors of cytochrome P450 isoforms. Each species of licorice displays a unique profile of constituents with potential for drug interactions.
Collapse
Affiliation(s)
- Guannan Li
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Luying Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Richard B van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States.
| |
Collapse
|
17
|
Zhou M, Hong Y, Lin X, Shen L, Feng Y. Recent pharmaceutical evidence on the compatibility rationality of traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:363-375. [PMID: 28606807 DOI: 10.1016/j.jep.2017.06.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbs have been used in China for thousands of years and are also becoming popular in Western medicine. Formulae of traditional Chinese medicine (TCM), which contain two or more herbs, can often obtain better curative efficacies and fewer side effects than single herbs. Though there are many reports on pharmaceutics, pharmacokinetics, and pharmacodynamics of TCM, there remains a serious lack of summarization and systemic analyses of these reported data to help uncover the compatibility rationale of TCM. This review therefore aims to provide such an overview mainly based on the reports published in the last decade. It could be served as an informative reference for researchers interested in compound prescriptions and holistic therapies. MATERIALS AND METHODS Relevant information was collected from various resources, including books on Chinese herbs, China Knowledge Resource Integrated (CNKI), and international databases, such as Web of Science, Scopus, and PubMed. RESULTS Thirty-six relevant TCM formulae were collected to illustrate the compatibility rationality of TCM from the perspective of pharmaceutics, pharmacokinetics, and/or pharmacodynamics. CONCLUSIONS Compatibility is a key characteristic of multi-herb prescriptions. It often results in the change of the therapeutic material basis and, thus, produces the effect of reducing toxicity and/or increasing curative efficacy.
Collapse
Affiliation(s)
- Miaomiao Zhou
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yanlong Hong
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| |
Collapse
|
18
|
Ashour ML, Youssef FS, Gad HA, Wink M. Inhibition of Cytochrome P450 (CYP3A4) Activity by Extracts from 57 Plants Used in Traditional Chinese Medicine (TCM). Pharmacogn Mag 2017; 13:300-308. [PMID: 28539725 PMCID: PMC5421430 DOI: 10.4103/0973-1296.204561] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/24/2016] [Indexed: 12/16/2022] Open
Abstract
Background: Herbal medicine is widely used all over the world for treating various health disorders. It is employed either alone or in combination with synthetic drugs or plants to be more effective. Objective: The assessment of the effect of both water and methanol extracts of 57 widely used plants from Traditional Chinese Medicine (TCM) against the main phase I metabolizing enzyme CYP3A4 in vitro for the first time. Materials and Methods: The inhibition of cytochrome P450 activity was evaluated using a luminescence assay. The principal component analysis (PCA) was used to correlate the inhibitory activity with the main secondary metabolites present in the plant extracts. Molecular modeling studies on CYP3A4 (PDB ID 4NY4) were carried out with 38 major compounds present in the most active plant extracts to validate the observed inhibitory effect. Results: Aqueous extracts of Acacia catechu, Andrographis paniculata, Arctium lappa, Areca catechu, Bupleurum marginatum, Chrysanthemum indicum, Dysosma versipellis, and Spatholobus suberectus inhibited CYP3A4 is more than 85% (at a dose of 100 μg/mL). The corresponding methanol extracts of A. catechu, A. paniculata, A. catechu, Mahonia bealei, and Sanguisorba officinalis inhibited the enzyme by more than 50%. Molecular modeling studies revealed that two polyphenols, namely hesperidin and rutin, revealed the highest fitting scores in the active sites of the CYP3A4 with binding energies equal to -74.09 and -71.34 kcal/mol, respectively. Conclusion: These results provide evidence that many TCM plants can inhibit CYP3A4, which might cause a potential interference with the metabolism of other concomitantly administered herbs or drugs. SUMMARY In this study, the inhibitory activity of the aqueous and methanol extracts of 57 widely used plants from Traditional Chinese Medicine (TCM) against the main phase I metabolizing enzyme CYP3A4 was tested in vitro for the first time. Aqueous extracts of Acacia catechu, Andrographis paniculata, Arctium lappa, Areca catechu, Bupleurum marginatum, Dysosma versipellis, and Spatholobus suberectus inhibited CYP3A4 by more than 85% (at a dose of 100 μg/mL). The activity could be attributed to the presence of polyphenolics as revealed from the multivariate chemometric analysis and molecular modeling study. These results provide evidence that many TCM plants can inhibit CYP3A4, which might cause a potential interference with the metabolism of other concomitantly administered herbs or drugs.
Abbreviation used: CHARMm: Chemistry at HARvard Macromolecular Mechanics, CYP: Cytochrome P450, DMSO: Dimethyl Sulfoxide, PCA: Principal Component Analysis, PDB: Protein Data Bank, TCM: Traditional Chinese Medicine
Collapse
Affiliation(s)
- Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt.,Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Haidy A Gad
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
19
|
Hydroxyl and hydroperoxyl radicals scavenging by isoliquiritigenin and liquiritigenin: a quantum chemical study. Struct Chem 2017. [DOI: 10.1007/s11224-017-0924-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Rhew ZI, Han Y. Synergic effect of combination of glycyrol and fluconazole against experimental cutaneous candidiasis due to Candida albicans. Arch Pharm Res 2016; 39:1482-1489. [PMID: 27572154 DOI: 10.1007/s12272-016-0824-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
In this study, we investigated the anti-fungal activity of glycyrol, a coumarine isolated from licorice (Glycyrrhizae Radix), in a murine model of cutaneous candidiasis caused by Candida albicans. Compared to the infected sites, located on the mice's back, of the untreated control mice, the infected sites treated with glycyrol had reduced CFU (colony forming unit) values up to 60 and 85.5 % at 20 and 40 μg/mouse of glycyrol, respectively (P < 0.01). The antifungal activity of glycyrol was synergistically increased when glycyrol (10 μg/mouse) was combined with fluconazole (10 μg/mouse), demonstrating that the combination therapy is approximately 4 times more effective than fluconazole alone at 20 μg/mouse (P < 0.01). Additionally, the combination activity was 1.65 times greater than the antifungal activity of fluconazole alone at 40 μg/mouse (P < 0.05). In seeking glycyrol's antifungal mechanism, we determined that glycyrol inhibited hyphal induction and cell wall adherence of C. albicans. Thus, it is very likely that, by damaging the cell wall, glycyrol helps fluconazole invade C. albicans more readily and attack fluconazole's target in the fungus membrane. In summary, our data indicate that glycyrol may contribute to the development of a novel agent that possesses antifungal activity against cutaneous candidiasis.
Collapse
Affiliation(s)
- Zheong-Imm Rhew
- Department of ImmunoMicrobiology, College of Pharmacy, Dongduk Women's University, 23-1 Wolgok-Dong, Sungbuk-Gu, Seoul, 136-714, Korea
| | - Yongmoon Han
- Department of ImmunoMicrobiology, College of Pharmacy, Dongduk Women's University, 23-1 Wolgok-Dong, Sungbuk-Gu, Seoul, 136-714, Korea.
| |
Collapse
|
21
|
Shults EE, Shakirov MM, Pokrovsky MA, Petrova TN, Pokrovsky AG, Gorovoy PG. Phenolic compounds from Glycyrrhiza pallidiflora Maxim. and their cytotoxic activity. Nat Prod Res 2016; 31:445-452. [PMID: 27210480 DOI: 10.1080/14786419.2016.1188094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Twenty-one phenolic compounds (1-21) including dihydrocinnamic acid, isoflavonoids, flavonoids, coumestans, pterocarpans, chalcones, isoflavan and isoflaven, were isolated from the roots of Glycyrrhiza pallidiflora Maxim. Phloretinic acid (1), chrysin (6), 9-methoxycoumestan (8), isoglycyrol (9), 6″-O-acetylanonin (19) and 6″-O-acetylwistin (21) were isolated from G. pallidiflora for the first time. Isoflavonoid acetylglycosides 19, 21 might be artefacts that could be produced during the EtOAc fractionation process of whole extract. Compounds 2-4, 10, 11, 19 and 21 were evaluated for their cytotoxic activity with respect to model cancer cell lines (CEM-13, MT-4, U-937) using the conventional MTT assays. Isoflavonoid calycosin (4) showed the best potency against human T-cell leukaemia cells MT-4 (CTD50, 2.9 μM). Pterocarpans medicarpin (10) and homopterocarpin (11) exhibit anticancer activity in micromolar range with selectivity on the human monocyte cells U-937. The isoflavan (3R)-vestitol (16) was highly selective on the lymphoblastoid leukaemia cells CEM-13 and was more active than the drug doxorubicin.
Collapse
Affiliation(s)
- Elvira E Shults
- a Novosibirsk Institute of Organic Chemistry, Siberian Branch , Russian Academy of Sciences , Novosibirsk , Russia.,b Medicinal Department , Novosibirsk State University , Novosibirsk , Russia
| | - Makhmut M Shakirov
- a Novosibirsk Institute of Organic Chemistry, Siberian Branch , Russian Academy of Sciences , Novosibirsk , Russia
| | - Mikhail A Pokrovsky
- b Medicinal Department , Novosibirsk State University , Novosibirsk , Russia
| | - Tatijana N Petrova
- a Novosibirsk Institute of Organic Chemistry, Siberian Branch , Russian Academy of Sciences , Novosibirsk , Russia
| | - Andrey G Pokrovsky
- b Medicinal Department , Novosibirsk State University , Novosibirsk , Russia
| | - Petr G Gorovoy
- c G.B. Elyakov Pacific Institute of Bioorganic Chemistry , Far Eastern Branch of the Russian Academy of Sciences , Vladivostok , Russia
| |
Collapse
|
22
|
Kim SJ, Kim SJ, Hong M, Choi HG, Kim JA, Lee S. Investigation of selective inhibitory effects of glycyrol on human CYP 1A1 and 2C9. Xenobiotica 2016; 46:857-61. [PMID: 26750984 DOI: 10.3109/00498254.2015.1131345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
1. Glycyrol is a coumarin derivative isolated from the roots of Glycyrrhiza uralensis called Gamcho in Korea and commonly used as a sweetener in oriental medicine. Glycyrol shows several biological activities, including anti-oxidative, anti-inflammatory, antibacterial, anti-angiogenic, and anti-allergenic properties. Although there have been studies on the biological effects of glycyrol, the inhibitory effects of glycyrol on cytochrome P450 (CYP) activities have not been investigated. 2. We investigated the inhibitory effects of glycyrol on the activities of CYP isoforms using a cocktail of probe substrates in pooled human liver microsome (HLM) and human recombinant cDNA-expressed CYPs. Glycyrol strongly inhibited CYP1A-mediated phenacetin O-deethylation and CYP2C9-mediated diclofenac 4'-hydroxylation in HLMs, which were the result of competitive inhibition as revealed by a Dixon plot. In addition, glycyrol showed selective inhibition of CYP1A1- and CYP1A2-catalyzed phenacetin O-deethylase activity with a half-maximal inhibitory concentration of (IC50) 1.3 and 16.1 μM in human recombinant cDNA-expressed CYP1A1 and CYP1A2, respectively. 3. Glycyrol decreased CYP2C9-catalyzed diclofenac 4'-hydroxylation activity with IC50 values of 0.67 μM in human recombinant cDNA-expressed CYP2C9. This is the first investigation of competitive inhibitory effects on CYP1A1 and CYP2C9 in HLMs.
Collapse
Affiliation(s)
- Sun Joo Kim
- a College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu , Republic of Korea and
| | - Su Jin Kim
- a College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu , Republic of Korea and
| | - Miri Hong
- b College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Hyun Gyu Choi
- a College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu , Republic of Korea and
| | - Jeong Ah Kim
- a College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu , Republic of Korea and
| | - Sangkyu Lee
- a College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University , Daegu , Republic of Korea and
| |
Collapse
|
23
|
He W, Wu JJ, Ning J, Hou J, Xin H, He YQ, Ge GB, Xu W. Inhibition of human cytochrome P450 enzymes by licochalcone A, a naturally occurring constituent of licorice. Toxicol In Vitro 2015; 29:1569-76. [DOI: 10.1016/j.tiv.2015.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 01/28/2023]
|
24
|
Wang W, Tian DD, Zheng B, Wang D, Tan QR, Wang CY, Zhang ZJ. Peony-Glycyrrhiza Decoction, an Herbal Preparation, Inhibits Clozapine Metabolism via Cytochrome P450s, but Not Flavin-Containing Monooxygenase in In Vitro Models. Drug Metab Dispos 2015; 43:1147-53. [PMID: 25948710 DOI: 10.1124/dmd.114.062653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/06/2015] [Indexed: 11/22/2022] Open
Abstract
Our previous studies have shown the therapeutic efficacy and underlying mechanisms of Peony-Glycyrrhiza Decoction (PGD), an herbal preparation, in treating antipsychotic-induced hyperprolactinemia in cultured cells, animal models, and human subjects. In the present study, we further evaluated pharmacokinetic interactions of PGD with clozapine (CLZ) in human liver microsomes (HLM), recombinantly expressed cytochrome P450s (P450s), and flavin-containing monooxygenases (FMOs). CLZ metabolites, N-demethyl-clozapine and clozapine-N-oxide, were measured. PGD, individual peony and glycyrrhiza preparations, and the two individual preparations in combination reduced production of CLZ metabolites to different extents in HLM. While the known bioactive constituents of PGD play a relatively minor role in the kinetic effects of PGD on P450 activity, PGD as a whole had a weak-to-moderate inhibitory potency toward P450s, in particular CYP1A2 and CYP3A4. FMOs are less actively involved in mediating CLZ metabolism and the PGD inhibition of CLZ. These results suggest that PGD has the capacity to suppress CLZ metabolism in the human liver microsomal system. This suppression is principally associated with the inhibition of related P450 activity but not FMOs. The present study provides in vitro evidence of herb-antipsychotic interactions.
Collapse
Affiliation(s)
- Wei Wang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China (W.W., D.-D.T., Z.-J.Z.); College of Life Science, Jilin University, Changchun, Jilin, China (B.Z., D.W.); Department of Psychiatry, Fourth Military Medical University, Xi'an, Shaanxi, China (Q.-R.T.); and Beijing Key Laboratory of Mental Disorders, Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China (C.-Y.W.)
| | - Dan-Dan Tian
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China (W.W., D.-D.T., Z.-J.Z.); College of Life Science, Jilin University, Changchun, Jilin, China (B.Z., D.W.); Department of Psychiatry, Fourth Military Medical University, Xi'an, Shaanxi, China (Q.-R.T.); and Beijing Key Laboratory of Mental Disorders, Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China (C.-Y.W.)
| | - Bin Zheng
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China (W.W., D.-D.T., Z.-J.Z.); College of Life Science, Jilin University, Changchun, Jilin, China (B.Z., D.W.); Department of Psychiatry, Fourth Military Medical University, Xi'an, Shaanxi, China (Q.-R.T.); and Beijing Key Laboratory of Mental Disorders, Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China (C.-Y.W.)
| | - Di Wang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China (W.W., D.-D.T., Z.-J.Z.); College of Life Science, Jilin University, Changchun, Jilin, China (B.Z., D.W.); Department of Psychiatry, Fourth Military Medical University, Xi'an, Shaanxi, China (Q.-R.T.); and Beijing Key Laboratory of Mental Disorders, Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China (C.-Y.W.)
| | - Qing-Rong Tan
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China (W.W., D.-D.T., Z.-J.Z.); College of Life Science, Jilin University, Changchun, Jilin, China (B.Z., D.W.); Department of Psychiatry, Fourth Military Medical University, Xi'an, Shaanxi, China (Q.-R.T.); and Beijing Key Laboratory of Mental Disorders, Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China (C.-Y.W.)
| | - Chuan-Yue Wang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China (W.W., D.-D.T., Z.-J.Z.); College of Life Science, Jilin University, Changchun, Jilin, China (B.Z., D.W.); Department of Psychiatry, Fourth Military Medical University, Xi'an, Shaanxi, China (Q.-R.T.); and Beijing Key Laboratory of Mental Disorders, Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China (C.-Y.W.)
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China (W.W., D.-D.T., Z.-J.Z.); College of Life Science, Jilin University, Changchun, Jilin, China (B.Z., D.W.); Department of Psychiatry, Fourth Military Medical University, Xi'an, Shaanxi, China (Q.-R.T.); and Beijing Key Laboratory of Mental Disorders, Department of Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China (C.-Y.W.)
| |
Collapse
|
25
|
Min JK, Lee CH, Jang SE, Park JW, Lim SJ, Kim DH, Bae H, Kim HJ, Cha JM. Amelioration of trinitrobenzene sulfonic acid-induced colitis in mice by liquiritigenin. J Gastroenterol Hepatol 2015; 30:858-65. [PMID: 25311527 DOI: 10.1111/jgh.12812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM The anti-inflammatory effects of liquiritigenin, a major flavonoid isolated from Glycyrrhizae uralensis, have been reported in many inflammation models. However, its protective effects have not been reported in a colitis model. This study investigated the anti-inflammatory effect and mechanism of liquiritigenin for trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. METHODS Male mice imprinting control regions (ICR) were randomly divided into five groups: normal, TNBS-induced colitis, colitis treated with liquiritigenin at low dose (10 mg/kg) and high dose (20 mg/kg), or mesalazine (10 mg/kg). TNBS colitis induction was performed except for in the normal group, and they were treated with liquiritigenin or mesalazine except control group. The treatment effect was measured after three days treatment, by body weight, colon length, macroscopic score, histological score, levels of cytokines (tumor necrosis factor-α, interleukin [IL]-1β, IL-6, and IL-10) in colon tissue as well as the nuclear factor kappa-light-chain-enhancer pathway of activated B cells (NF-κB) activation. RESULTS Mice treated with high-dose liquiritigenin showed significant body weight gain, inhibition of colon shortening, protective effect on histological damages, and myeloperoxidase activity of colon tissue compared with the control group. Furthermore, mice treated with high-dose liquiritigenin experienced significantly suppressed tumor necrosis factor-α, IL-1β, and IL-6 as well as enhanced IL-10 expression (all P < 0.05). High-dose liquiritigenin treatment group showed significant decreases in TNBS-induced phosphorylation of IKKβ, p65, and IκB-α. CONCLUSION Liquiritigenin may ameliorate TNBS-induced colitis in mice by suppressing expression of pro-inflammatory cytokines through NF-κB pathway.
Collapse
Affiliation(s)
- Joon Ki Min
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Review on prescription compatibility of shaoyao gancao decoction and reflection on pharmacokinetic compatibility mechanism of traditional chinese medicine prescription based on in vivo drug interaction of main efficacious components. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:208129. [PMID: 25147573 PMCID: PMC4132488 DOI: 10.1155/2014/208129] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 06/03/2014] [Accepted: 07/09/2014] [Indexed: 01/06/2023]
Abstract
Shaoyao Gancao Decoction (SGD) derived from Zhang Zhongjing's “Typhoid Theory” is composed of peony and licorice, having the efficacy of nourishing liver, relaxing spasm, and relieving pain. Modern compatibility studies of SGD on chemistry, pharmacology, and pharmacokinetics all demonstrate the reasonable compatibility of peony and licorice. However, the present research on pharmacokinetics is only descriptive and limited to the influence on in vivo dynamic process of certain ingredients; correspondingly, there is lack of studies on the essence of these efficacious substances' in vivo changes; that is, whether it is because there exists in vivo drug interaction in absorption, distribution, metabolism, and excretion (ADME) of active ingredients that leads to the improvement of bioavailability. We herein take SGD as an example and suggest that it is necessary to study in vivo drug interaction of main efficacious components mediated by metabolic enzymes, transport proteins, or plasma protein binding in the course of ADME, which is helpful to illustrate the principle of pharmacokinetic compatibility from the essence leading to the changes of effective substances in vivo.
Collapse
|
27
|
Zhang W, Di LQ, Li JS, Shan JJ, Kang A, Qian S, Chen LT. The effects of Glycyrrhizae uralenis and its major bioactive components on pharmacokinetics of daphnetin in Cortex daphnes in rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:584-592. [PMID: 24704595 DOI: 10.1016/j.jep.2014.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/15/2014] [Accepted: 03/19/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhizae uralenis (GU) is often prescribed together with Cortex daphnes (CD) in traditional Chinese medicinal practice to increase the efficacy of CD on the treatment of rheumatoid arthritis (RA), but the reasons were still unknown. In order to clarify the rationality of herbaceous compatibility between CD and GU, the comparative evaluations on pharmacokinetic behaviors of daphnetin (a predominantly active ingredient in CD) after intragastric administration of CD and CD-GU (combination of CD and GU) extract were studied. In addition, the effects of glycyrrhizin and liquiritin, active ingredients of Glycyrrhiza triterpenes and Glycyrrhiza flavones respectively, on the pharmacokinetics of daphnetin were also investigated. MATERIALS AND METHODS Five groups of rats were orally administered with CD extract, CD-GU extract, pure daphnetin, co-administration of daphnetin and glycyrrhizin as well as co-administration of daphnetin and liquiritin at the same single dose of daphnetin (20 mg/kg). The rat plasma concentrations of daphnetin were determined by our developed UPLC-MS/MS method. The pharmacokinetics of daphnetin in above groups were investigated and compared. RESULTS Comparing with oral administration of CD extract, AUC and Tmax of daphnetin significantly increased after giving CD-GU (p<0.05). In addition, in comparison to daphnetin alone, co-administration of daphnetin with liquiritin significantly increased the AUC and Cmax of daphnetin for ~1.5-fold, while co-administered with glycyrrhizin showed limited impact on the pharmacokinetics of daphnetin. CONCLUSIONS In this study, it was found that liquiritin, one of the major components of GU, significantly enhanced the bioavailability of the main component daphnetin in CD. In addition, the bioavailability of daphnetin in the CD-GU prescription was also significantly higher than that in CD alone, which could be due to liquiritin. Such results explained the mechanism of the increased efficacy in treating RA with the combined use of CD and GU.
Collapse
Affiliation(s)
- Wen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, PR China; Nanjing Engineering Research Center for Industrialization of Chinese Medicine Pellets, PR China
| | - Liu-qing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, PR China; Nanjing Engineering Research Center for Industrialization of Chinese Medicine Pellets, PR China.
| | - Jun-Song Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, PR China; Nanjing Engineering Research Center for Industrialization of Chinese Medicine Pellets, PR China
| | - Jin-jun Shan
- First Medicine School, Nanjing University of Chinese Medicine, Nanjing 210046, PR China
| | - An Kang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shuai Qian
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, PR China
| | - Le-tian Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| |
Collapse
|
28
|
Fujimaki T, Saiki S, Tashiro E, Yamada D, Kitagawa M, Hattori N, Imoto M. Identification of licopyranocoumarin and glycyrurol from herbal medicines as neuroprotective compounds for Parkinson's disease. PLoS One 2014; 9:e100395. [PMID: 24960051 PMCID: PMC4069009 DOI: 10.1371/journal.pone.0100395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022] Open
Abstract
In the course of screening for the anti-Parkinsonian drugs from a library of traditional herbal medicines, we found that the extracts of choi-joki-to and daio-kanzo-to protected cells from MPP+-induced cell death. Because choi-joki-to and daio-kanzo-to commonly contain the genus Glycyrrhiza, we isolated licopyranocoumarin (LPC) and glycyrurol (GCR) as potent neuroprotective principals from Glycyrrhiza. LPC and GCR markedly blocked MPP+-induced neuronal PC12D cell death and disappearance of mitochondrial membrane potential, which were mediated by JNK. LPC and GCR inhibited MPP+-induced JNK activation through the suppression of reactive oxygen species (ROS) generation, thereby inhibiting MPP+-induced neuronal PC12D cell death. These results indicated that LPC and GCR derived from choi-joki-to and daio-kanzo-to would be promising drug leads for PD treatment in the future.
Collapse
Affiliation(s)
- Takahiro Fujimaki
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo
| | - Etsu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Daisuke Yamada
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo
| | - Mitsuhiro Kitagawa
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo
- * E-mail: (NH); (MI)
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- * E-mail: (NH); (MI)
| |
Collapse
|
29
|
Chen H, Zhang X, Feng Y, Rui W, Shi Z, Wu L. Bioactive components of Glycyrrhiza uralensis mediate drug functions and properties through regulation of CYP450 enzymes. Mol Med Rep 2014; 10:1355-62. [PMID: 24939038 DOI: 10.3892/mmr.2014.2331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 04/14/2014] [Indexed: 11/06/2022] Open
Abstract
Glycyrrhiza uralensis (G. uralensis) is a common medicinal plant that has mainly been used to modulate the pharmaceutical activity of herbal medicines. Although G. uralensis has been shown to affect the expression and activity of the key metabolic enzyme cytochrome P450 (CYP450), the detailed mechanism of this process has yet to be elucidated. The present study aimed to elucidate the effects of bioactive components of G. uralensis on different isoforms of CYP450 and determine the ability of these components to modulate drug properties. In the present study, mRNA levels of CYP1A2, CYP2D6, CYP2E1, and CYP3A4 were investigated by quantitative polymerase chain reaction (qPCR) in HepG2 cells following treatment with the major bioactive compounds of G. uralensis. The activity of CYP450 enzymes was investigated in human liver microsomes using the cocktail probe drug method, and the metabolites of specific probes were detected by UPLC‑MS/MS. The effects of G. uralensis on CYP450 were assessed using bioinformatics network analysis. Several compounds from G. uralensis had various effects on the expression and activity of multiple CYP450 isoforms. The majority of the compounds analysed the inhibited expression of CYP2D6 and CYP3A4. Several CYP isoforms were differentially modulated depending on the specific compound and dose tested. In conclusion, the present study suggested that G. uralensis influenced the expression and activity of CYP450 enzymes. Therefore, caution should be taken when G. uralensis is co‑administered with drugs that are known to be metabolized by CYP450. This study contributed to the knowledge of the mechanisms by which this medicinal plant, commonly known as licorice, modulates drug efficacy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaomei Zhang
- Center Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Yifan Feng
- Center Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Wen Rui
- Center Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Zhongfeng Shi
- Center Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Lirong Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
30
|
Dufay S, Worsley A, Monteillier A, Avanzi C, Sy J, Ng TF, Garcia JM, Lam MF, Vanhoutte P, Wong ICK. Herbal tea extracts inhibit Cytochrome P450 3A4 in vitro. ACTA ACUST UNITED AC 2014; 66:1478-90. [PMID: 24824478 DOI: 10.1111/jphp.12270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/23/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Ciclosporin and sirolimus, two immunosuppressive agents with narrow therapeutic windows, are mainly metabolized by Cytochrome 3A4 (CYP3A4). A clinical case of toxic blood levels of these drugs after the consumption of a '24-flavours' tea was reported. This study aims to identify the causative ingredients of the 24-flavour herbal tea in the inhibition of CYP3A4 metabolism. METHODS Two commercially available 24-flavour tea products purchased in Hong Kong and the six plant constituents were tested for their CYP3A4 inhibitory effects utilizing an in-vitro fluorometric assay. KEY FINDINGS Of the commercially available teas available in Hong Kong, the most potent inhibitory effect was observed with the tea consumed in the initial clinical case. Of the six universal constituents, chrysanthemum exhibited the greatest inhibitory effect, with an IC50 of 95.7 μg/ml. Dandelion, liquorice and bishop's weed have IC50 of 140.6, 148.4 and 185.5 μg/ml, respectively. Field mint and Japanese honeysuckle have weaker inhibitory effect on CYP3A4 with IC50 of 1153.3 and 1466.3 μg/ml. CONCLUSIONS This study confirms the possible implication of herbal tea constituents in the inhibition of ciclosporin and sirolimus' CYP3A4 metabolism. Combined usage of herbal teas with drug should be closely monitored.
Collapse
Affiliation(s)
- Sophie Dufay
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jia LL, Zhong ZY, Li F, Ling ZL, Chen Y, Zhao WM, Li Y, Jiang SW, Xu P, Yang Y, Hu MY, Liu L, Liu XD. The Aggravation of Clozapine-Induced Hepatotoxicity by Glycyrrhetinic Acid in Rats. J Pharmacol Sci 2014; 124:468-79. [DOI: 10.1254/jphs.13257fp] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
32
|
Yao Y, Zhang X, Wang Z, Zheng C, Li P, Huang C, Tao W, Xiao W, Wang Y, Huang L, Yang L. Deciphering the combination principles of Traditional Chinese Medicine from a systems pharmacology perspective based on Ma-huang Decoction. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:619-638. [PMID: 24064232 DOI: 10.1016/j.jep.2013.09.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE The main therapeutic concept in Traditional Chinese Medicine (TCM) is herb formula, which treats various diseases via potential herb interactions to maximize the efficacy and minimize the adverse effects. However, the combination principle of herb formula still remains a mystery due to the lack of appropriate methods. METHODS A systems pharmacology method integrating the pharmacokinetic analysis, drug targeting, and drug-target-disease network is developed to dissect this rule embedded in the herbal formula. All these are exemplified by a representative TCM formula, Ma-huang decoction, made up of four botanic herbs. RESULTS Based on the deep investigation of the function and compatibility of each herb, in a molecular/systems level, we demonstrate the different pharmacological roles that each herb might play in the prescription. By the way of enhancing the bioavailability and/or making the pharmacological synergy among different herbs, the four herbs effectively combine together to be suitable for treating diseases. CONCLUSIONS The present work lays foundations for a more comprehensive understanding of the combination rule of TCM, which might also be beneficial to drug development and applications.
Collapse
Affiliation(s)
- Yao Yao
- Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi 712100, China; College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kwan LPY, Mok MMY, Ma MKM, Lam MF. Acute drug toxicity related to drinking herbal tea in a kidney transplant recipient. Ren Fail 2013; 36:309-12. [DOI: 10.3109/0886022x.2013.846864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
|
35
|
Vrijens K, Lin W, Cui J, Farmer D, Low J, Pronier E, Zeng FY, Shelat AA, Guy K, Taylor MR, Chen T, Roussel MF. Identification of small molecule activators of BMP signaling. PLoS One 2013; 8:e59045. [PMID: 23527084 PMCID: PMC3602516 DOI: 10.1371/journal.pone.0059045] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 02/11/2013] [Indexed: 12/13/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are morphogens that play a major role in regulating development and homeostasis. Although BMPs are used for the treatment of bone and kidney disorders, their clinical use is limited due to the supra-physiological doses required for therapeutic efficacy causing severe side effects. Because recombinant BMPs are expensive to produce, small molecule activators of BMP signaling would be a cost-effective alternative with the added benefit of being potentially more easily deliverable. Here, we report our efforts to identify small molecule activators of BMP signaling. We have developed a cell-based assay to monitor BMP signaling by stably transfecting a BMP-responsive human cervical carcinoma cell line (C33A) with a reporter construct in which the expression of luciferase is driven by a multimerized BMP-responsive element from the Id1 promoter. A BMP-responsive clone C33A-2D2 was used to screen a bioactive library containing ∼5,600 small molecules. We identified four small molecules of the family of flavonoids all of which induced luciferase activity in a dose-dependent manner and ventralized zebrafish embryos. Two of the identified compounds induced Smad1, 5 phosphorylation (P-Smad), Id1 and Id2 expression in a dose-dependent manner demonstrating that our assays identified small molecule activators of BMP signaling.
Collapse
Affiliation(s)
- Karen Vrijens
- Departments of Tumor Cell Biology, Memphis, Tennessee, United States of America
| | - Wenwei Lin
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jimmy Cui
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Dana Farmer
- Departments of Tumor Cell Biology, Memphis, Tennessee, United States of America
| | - Jonathan Low
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Elodie Pronier
- Departments of Tumor Cell Biology, Memphis, Tennessee, United States of America
- Institut National de la Santé et de la Recherche Medicale, U1009, Institut Gustave Roussy, Villejuif, France
| | - Fu-Yue Zeng
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Anang A. Shelat
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Kiplin Guy
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Michael R. Taylor
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Taosheng Chen
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Martine F. Roussel
- Departments of Tumor Cell Biology, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
36
|
Omar HR, Komarova I, El-Ghonemi M, Fathy A, Rashad R, Abdelmalak HD, Yerramadha MR, Ali Y, Helal E, Camporesi EM. Licorice abuse: time to send a warning message. Ther Adv Endocrinol Metab 2012; 3. [PMID: 23185686 PMCID: PMC3498851 DOI: 10.1177/2042018812454322] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Licorice extract has always been recognized as a sweetener and a thirst quencher. Its nutritive value is overrated by many who consume significant amounts and are prone to complications. Glycyrrhetic acid, the active metabolite in licorice, inhibits the enzyme 11-ß-hydroxysteroid dehydrogenase enzyme type 2 with a resultant cortisol-induced mineralocorticoid effect and the tendency towards the elevation of sodium and reduction of potassium levels. This aldosterone-like action is the fundamental basis for understanding its health benefits and the wide spectrum of adverse effects. Herein, we present a comprehensive review of licorice along with the reported complications related to excess intake. Despite its apparent use in a few clinical scenarios, the daily consumption of licorice is never justified because its benefits are minor compared to the adverse outcomes of chronic consumption. The review highlights the importance of investigating the dietary habits and herbal remedies which are being used worldwide on cultural and habitual bases rather than reliable scientific evidence. Licorice is a US Food and Drug Administration (FDA) approved food supplement used in many products without precise regulations to prevent toxicity. Increased awareness among the public is required through TV commercials, newspapers, internet sites, magazines and product labels regarding the upper limit of ingestion and health hazards associated with excess intake. We hope that this review will serve as a warning message that should be transmitted from physicians to patients to avoid excessive licorice intake as well as a message to the FDA to start regulating the use of this substance.
Collapse
Affiliation(s)
- Hesham R Omar
- Internal Medicine Department, Mercy Hospital and Medical Center, 2525 South Michigan Avenue, Chicago, IL 60616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dickmann LJ, VandenBrink BM, Lin YS. In vitro hepatotoxicity and cytochrome P450 induction and inhibition characteristics of carnosic acid, a dietary supplement with antiadipogenic properties. Drug Metab Dispos 2012; 40:1263-7. [PMID: 22531045 DOI: 10.1124/dmd.112.044909] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carnosic acid is a phenolic diterpene isolated from rosemary (Rosmarinus officinalis), which may have anticancer, antiadipogenic, and anti-inflammatory properties. Recently, carnosic acid was shown to prevent weight gain and hepatic steatosis in a mouse model of obesity and type II diabetes. Based on these results, carnosic acid has been suggested as a potential treatment for obesity and nonalcoholic fatty liver disease; however, little is known about the safety of carnosic acid at doses needed to elicit a pharmacological effect. For this reason, hepatotoxicity and cytochrome P450 inhibition and induction studies were performed in primary human hepatocytes and microsomes. Measuring cellular ATP, carnosic acid showed a dose-dependent increase in hepatotoxicity with an EC(50) value of 94.8 ± 36.7 μM in three human hepatocyte donors without a concurrent increase in the apoptosis markers caspase-3/7. In human liver microsomes, carnosic acid did not exhibit significant time-dependent inhibition for any of the cytochrome P450 enzymes investigated, although it did inhibit CYP2C9- and CYP3A4-catalyzed reactions with K(i) values of 9.2 and 4.3 μM, respectively. Carnosic acid also induced CYP2B6 and CYP3A4 mRNA and enzyme activity in a dose-dependent manner. At 10 μM, carnosic acid increased CYP2B6 enzyme activity 61.6 and 49.3% in two donors compared with phenobarbital, and it increased CYP3A enzyme activity 82.6 and 142% compared with rifampicin. These results indicate the potential for drug interactions with carnosic acid and illustrate the need for an appropriate safety assessment before being used as a weight loss supplement.
Collapse
Affiliation(s)
- Leslie J Dickmann
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington, USA.
| | | | | |
Collapse
|
38
|
Jordan MA, Foste K, Gandhi A, Mohebbi N, Tehrani L. Assessment of herbal weight loss supplement counseling provided to patients by pharmacists and nonpharmacists in community settings. J Am Pharm Assoc (2003) 2011; 51:499-509, 1 p following 509. [PMID: 21752773 DOI: 10.1331/japha.2011.09233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To assess the extent of appropriate counseling provided to patients by pharmacists and nonpharmacists in retail settings regarding herbal dietary supplements for weight loss. DESIGN Descriptive, exploratory, nonexperimental study. SETTING Phoenix, AZ, metropolitan area, from June 2008 to January 2009. PARTICIPANTS Pharmacists and nonpharmacists (e.g., cashiers, sales clerks, pharmacy technicians) working in retail locations selling herbal dietary supplements (e.g., grocery stores, health food stores, pharmacies). INTERVENTION Investigators posing as patients sought herbal weight loss supplement product recommendations and counseling on potential safety, drug interaction, and adverse effect issues from pharmacists or nonpharmacists. MAIN OUTCOME MEASURES Level of knowledge regarding safety and efficacy of herbal dietary supplements for weight loss. RESULTS 52 sites were visited, and 27 unique product recommendations were given. In general, counseling provided to investigators/patients by pharmacists versus nonpharmacists varied significantly (P < 0.05) except when participants were asked about expected weight loss (P = 0.39) or use of herbal supplements during pregnancy (P = 0.07) and breast-feeding (P = 0.48). Pharmacists were more reluctant to recommend herbal products for weight loss than nonpharmacists and tended to question the safety and/or efficacy of these products or refer the patient to an alternate health care provider. CONCLUSION The counseling that investigators/patients received regarding herbal products for weight loss in various retail settings from both pharmacists and non-pharmacists varied greatly. Efforts are needed from the medical and herbal communities to ensure that patients are adequately informed about herbal products at the point of purchase.
Collapse
Affiliation(s)
- Melanie A Jordan
- College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA.
| | | | | | | | | |
Collapse
|
39
|
Mukherjee PK, Ponnusankar S, Pandit S, Hazam PK, Ahmmed M, Mukherjee K. Botanicals as medicinal food and their effects on drug metabolizing enzymes. Food Chem Toxicol 2011; 49:3142-53. [DOI: 10.1016/j.fct.2011.09.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/12/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
|
40
|
Messier C, Epifano F, Genovese S, Grenier D. Licorice and its potential beneficial effects in common oro-dental diseases. Oral Dis 2011; 18:32-9. [PMID: 21851508 DOI: 10.1111/j.1601-0825.2011.01842.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Licorice, the name given to the roots and stolons of Glycyrrhiza species, has been used since ancient times as a traditional herbal remedy. Licorice contains several classes of secondary metabolites with which numerous human health benefits have been associated. Recent research suggests that licorice and its bioactive ingredients such as glycyrrhizin, glabridin, licochalcone A, licoricidin, and licorisoflavan A possess potential beneficial effects in oral diseases. This paper reviews the effects of licorice and licorice constituents on both the oral microbial pathogens and the host immune response involved in common ora-dental diseases (dental caries, periodontitis, candidiasis, and recurrent aphthous ulcers). It also summarizes results of clinical trials that investigated the potential beneficial effects of licorice and its constituents for preventing/treating oro-dental diseases.
Collapse
Affiliation(s)
- C Messier
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | | | | | | |
Collapse
|
41
|
Abstract
Abstract
Several cancer treatments are shifting from traditional, time-limited, nonspecific cytotoxic chemotherapy cycles to continuous oral treatment with specific protein-targeted therapies. In this line, imatinib mesylate, a selective tyrosine kinases inhibitor (TKI), has excellent efficacy in the treatment of chronic myeloid leukemia. It has opened the way to the development of additional TKIs against chronic myeloid leukemia, including nilotinib and dasatinib. TKIs are prescribed for prolonged periods, often in patients with comorbidities. Therefore, they are regularly co-administered along with treatments at risk of drug-drug interactions. This aspect has been partially addressed so far, calling for a comprehensive review of the published data. We review here the available evidence and pharmacologic mechanisms of interactions between imatinib, dasatinib, and nilotinib and widely prescribed co-medications, including known inhibitors or inducers of cytochromes P450 or drug transporters. Information is mostly available for imatinib mesylate, well introduced in clinical practice. Several pharmacokinetic aspects yet remain insufficiently investigated for these drugs. Regular updates will be mandatory and so is the prospective reporting of unexpected clinical observations.
Collapse
|
42
|
Jiao Z, Shi XJ, Li ZD, Zhong MK. Population pharmacokinetics of sirolimus in de novo Chinese adult renal transplant patients. Br J Clin Pharmacol 2010; 68:47-60. [PMID: 19660003 DOI: 10.1111/j.1365-2125.2009.03392.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIMS This study was aimed at determining the population pharmacokinetics of sirolimus and identifying factors that explain pharmacokinetic variability in de novo Chinese adult renal transplant patients. METHODS Data were retrospectively extracted from a formal multicentre clinical trial, which was originally designed to evaluate the safety and efficacy of cyclosporin dose reduction and cyclosporin elimination in patients receiving sirolimus. All patients received 12-month treatment, i.e. induction therapy with cyclosporin, sirolimus and corticosteroids during the first 3 months followed by either cyclosporin dose reduction or cyclosporin discontinuation thereafter. Eight-hundred and four sirolimus trough blood concentrations (C(0)) from 112 patients were used to develop a population pharmacokinetic model using the NONMEM program. A one-compartment model with first-order absorption and elimination was selected as the base model. The influence of demographic characteristics, biochemical and haematological indices, cyclosporin daily dose, cyclosporin C(0) as well as other commonly used co-medications were explored. RESULTS The typical values with interindividual variability for apparent clearance (CL/F) and apparent volume of distribution (V/F) were 10.1 l h(-1) (23.8%) and 3670 l (56.7%), respectively. The residual variability was 29.9%. CL/F decreased significantly with silymarin or glycyrrhizin co-therapy in hepatically impaired patients, and with increasing total cholesterol levels or cyclosporin C(0). Moreover, CL/F increased nonlinearly with increasing sirolimus daily dose. The median parameter estimates from a nonparametric bootstrap procedure were comparable and within 5% of the estimates from NONMEM. CONCLUSIONS These results provide important information for clinicians to optimize sirolimus regimens in Chinese renal transplant patients.
Collapse
Affiliation(s)
- Zheng Jiao
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 12 Wu Lu Mu Qi M Road, Shanghai, China
| | | | | | | |
Collapse
|
43
|
Takashima Y, Kaneko Y, Kobayashi Y. Synthetic access to optically active isoflavans by using allylic substitution. Tetrahedron 2010. [DOI: 10.1016/j.tet.2009.10.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Lee JY, Lee JH, Park JH, Kim SY, Choi JY, Lee SH, Kim YS, Kang SS, Jang EC, Han Y. Liquiritigenin, a licorice flavonoid, helps mice resist disseminated candidiasis due to Candida albicans by Th1 immune response, whereas liquiritin, its glycoside form, does not. Int Immunopharmacol 2009; 9:632-8. [DOI: 10.1016/j.intimp.2009.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 02/21/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
|
45
|
|
46
|
Dreiseitel A, Schreier P, Oehme A, Locher S, Hajak G, Sand PG. Anthocyanins and their metabolites are weak inhibitors of cytochrome P450 3A4. Mol Nutr Food Res 2009; 52:1428-33. [PMID: 18727015 DOI: 10.1002/mnfr.200800043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cytochrome P450 enzyme cytochrome P450 3A4 (CYP3A4) controls the metabolism of about 60% of all drugs, and its inhibition may dramatically affect drug safety. Modulation of cytochrome P450 activity has been observed by constituents of fruit extracts including several flavonoids. The present investigation addresses CYP3A4 inhibition by anthocyanins, their aglycons, proanthocyanidins, and phenolic metabolites using a chemiluminescent assay. Test compounds inhibited CYP3A4 activity in a concentration-dependent manner featuring IC(50) values from 12.2 up to 7,842 microM. In the order of decreasing effect size, anthocyanidins were followed by anthocyanins, proanthocyanidins, and phenolic acids. When compared to earlier data on furanocoumarins from grapefruit extract, the inhibitory activity of tested anthocyanins, and anthocyanidins was shown to be about 10,000-fold weaker, and was negligible for phenolic acids (>100 000-fold weaker). Future studies are invited to address effects of the above flavonoids on other CYP isoforms for more detailed toxicity profiles.
Collapse
Affiliation(s)
- Andrea Dreiseitel
- Department of Psychiatry, University of Regensburg, Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Kupfer R, Swanson L, Chow S, Staub RE, Zhang YL, Cohen I, Christians U. Oxidative in vitro metabolism of liquiritigenin, a bioactive compound isolated from the Chinese herbal selective estrogen beta-receptor agonist MF101. Drug Metab Dispos 2008; 36:2261-9. [PMID: 18669586 DOI: 10.1124/dmd.108.021402] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Liquiritigenin [2,3-dihydro-7-hydroxy-2-(4-hydroxyphenyl)-(S)-4H-1-benzopyran-4-one] is one of the major active compounds of MF101, an herbal extract currently in clinical trials for the treatment of hot flashes and night sweats in postmenopausal women. MF101 is a selective estrogen receptor beta agonist but does not activate the estrogen receptor alpha. Incubation with pooled human liver microsomes yielded a single metabolite. Its structure was elucidated using tandem mass spectrometry in combination with analysis of the fragmentation patterns. The metabolite resulted from the loss of two hydrogens and rearrangement to the stable 7,4'-dihydroxyflavone. The structure was also confirmed by comparison with authentic standard material. Maximum apparent reaction velocity (V(max)) and Michaelis-Menten constant (K(m)) for the formation of 7,4'-dihydroxyflavone were 32.5 nmol/g protein/min and 128 microM, respectively. After correction for protein binding (free fraction = 0.84), the apparent intrinsic clearance (CL(int)) for 7,4'-dihydroxyflavone formation was 0.3 ml/g/min. Liquiritigenin was almost exclusively metabolized by CYP3A enzymes. Comparison of liquiritigenin metabolism in human liver microsomes isolated from 16 individuals showed 9.5-fold variability in metabolite formation (3.4-32.2 nmol/g protein/min). An estrogen receptor luciferase assay indicated that the metabolite was a 3-fold more potent activator of the estrogen receptor beta than the parent compound and did not activate the estrogen receptor alpha.
Collapse
|
48
|
Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 2008; 22:709-24. [PMID: 18446848 PMCID: PMC7167813 DOI: 10.1002/ptr.2362] [Citation(s) in RCA: 745] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/01/2007] [Accepted: 08/10/2007] [Indexed: 12/15/2022]
Abstract
The roots and rhizomes of licorice (Glycyrrhiza) species have long been used worldwide as a herbal medicine and natural sweetener. Licorice root is a traditional medicine used mainly for the treatment of peptic ulcer, hepatitis C, and pulmonary and skin diseases, although clinical and experimental studies suggest that it has several other useful pharmacological properties such as antiinflammatory, antiviral, antimicrobial, antioxidative, anticancer activities, immunomodulatory, hepatoprotective and cardioprotective effects. A large number of components have been isolated from licorice, including triterpene saponins, flavonoids, isoflavonoids and chalcones, with glycyrrhizic acid normally being considered to be the main biologically active component. This review summarizes the phytochemical, pharmacological and pharmacokinetics data, together with the clinical and adverse effects of licorice and its bioactive components.
Collapse
Affiliation(s)
- Marjan Nassiri Asl
- Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, IR Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, IR Iran
| |
Collapse
|
49
|
Maeda Y, Inaba N, Aoyagi M, Tanase T, Shiigai T. Pseudoaldosteronism caused by combined administration of cilostazol and glycyrrhizin. Intern Med 2008; 47:1345-8. [PMID: 18628584 DOI: 10.2169/internalmedicine.47.1080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a case of obvious pseudoaldosteronism which occurred after the additional administration of cilostazol against arteriosclerosis obliterans (ASO) for bilateral legs in a 65 year-old man patient who had safely received glycyrrhizin for the previous ten years. Serum potassium level of the patient had been kept above 4 mEq/L until initiating cilostazol in November, 2006, then gradually decreased to 2.5 mEq/L for the following seven months. Both plasma renin activity and aldosterone were suppressed under co-administration of the angiotensin converting enzyme inhibitor, imidapril and the angiotensin II receptor blocker, olmesartan, both of which had been prescribed for longer than a year. Urinary potassium excretion was accelerated even in the critical level of hypokalemia. Because other drugs and supplements had not been changed at least for a year, pseudoaldosteronism caused by the combination of glycyrrhizin and another triggering factor, possibly cilostazol was highly suspected. By discontinuation of glycyrrhizin, potassium supplement, and the additional administration of the aldosterone blocker, spironolactone, the serum potassium level returned to the normal level two weeks later, even though cilostazol had been continued to avoid progression in his ASO. This is the first report of a case exhibiting pseudoaldosteronism induced by the interaction of glycyrrhizin with cilostazol, not by glycyrrhizin alone.
Collapse
Affiliation(s)
- Yoshitaka Maeda
- Nephrology Division, Department of Internal Medicine, Toride Kyodo General Hospital, Toride.
| | | | | | | | | |
Collapse
|
50
|
Ikehata M, Ohnishi N, Matsumoto T, Kiyohara Y, Maeda A, Kawakita T, Takara K, Yokoyama T. Effects of Sairei-to on the pharmacokinetics of nifedipine in rats. Phytother Res 2007; 22:12-7. [PMID: 17639561 DOI: 10.1002/ptr.2234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sairei-to is a traditional herbal medicine used to complement, and as an alternative to, Western drugs. The aim of this study was to evaluate the pharmacokinetic interactions between Sairei-to and nifedipine (NFP), a substrate for CYP3A, in rats. NFP-oxidizing activity and the pharmacokinetics of NFP were examined after a single or 1-week of administration of Sairei-to (EK-114). NFP-oxidizing activity was enhanced transiently around 24 h after a single administration of EK-114 (1400 mg/kg). In vivo, the first-pass metabolism of NFP increased in the small intestine at 24 h after the administration of EK-114, and this effect disappeared at 72 h. Co-administration of EK-114 tended to inhibit the metabolism of NFP. On the other hand, when EK-114 was given at a high dose (1400 mg/kg) for 1 week, the oxidation of NFP in the small intestine was inhibited, and Cmax and AUC after the oral administration of NFP increased. In addition, a clinical dose of EK-114 (140 mg/kg) did not alter the pharmacokinetics of NFP, regardless of the administration schedule. EK-114 was suggested to affect the metabolism of NFP. However, the CYP3A-mediated pharmacokinetic interaction on the concomitant use of EK-114 may not be clinically significant.
Collapse
Affiliation(s)
- Mika Ikehata
- Department of Hospital Pharmacy, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | | | | | | | | | | | |
Collapse
|