1
|
Li H, Gao W, Wang H, Zhang H, Huang L, Yuan T, Zheng W, Wu Q, Liu J, Xu W, Wang W, Yang L, Zhu Y. Evidence from an Avian Embryo Model that Zinc-Inducible MT4 Expression Protects Mitochondrial Function Against Oxidative Stress. J Nutr 2024; 154:896-907. [PMID: 38301957 DOI: 10.1016/j.tjnut.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Metallothioneins (MTs) have a strong affinity for zinc (Zn) and remain at a sufficiently high level in mitochondria. As the avian embryo is highly susceptible to oxidative damage and relatively easy to manipulate in a naturally closed chamber, it is an ideal model of the effects of oxidative stress on mitochondrial function. However, the protective roles and molecular mechanisms of Zn-inducible protein expression on mitochondrial function in response to various stressors are poorly understood. OBJECTIVES The study aimed to investigate the mechanisms by which Zn-induced MT4 expression protects mitochondrial function and energy metabolism subjected to oxidative stress using the avian embryo and embryonic primary hepatocyte models. METHODS First, we investigated whether MT4 expression alters mitochondrial function. Then, we examined the effects of Zn-induced MT4 overexpression and MT4 silencing on embryonic primary hepatocytes from breeder hens fed a normal Zn diet subjected to a tert-butyl hydroperoxide (BHP) oxidative stress challenge during incubation. In vivo, the avian embryos from hens fed the Zn-deficient and Zn-adequate diets were used to determine the protective roles of Zn-induced MT4 expression on the function of mitochondria exposed to oxidative stress induced by in ovo BHP injection. RESULTS An in vitro study revealed that Zn-induced MT4 expression reduced reactive oxygen species accumulation in primary hepatocytes. MT4 silencing exacerbated BHP-mediated mitochondrial dysfunction whereas Zn-inducible MT4 overexpression mitigated it. Another in vivo study disclosed that maternal Zn-induced MT4 expression protected mitochondrial function in chick embryo hepatocytes against oxidative stress by inhibiting the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)/peroxisome proliferators-activated receptor-γ (PPAR-γ) pathway. CONCLUSION This study underscores the potential protective roles of Zn-induced MT4 expression via the downregulation of the PGC-1α/PPAR-γ pathway on mitochondrial function stimulated by the stress challenge in the primary hepatocytes in an avian embryo model. Our findings suggested that Zn-induced MT4 expression could provide a new therapeutic target and preventive strategy for repairing mitochondrial dysfunction in disease.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Wei Gao
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Heng Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Huaqi Zhang
- College of Agriculture, Tongren Polytechnic University, Tongren, People's Republic of China
| | - Liang Huang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Tong Yuan
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Wenxuan Zheng
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Qilin Wu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Ju Liu
- Department of Poultry Breeding, Enping Long Industrial Co. Ltd., Enping, People's Republic of China
| | - Weihan Xu
- Department of Poultry Breeding, Zhengzhi Poultry Industry Co. Ltd., Shantou, People's Republic of China
| | - Wence Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Lin Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China.
| | - Yongwen Zhu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China.
| |
Collapse
|
2
|
Pellei M, Del Bello F, Porchia M, Santini C. Zinc coordination complexes as anticancer agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214088] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Making a case for metallothioneins conferring cardioprotection in pulmonary hypertension. Med Hypotheses 2020; 137:109572. [DOI: 10.1016/j.mehy.2020.109572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/30/2019] [Accepted: 01/15/2020] [Indexed: 11/23/2022]
|
4
|
Chan S, Wang R, Man K, Nicholls J, Li H, Sun H, Chan GCF. A Novel Synthetic Compound, Bismuth Zinc Citrate, Could Potentially Reduce Cisplatin-Induced Toxicity Without Compromising the Anticancer Effect Through Enhanced Expression of Antioxidant Protein. Transl Oncol 2019; 12:788-799. [PMID: 30921749 PMCID: PMC6438849 DOI: 10.1016/j.tranon.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is a common anticancer drug, but it comes with significant nephrotoxicity. Further cisplatin-induced oxidative stress contributes to the pathogenesis of the nephrotoxicity. A new compound, BiZn, can potentially prevent this complication. We verified our postulation by in vitro and in vivo models. From our findings, BiZn did not affect cisplatin-induced cytotoxicity on neuroblastoma cells under both in vitro and in vivo settings. However, BiZn significantly reduced the blood urea nitrogen and creatinine levels in cisplatin-treated mice. Under the lethal dosage of cisplatin, co-treatment of BiZn significantly increased the survival rate. BiZn stimulated antioxidant proteins metallothionein (MT) and glutathione (GSH) generation from kidney cells and minimized cisplatin-induced apoptosis. Knocking down MT-IIA and inhibiting GSH abolished such protection. In conclusion, pretreatment of BiZn decreased cisplatin-induced renal toxicity without affecting its antitumor activity. BiZn-induced antioxidant proteins MT and GSH may contribute to the renal protection effect.
Collapse
Affiliation(s)
- Shing Chan
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong
| | - Runming Wang
- Department of Chemistry, Faculty of Science, The University of Hong Kong
| | - Kwan Man
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong
| | - John Nicholls
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong
| | - Hongyan Li
- Department of Chemistry, Faculty of Science, The University of Hong Kong
| | - Hongzhe Sun
- Department of Chemistry, Faculty of Science, The University of Hong Kong.
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong.
| |
Collapse
|
5
|
Zhang M, Liu S, Takano T, Zhang X. The interaction between AtMT2b and AtVDAC3 affects the mitochondrial membrane potential and reactive oxygen species generation under NaCl stress in Arabidopsis. PLANTA 2019; 249:417-429. [PMID: 30225672 DOI: 10.1007/s00425-018-3010-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
AtMT2b interacts with AtVDAC3 in mitochondria in Arabidopsis. The overexpression of the AtMT2b and AtVDAC3 T-DNA insertion mutant confers tolerance to NaCl stress in Arabidopsis. Both AtMT2b and AtVDAC3 are involved in the regulation of the mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) under NaCl stress. Metallothioneins (MTs) are small, cysteine rich, metal-binding proteins that perform multiple functions, such as heavy metal detoxification and reactive oxygen species (ROS) scavenging. MTs have been reported to be involved in mitochondrial function in mammals. However, whether a direct relationship exists between MTs and mitochondrial proteins remains unclear. In the present study, we used yeast two-hybrid and bimolecular fluorescence complementation assays to demonstrate that AtMT2b, which is a type 2 MT in Arabidopsis, interacts with the outer mitochondrial membrane voltage-dependent anion channel AtVDAC3. AtMT2b bound AtVDAC3, leading to its co-localization in mitochondria. AtMT2b transgenic seedlings exhibited increased tolerance to salt stress, and the atvdac3 mutant showed a similar phenotype. The mitochondrial membrane potential (MMP) was maintained, and ROS generation was reduced following AtMT2b overexpression and AtVDAC3 knockout under NaCl stress. Both AtMT2b and AtVDAC3 were shown to be involved in MMP regulation and ROS production under NaCl stress but showed opposite effects. We conclude that AtMT2b might negatively interact with AtVDAC3 in mitochondria, and both proteins are involved in the regulation of MMP and ROS under NaCl stress.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China
- School of Medicine, He University, Shenyang, 110163, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Tetsuo Takano
- Asian Natural Environment Science Center (ANESC), The University of Tokyo, 1-1-1 Midori Cho, Nishitokyo-shi, Tokyo, 188-0002, Japan
| | - Xinxin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
6
|
Antioxidative Role of Buffalo (Bubalus bubalis) Colostrum Whey Derived Peptides During Oxidative Damage. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9795-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Pulmonary arterial hypertension and the potential roles of metallothioneins: A focused review. Life Sci 2018; 214:77-83. [PMID: 30355531 DOI: 10.1016/j.lfs.2018.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022]
Abstract
The pathophysiology of pulmonary arterial hypertension (PAH) is underlined by cell proliferation and vasoconstriction of pulmonary arterioles this involves multiple molecular factors or proteins, but it is not clear what the exact roles of these factors/proteins are. In addition, there may be other factors/proteins that have not been identified that contribute to PAH pathophysiology. Therefore, research has focused on investigating novel role players, in order to facilitate a better understanding of how PAH develop. Evidence suggest that mitochondrial regulators are key role players in PAH pathophysiology, but regulators that have not received sufficient attention in PAH are metallothioneins (MTs). In PAH patients, MT expression is elevated compared to healthy individuals, suggesting that MTs may be possible biomarkers. In other disease-models, MTs have been shown to regulate cell proliferation and vasoconstriction, processes that are instrumental in PAH pathophysiology. Due to the involvement of these processes in PAH pathophysiology and the ability of MTs to modulate them, this paper propose that cellular MTs may also play a role in PAH development. This paper suggests that PAH-research should perhaps begin to investigate the involvement of cellular MTs in the development of PAH.
Collapse
|
8
|
Wang X, Hai C. Novel insights into redox system and the mechanism of redox regulation. Mol Biol Rep 2016; 43:607-28. [DOI: 10.1007/s11033-016-4022-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
|
9
|
Wang X, Hai C. Redox modulation of adipocyte differentiation: hypothesis of "Redox Chain" and novel insights into intervention of adipogenesis and obesity. Free Radic Biol Med 2015; 89:99-125. [PMID: 26187871 DOI: 10.1016/j.freeradbiomed.2015.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 02/08/2023]
Abstract
In view of the global prevalence of obesity and obesity-associated disorders, it is important to clearly understand how adipose tissue forms. Accumulating data from various laboratories implicate that redox status is closely associated with energy metabolism. Thus, biochemical regulation of the redox system may be an attractive alternative for the treatment of obesity-related disorders. In this work, we will review the current data detailing the role of the redox system in adipocyte differentiation, as well as identifying areas for further research. The redox system affects adipogenic differentiation in an extensive way. We propose that there is a complex and interactive "redox chain," consisting of a "ROS-generating enzyme chain," "combined antioxidant chain," and "transcription factor chain," which contributes to fine-tune the regulation of ROS level and subsequent biological consequences. The roles of the redox system in adipocyte differentiation are paradoxical. The redox system exerts a "tridimensional" mechanism in the regulation of adipocyte differentiation, including transcriptional, epigenetic, and posttranslational modulations. We suggest that redoxomic techniques should be extensively applied to understand the biological effects of redox alterations in a more integrated way. A stable and standardized "redox index" is urgently needed for the evaluation of the general redox status. Therefore, more effort should be made to establish and maintain a general redox balance rather than to conduct simple prooxidant or antioxidant interventions, which have comprehensive implications.
Collapse
Affiliation(s)
- Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
10
|
Vázquez-Martínez O, Pérez-Mendoza M, Valente-Godínez H, Revueltas-Guillén F, Carmona-Castro A, Díaz-Muñoz M, Miranda-Anaya M. Day-night variations in pro-oxidant reactions of hypothalamic, hepatic and pancreatic tissue in mice with spontaneous obesity (Neotomodon alstoni). BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1108061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Higashimoto M, Isoyama N, Ishibashi S, Ogawa N, Takiguchi M, Suzuki S, Ohnishi Y, Sato M. Preventive effects of metallothionein against DNA and lipid metabolic damages in dyslipidemic mice under repeated mild stress. THE JOURNAL OF MEDICAL INVESTIGATION 2014; 60:240-8. [PMID: 24190042 DOI: 10.2152/jmi.60.240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The effects of repeated mild stress on DNA and lipid metabolic damages in multiple organs of dyslipidemic mice, and the preventive role of metallothionein (MT) were investigated. Female adult wild-type and MT-null mice fed high-fat diet (HFD) or standard diet (STD) were repeatedly subjected to fasting or restraint for three weeks. The liver, pancreas, spleen, bone marrow and serum samples were taken for evaluating DNA damage, MT, glutathione (GSH), corticosterone, carnitine and adiponectin. Body weights of restraint groups were reduced with the intensity of stress increased, even if the energy intakes were higher than those of STD group. Hepatic GSH levels were reduced in HFD control group and were further reduced in stress groups, especially in restraint groups, while the hepatic MT and serum corticosterone levels were increased in concert with the intensity of stress. Cellular DNA damages were generally increased by the restraint stress, especially in MT-null mice. Hepatic carnitine levels of MT-null mice were markedly lower than those of wild-type mice. The data suggest that MT plays a preventive role by acting as an antioxidant in corporation with GSH decreased by repeated stress and that MT may be an essential factor for inducing carnitine under the stress.
Collapse
|
12
|
Murakami S, Miyazaki I, Sogawa N, Miyoshi K, Asanuma M. Neuroprotective Effects of Metallothionein Against Rotenone-Induced Myenteric Neurodegeneration in Parkinsonian Mice. Neurotox Res 2014; 26:285-98. [DOI: 10.1007/s12640-014-9480-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 12/21/2022]
|
13
|
Kommuguri UN, Satyaprasad Pallem PV, Bodiga S, Bodiga VL. Effect of dietary antioxidants on the cytostatic effect of acrylamide during copper-deficiency in Saccharomyces cerevisiae. Food Funct 2014; 5:705-15. [DOI: 10.1039/c3fo60483g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Yeast grown on a copper deficient medium was used to study acrylamide toxicity, obviating the need for genetic manipulation and accompanying compensatory effects.
Collapse
Affiliation(s)
| | | | - Sreedhar Bodiga
- Department of Biochemistry
- Kakatiya University
- Warangal, India
| | | |
Collapse
|
14
|
Fan C, Garcia M, Scherer M, Tran C, Xian CJ. Potential roles of metallothioneins I and II in protecting bone growth following acute methotrexate chemotherapy. J Chemother 2013; 26:37-48. [PMID: 24090452 DOI: 10.1179/1973947813y.0000000108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Metallothioneins (MTs) are known to participate in protection against oxidative stress. This study assessed the effects of MT-I&II gene knockout on methotrexate (MTX)-induced bone damage in growing mice. MT-I&II knockout (MT⁻/⁻) and wild type (MT⁺/⁺) male mice were injected with saline or 12.5 mg kg⁻¹ MTX for three consecutive days. MTX treatment was shown to cause more severe damage in MT⁻/⁻ mice when compared to MT⁺/⁺ mice, as demonstrated by the more obvious thinning of growth plate, reduced proliferation and increased apoptosis of chondrocytes, and reduced metaphysis heights in the knockout mice. Analysis of total liver glutathione (the most abundant intracellular antioxidant) also revealed significant lower glutathione levels in all MT⁻/⁻ mice. In conclusion, MT⁻/⁻ mice were more susceptible than MT⁺/⁺ mice to MTX-induced bone damages, which may be associated with the reduction of basal antioxidant defence, suggesting a protective role of MTs in the growing skeleton against damages caused by MTX chemotherapy.
Collapse
|
15
|
Caetano AC, da Veiga LF, Capaldi FR, de Alencar SM, Azevedo RA, Bezerra RMN. The antioxidant response of the liver of male Swiss mice raised on a AIN 93 or commercial diet. BMC PHYSIOLOGY 2013; 13:3. [PMID: 23347792 PMCID: PMC3564843 DOI: 10.1186/1472-6793-13-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 01/16/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS) are formed under natural physiological conditions and are thought to play an important role in many human diseases. A wide range of antioxidants are involved in cellular defense mechanisms against ROS, which can be generated in excess during stressful conditions, these include enzymes and non-enzymatic antioxidants. The aim of this study was to evaluate the antioxidant responses of mice to two diets control, commercial and the purified AIN 93 diet, commonly used in experiments with rodents. RESULTS Malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations and superoxide dismutase (SOD) and glutathione reductase (GR) activities determined in the liver were lower in the group of mice fed with the AIN 93 diet, while catalase (CAT) activity was higher in the same group, when compared to the group fed on the commercial diet. Liver glutathione peroxidase (GSH-Px) activity was similar in the groups fed on either AIN 93 or the commercial diets. Two SOD isoforms, Mn-SODII and a Cu/Zn-SODV, were specifically reduced in the liver of the AIN 93 diet fed animals. CONCLUSIONS The clear differences in antioxidant responses observed in the livers of mice fed on the two diets suggest that the macro- and micro-nutrient components with antioxidant properties, including vitamin E, can promote changes in the activity of enzymes involved in the removal of the ROS generated by cell metabolism.
Collapse
Affiliation(s)
- Aline C Caetano
- Postgraduate Program in Food Science and Technology, Escola Superior de Agricultura “Luiz de Queiroz”, University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Lucimara F da Veiga
- Department of Agri- Food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Flávia R Capaldi
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Severino M de Alencar
- Department of Agri- Food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Ricardo A Azevedo
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Rosangela MN Bezerra
- School of Applied Sciences, University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Jd Sta Luiza, 13484-350, Limeira, São Paulo, Brazil
| |
Collapse
|
16
|
Han YH, Kim SZ, Kim SH, Park WH. 2,4-Dinitrophenol induces apoptosis in As4.1 juxtaglomerular cells through rapid depletion of GSH. Cell Biol Int 2013; 32:1536-45. [DOI: 10.1016/j.cellbi.2008.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 07/10/2008] [Accepted: 08/19/2008] [Indexed: 12/16/2022]
|
17
|
Krizkova S, Ryvolova M, Hrabeta J, Adam V, Stiborova M, Eckschlager T, Kizek R. Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab Rev 2012; 44:287-301. [PMID: 23050852 DOI: 10.3109/03602532.2012.725414] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metallothioneins (MTs) are involved in protection against oxidative stress (OS) and toxic metals and they participate in zinc metabolism and its homeostasis. Disturbing of zinc homeostasis can lead to formation of reactive oxygen species, which can result in OS causing alterations in immunity, aging, and civilization diseases, but also in cancer development. It is not surprising that altered zinc metabolism and expression of MTs are of great interest in the case of studying of oncogenesis and cancer prognosis. The role of MTs and zinc in cancer development is tightly connected, and the structure and function of MTs are strongly dependent on Zn²⁺ redox state and its binding to proteins. Antiapoptic effects of MTs and their interactions with proteins nuclear factor kappa B, protein kinase C, esophageal cancer-related gene, and p53 as well as the role of MTs in their proliferation, immunomodulation, enzyme activation, and interaction with nitric oxide are reviewed. Utilization of MTs in cancer diagnosis and therapy is summarized and their importance for chemoresistance is also mentioned.
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
18
|
Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R. Mammalian metallothioneins: properties and functions. Metallomics 2012; 4:739-50. [PMID: 22791193 DOI: 10.1039/c2mt20081c] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metallothioneins (MT) are a family of ubiquitous proteins, whose role is still discussed in numerous papers, but their affinity to some metal ions is undisputable. These cysteine-rich proteins are connected with antioxidant activity and protective effects on biomolecules against free radicals, especially reactive oxygen species. In this review, the connection between zinc(II) ions, reactive oxygen species, heavy metal ions and metallothioneins is demonstrated with respect to effect of these proteins on cell proliferation and a possible negative role in resistance to heavy metal-based and non-heavy metal-based drugs.
Collapse
Affiliation(s)
- Petr Babula
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Uncoupling oxidative phosphorylation with 2,4-dinitrophenol promotes development of the adhesion phenotype. Fertil Steril 2012; 97:729-33. [DOI: 10.1016/j.fertnstert.2011.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/02/2011] [Accepted: 12/06/2011] [Indexed: 12/24/2022]
|
20
|
Rabelo TK, Zeidán-Chuliá F, Vasques LM, dos Santos JPA, da Rocha RF, Pasquali MADB, Rybarczyk-Filho JL, Araújo AAS, Moreira JCF, Gelain DP. Redox characterization of usnic acid and its cytotoxic effect on human neuron-like cells (SH-SY5Y). Toxicol In Vitro 2011; 26:304-14. [PMID: 22186154 DOI: 10.1016/j.tiv.2011.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 01/09/2023]
Abstract
Usnic acid (UA) is the most common and abundant lichenic secondary metabolite with potential therapeutic application. Anti-inflammatory and antitumour properties have already been reported and UA-enriched extracts are widely used to treat several diseases in the folk medicine. First, we performed in silico evaluation of UA interactions with genes/proteins and important compounds for cellular redox balance and NO pathway. Then, we assessed UA redox properties against different reactive species (RS) generated in vitro, and evaluated its action on SH-SY5Y neuronal like cells upon hydrogen peroxide (H(2)O(2)), since no in vitro neurotoxicological data has been reported so far. Total reactive antioxidant potential index (TRAP) showed a significant antioxidant capacity of UA at the highest tested concentration; UA was also effective against hydroxyl radicals and reduced the formation of nitric oxide. In vitro, lipoperoxidation was enhanced by UA and changed the cellular viability at highest concentration of 20μg/mL for 1 and 4h, as well as 2 and 20μg/mL for 24h of treatment, according to MTT reduction assay. Moreover, UA did not display protective effects against H(2)O(2)-induced cell death in any case. Evaluation of intracellular RS production by the DCFH-based assay indicated that UA was able to induce changes in basal RS production at concentration of 20μg/mL for 1h and from 2ng/mL to 20μg/mL for 4 and 24h. In conclusion, UA could display variable redox-active properties, according to different system conditions and/or cellular environment. Moreover, our results suggest that potential neurotoxicological effects of UA should be further studied by additional approaches; for instance, in vivo and clinical studies.
Collapse
Affiliation(s)
- Thallita Kelly Rabelo
- Laboratory of Pharmaceutical Assays and Toxicity, Federal University of Sergipe (LeFT/UFS), São Cristóvão, SE, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Michael GJ, Esmailzadeh S, Moran LB, Christian L, Pearce RKB, Graeber MB. Up-regulation of metallothionein gene expression in parkinsonian astrocytes. Neurogenetics 2011; 12:295-305. [PMID: 21800131 DOI: 10.1007/s10048-011-0294-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
Abstract
The role of glial cells in Parkinson's disease (PD) is unclear. We have previously reported a striking up-regulation of DnaJB6 heat shock protein in PD substantia nigra astrocytes. Whole genome transcriptome analysis also indicated increased expression of metallothionein genes in substantia nigra and cortex of sporadic PD cases. Metallothioneins are metal-binding proteins in the CNS that are released by astrocytes and associated with neuroprotection. Metallothionein expression was investigated in 18 PD cases and 15 non-PD controls using quantitative real-time polymerase chain reaction (qRT-PCR), in situ hybridisation (ISH) and immunocytochemistry (ICC). We observed a strong increase in the expression of metallothioneins MT1E, MT1F, MT1G, MT1H, MT1M, MT1X and MT2A in both PD nigra and frontal cortex. Expression of LRP2 (megalin), the neuronal metallothionein receptor was also significantly increased. qRT-PCR confirmed metallothionein up-regulation. Astrocytes were found to be the main source of metallothioneins 1 and 2 based on ISH results, and this finding was confirmed by ICC. Our findings demonstrate metallothionein expression by reactive astrocytes in PD nigra and support a neuroprotective role for these cells. The traditional view that nigral astrocytes are non-reactive in PD is clearly incorrect. However, it is possible that astrocytes are themselves affected by the disease process which may explain their comparatively modest and previously overlooked response.
Collapse
Affiliation(s)
- Gregory J Michael
- Centre for Neuroscience and Trauma, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London E1 2AT, UK
| | | | | | | | | | | |
Collapse
|
22
|
Swindell WR. Metallothionein and the biology of aging. Ageing Res Rev 2011; 10:132-45. [PMID: 20933613 DOI: 10.1016/j.arr.2010.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/24/2010] [Accepted: 09/24/2010] [Indexed: 12/22/2022]
Abstract
Metallothionein (MT) is a low molecular weight protein with anti-apoptotic properties that has been demonstrated to scavenge free radicals in vitro. MT has not been extensively investigated within the context of aging biology. The purpose of this review, therefore, is to discuss findings on MT that are relevant to basic aging mechanisms and to draw attention to the possible role of MT in pro-longevity interventions. MT is one of just a handful of proteins that, when overexpressed, has been demonstrated to increase mouse lifespan. MT also protects against development of obesity in mice provided a high fat diet as well as diet-induced oxidative stress damage. Abundance of MT is responsive to caloric restriction (CR) and inhibition of the insulin/insulin-like signaling (IIS) pathway, and elevated MT gene expression has been observed in tissues from fasted and CR-fed mice, long-lived dwarf mice, worms maintained under CR conditions, and long-lived daf-2 mutant worms. The dysregulation of MT in these systems is likely to have tissue-specific effects on aging outcomes. Further investigation will therefore be needed to understand how MT contributes to the response of invertebrates and mice to CR and the endocrine mutations studied by aging researchers.
Collapse
Affiliation(s)
- William R Swindell
- Department of Genetics, Harvard Medical School New Research Building, Room 0464, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Schnackenberg B, Saini U, Robinson B, Ali S, Patterson T. An acute dose of gamma-hydroxybutyric acid alters gene expression in multiple mouse brain regions. Neuroscience 2010; 170:523-41. [DOI: 10.1016/j.neuroscience.2010.06.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/04/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
|
24
|
Fu Z, Guo J, Jing L, Li R, Zhang T, Peng S. Enhanced toxicity and ROS generation by doxorubicin in primary cultures of cardiomyocytes from neonatal metallothionein-I/II null mice. Toxicol In Vitro 2010; 24:1584-91. [PMID: 20600803 DOI: 10.1016/j.tiv.2010.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/02/2010] [Accepted: 06/17/2010] [Indexed: 11/30/2022]
Abstract
The clinical use of doxorubicin (Dox), a potent anticancer drug, is limited by its concurrent dose-dependent cardiotoxicity. We previously found that metallothionein-I/II (MT-I/II) null mice are more vulnerable to Dox-induced cardiomyopathy, but it is unknown whether depletion of MT would sensitize cardiomyocytes to Dox toxicity in vitro since the protective effect of MT still remains controversial. In the present study, a primary culture system of cardiomyocytes from neonatal MT-I/II null (MT(-/-)) and corresponding wild type (MT(+/+)) mice was established to unequivocally determine the effect of MT deficiency on Dox-induced toxicity. MT concentrations in the MT(-/-) cardiomyocytes were about 2.5-fold lower than those in MT(+/+) cardiomyocytes. MT(-/-) cardiomyocytes were more sensitive to Dox-induced cytotoxicity than MT(+/+) cardiomyocytes as measured by morphological alterations, lactate dehydrogenase leakage, cell viability, and apoptosis. Dox time- and concentration-dependently increased reactive oxygen species (ROS) formation in MT(+/+) cardiomyocytes, and this effect was exaggerated in MT(-/-) cardiomyocytes. Antioxidant N-acetylcysteine (NAC) and glutathione (GSH) significantly rescued MT(+/+) but not MT(-/-)cardiomyocytes from Dox-induced cell death and ROS generation. These findings suggest that basal MT provide protection against Dox-induced toxicity in cardiomyocytes, particularly highlight the important role of MT as a cellular antioxidant on scavenging ROS.
Collapse
Affiliation(s)
- Ze Fu
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Fengtai District, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Sato M, Kawakami T, Kondoh M, Takiguchi M, Kadota Y, Himeno S, Suzuki S. Development of high‐fat‐diet‐induced obesity in female metallothionein‐null mice. FASEB J 2010; 24:2375-84. [DOI: 10.1096/fj.09-145466] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Masao Sato
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Takashige Kawakami
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Masuo Kondoh
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Masufumi Takiguchi
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Yoshito Kadota
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Seiichiro Himeno
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Shinya Suzuki
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| |
Collapse
|
26
|
Kadota Y, Suzuki S, Ideta S, Fukinbara Y, Kawakami T, Imai H, Nakagawa Y, Sato M. Enhanced metallothionein gene expression induced by mitochondrial oxidative stress is reduced in phospholipid hydroperoxide glutathione peroxidase-overexpressed cells. Eur J Pharmacol 2010; 626:166-70. [DOI: 10.1016/j.ejphar.2009.09.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/18/2009] [Accepted: 09/28/2009] [Indexed: 11/16/2022]
|
27
|
Han YH, Moon HJ, You BR, Kim SZ, Kim SH, Park WH. Effects of carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone on the growth inhibition in human pulmonary adenocarcinoma Calu-6 cells. Toxicology 2009; 265:101-7. [PMID: 19819288 DOI: 10.1016/j.tox.2009.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/01/2009] [Accepted: 10/01/2009] [Indexed: 12/20/2022]
Abstract
Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) is an uncoupler of mitochondrial oxidative phosphorylation in eukaryotic cells. Here, we evaluated the in vitro effects of FCCP on the growth of Calu-6 lung cancer cells. FCCP inhibited the growth of Calu-6 cells with an IC(50) of approximately 6.64+/-1.84 microM at 72 h, as shown by MTT. DNA flow cytometric analysis indicated that FCCP induced G1 phase arrest below 20 microM of FCCP. Treatment with FCCP decreased the level of CDKs and cyclines in relation to G1 phase. In addition, FCCP not only increased the p27 level but also enhanced its binding with CDK4, which was associated with hypophosphorylation of Rb protein. While transfection of p27 siRNA inhibited G1 phase arrest in FCCP-treated cells, it did not enhance Rb phosphorylation. FCCP also efficiently induced apoptosis. The apoptotic process was accompanied with an increase in sub-G1 cells, annexin V staining cells, mitochondria membrane potential (MMP) loss and cleavage of PARP protein. All of the caspase inhibitors (caspase-3, -8, -9 and pan-caspase inhibitor) markedly rescued the Calu-6 cells from FCCP-induced cell death. However, knock down of p27 protein intensified FCCP-induced cell death. Moreover, FCCP induced the depletion of GSH content in Calu-6 cells, which was prevented by all of the caspase inhibitors. In summary, our results demonstrated that FCCP inhibits the growth of Calu-6 cells in vitro. The growth inhibitory effect of FCCP might be mediated by cell cycle arrest and apoptosis via decrease of CDKs and caspase activation, respectively. These findings now provide a better elucidation of the mechanisms involved in FCCP-induced growth inhibition in lung cancer.
Collapse
Affiliation(s)
- Yong Hwan Han
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju 561-180, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
Pedersen MØ, Jensen R, Pedersen DS, Skjolding AD, Hempel C, Maretty L, Penkowa M. Metallothionein-I+II in neuroprotection. Biofactors 2009; 35:315-25. [PMID: 19655389 DOI: 10.1002/biof.44] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metallothionein (MT)-I+II synthesis is induced in the central nervous system (CNS) in response to practically any pathogen or disorder, where it is increased mainly in reactive glia. MT-I+II are involved in host defence reactions and neuroprotection during neuropathological conditions, in which MT-I+II decrease inflammation and secondary tissue damage (oxidative stress, neurodegeneration, and apoptosis) and promote post-injury repair and regeneration (angiogenesis, neurogenesis, neuronal sprouting and tissue remodelling). Intracellularly the molecular MT-I+II actions involve metal ion control and scavenging of reactive oxygen species (ROS) leading to cellular redox control. By regulating metal ions, MT-I+II can control metal-containing transcription factors, zinc-finger proteins and p53. However, the neuroprotective functions of MT-I+II also involve an extracellular component. MT-I+II protects the neurons by signal transduction through the low-density lipoprotein family of receptors on the cell surface involving lipoprotein receptor-1 (LRP1) and megalin (LRP2). In this review we discuss the newest data on cerebral MT-I+II functions following brain injury and experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Mie Ø Pedersen
- Section of Neuroprotection, Institute of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
29
|
Higashimoto M, Isoyama N, Ishibashi S, Inoue M, Takiguchi M, Suzuki S, Ohnishi Y, Sato M. Tissue-dependent preventive effect of metallothionein against DNA damage in dyslipidemic mice under repeated stresses of fasting or restraint. Life Sci 2009; 84:569-75. [PMID: 19217914 DOI: 10.1016/j.lfs.2009.01.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 01/15/2009] [Accepted: 01/29/2009] [Indexed: 11/25/2022]
Abstract
AIMS To investigate the effect of repeated stress on DNA damage in seven organs of dyslipidemic mice, and the preventive role of metallothionein (MT). MAIN METHODS Female adult 129/Sv wild-type and MT-null mice fed high-fat diet (HFD) were repeatedly subjected to mild stress of fasting or restraint in weeks 2 to 4 of 4-week study period. Serum cholesterol level, DNA damage in the liver, pancreas, spleen, bone marrow, kidney, lung and gastric mucosa, and other parameters were determined. KEY FINDINGS Body weights were increased in both types of mice fed HFD compared to those fed standard diet (STD), and further increased by 12 h-fasting, while they were markedly decreased by 1-3 h-restraint. Fasting accelerated accumulation of fat in the liver, and increase in serum cholesterol of both types of mice fed HFD. Feeding of HFD increased DNA damage in the pancreas, spleen and bone marrow of both types of mice, compared with those fed STD. In the wild-type mice fed HFD, 24 h-fasting increased DNA damage in the liver and spleen, while restraint increased the damage in the liver, pancreas, spleen and bone marrow. DNA damage in the cells of organs was markedly increased in the MT-null mice. Specifically, damage in the liver, pancreas, spleen and bone marrow was greatly increased with the intensity of stress increased, and the damage was much greater in the restraint mice than in the fasting mice. SIGNIFICANCE MT plays a tissue-dependent preventive role against DNA damage in various murine organs induced by repeated stress.
Collapse
Affiliation(s)
- Minoru Higashimoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Joseph A, Lee T, Moland CL, Branham WS, Fuscoe JC, Leakey JEA, Allaben WT, Lewis SM, Ali AA, Desai VG. Effect of (+)-usnic acid on mitochondrial functions as measured by mitochondria-specific oligonucleotide microarray in liver of B6C3F1 mice. Mitochondrion 2009; 9:149-58. [PMID: 19460291 DOI: 10.1016/j.mito.2009.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 01/09/2009] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
Abstract
Usnic acid is a lichen metabolite used as a weight-loss dietary supplement due to its uncoupling action on mitochondria. However, its use has been associated with severe liver disorders in some individuals. Animal studies conducted thus far evaluated the effects of usnic acid on mitochondria primarily by measuring the rate of oxygen consumption and/or ATP generation. To obtain further insight into usnic acid-mediated effects on mitochondria, we examined the expression levels of 542 genes associated with mitochondrial structure and functions in liver of B6C3F(1) female mice using a mitochondria-specific microarray. Beginning at 8 weeks of age, mice received usnic acid at 0, 60, 180, and 600 ppm in ground, irradiated 5LG6 diet for 14 days. Microarray analysis showed a significant effect of usnic acid on the expression of several genes only at the highest dose of 600 ppm. A prominent finding of the study was a significant induction of genes associated with complexes I through IV of the electron transport chain. Moreover, several genes involved in fatty acid oxidation, the Krebs cycle, apoptosis, and membrane transporters were over-expressed. Usnic acid is a lipophilic weak acid that can diffuse through mitochondrial membranes and cause a proton leak (uncoupling). The up-regulation of complexes I-IV may be a compensatory mechanism to maintain the proton gradient across the mitochondrial inner membrane. In addition, induction of fatty acid oxidation and the Krebs cycle may be an adaptive response to uncoupling of mitochondria.
Collapse
Affiliation(s)
- Ajay Joseph
- University of Abertay Dundee, DD1 1HG Dundee, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Suzuki S, Yamamoto M, Sato M. Modulated Responses to Restraint Stress and Inflammation in Metallothionein-Null Mice. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Mai Yamamoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Masao Sato
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
32
|
Biancotti JC, Kumar S, de Vellis J. Activation of inflammatory response by a combination of growth factors in cuprizone-induced demyelinated brain leads to myelin repair. Neurochem Res 2008; 33:2615-28. [PMID: 18661234 DOI: 10.1007/s11064-008-9792-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 06/23/2008] [Indexed: 02/06/2023]
Abstract
In vivo remyelination promoted by a combination of four oligodendrocyte specific growth factors (GFs) in cuprizone-induced demyelinated mice brains was described recently by our group. Here we report activation of inflammatory response in mice brain following cuprizone-induced demyelination and its further enhancement immediately after injection of growth factors in vivo, while no significant inflammatory response was evident in GFs-injected normal brains. Cuprizone-induced demyelination was accompanied by increased expression of inflammatory cytokines, TNFalpha and IL-1beta, anti-inflammatory cytokines TGFbeta, IL-10 and increased levels of chemokines, CCL2, CCL5, and CXCL10, produced by resident microglia and astrocytes. During demyelination, involvement of oxidative stress was evident by disruption of mitochondrial structure and temporal decline in reduced glutathione levels, later returning to normal. Increase in the cytokines and chemokines was further enhanced within 2 days post injection (dpi) of GFs, coinciding with signal for repair via activation of pAkt and NFkappaB transcription factor reported earlier. Upregulation of mRNA and protein level of antioxidant genes, metallothionein (MT) I/II and activity of a cytosolic oxidoreductase enzyme, glycerolphosphate-3 dehydrogenase (cGPDH) occurred, resulting in a metabolic shuttle with an increase in glycerol in mice brains during period of demyelination and early GF-mediated repair.
Collapse
Affiliation(s)
- Juan Carlos Biancotti
- Mental Retardation Research Center, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, 635 Charles E. Young Drive South, Room 379, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
33
|
Han YH, Kim SW, Kim SH, Kim SZ, Park WH. 2,4-Dinitrophenol induces G1 phase arrest and apoptosis in human pulmonary adenocarcinoma Calu-6 cells. Toxicol In Vitro 2008; 22:659-70. [DOI: 10.1016/j.tiv.2007.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 12/05/2007] [Accepted: 12/14/2007] [Indexed: 10/22/2022]
|
34
|
Grasselli E, Canesi L, Voci A, De Matteis R, Demori I, Fugassa E, Vergani L. Effects of 3,5-diiodo-L-thyronine administration on the liver of high fat diet-fed rats. Exp Biol Med (Maywood) 2008; 233:549-57. [PMID: 18375830 DOI: 10.3181/0710-rm-266] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In rats fed a high fat diet (HFD), long-term administration of 3,5-diiodo-L-thyronine (T2), a naturally occurring iodothyronine, was shown to reduce body-weight gain, fat mass, and hepatic lipid accumulation. This work was aimed at investigating the mechanisms of T2 action in the liver of HFD rats. The results show that HFD induces liver lipid peroxidation and stimulates the activity of enzymes involved in hydrogen peroxide (H2O2) metabolism, catalase in particular. Moreover, quantitative RT-PCR revealed HFD-induced upregulation of the transcription factor PPAR alpha, as well as of metallothionein isoforms (MT-1 and MT-2). T2 administration prevented the HDF-induced lipid peroxidation, as well as the increase in H2O2 metabolism, and reduced the upregulation of both PPAR alpha and MT-2. These data demonstrate that in the liver of HFD rats, T2 prevents both lipid accumulation and oxidative stress associated with increased fat metabolism.
Collapse
Affiliation(s)
- Elena Grasselli
- Dipartimento di Biologia, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Induction of oxidative stress in human Chang liver cells by octachlorostyrene, the persistent and bioaccumulative toxicant. Toxicol In Vitro 2008; 22:367-75. [DOI: 10.1016/j.tiv.2007.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 09/07/2007] [Accepted: 10/11/2007] [Indexed: 11/17/2022]
|
36
|
Gong P, Guan X, Inouye LS, Pirooznia M, Indest KJ, Athow RS, Deng Y, Perkins EJ. Toxicogenomic analysis provides new insights into molecular mechanisms of the sublethal toxicity of 2,4,6-trinitrotoluene in Eisenia fetida. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:8195-8202. [PMID: 18186358 DOI: 10.1021/es0716352] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Xenobiotics such as explosives and pesticides released into the environment can have lethal and sublethal impacts on soil organisms such as earthworms with potential subsequent impacts at highertrophic levels. To better understand the molecular toxicological mechanisms of 2,4,6-trinitrotoluene (TNT), a commonly used explosive, in Eisenia fetida, earthworms were exposed to a gradient of TNT-spiked soils for 28 days and impacts on gene expression were examined using a 4032 cDNA microarray. Reproduction was increased at low doses of TNT, whereas high doses of TNT reduced juvenile production. On the basis of reproduction responses to TNT, four treatments, that is, control, 2, 10.6, and 38.7 mg/kg, were selected for gene expression studies in a balanced interwoven loop design microarray experiment in which the expression of 311 transcripts was significantly affected. Reverse-transcription quantitative polymerase chain reaction (RT-QPCR) data on 68 selected differentially and nondifferentially expressed transcripts showed a significant correlation with microarray results. The expression of genes involved in multiple biological processes was altered, including muscle contraction, neuronal signaling and growth, ubiquitinylation, fibrinolysis and coagulation, iron and calcium homeostasis, oxygen transport, and immunity. Chitinase activity assays confirmed down-regulation of chitinase genes as indicated by array and RT-QPCR data. An acute toxicity test provided evidence that dermal contact with TNT can cause bleeding, inflammation, and constriction, which may be explained by gene expression results. Sublethal doses of TNT affected the nervous system, caused blood disorders similar to methemoglobinemia, and weakened immunity in E. fetida.
Collapse
Affiliation(s)
- Ping Gong
- SpecPro Inc., 3909 Halls Ferry Road, Vicksburg, Mississippi 39180, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Park EJ, Park K. Induction of reactive oxygen species and apoptosis in BEAS-2B cells by mercuric chloride. Toxicol In Vitro 2007; 21:789-94. [PMID: 17363214 DOI: 10.1016/j.tiv.2007.01.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 01/09/2007] [Accepted: 01/22/2007] [Indexed: 10/23/2022]
Abstract
Mercury is a widespread environmental and industrial pollutant that induces serious adverse effects in both humans and the environment. However, the toxicities and its mechanisms have not been fully elucidated. Among the proposed mechanisms of biological toxicities, the intracellular level of thiol group (-SH) and oxidative stress have been widely studied. In this study, production of reactive oxygen species (ROS) by mercuric chloride (2, 4, 6, and 8 ppm as of mercury) was investigated in cultured human bronchial epithelial cells (BEAS-2B cell line). Exposure of cultured cells to mercuric chloride led to cell death, ROS increase, and cytosolic caspase-3 activation. The ROS increase was related to the decreased level of GSH. Chromatin condensation evaluated by 4',6-diamidino-2-phenylindole (DAPI) staining were also shown in mercury-treated cells and this suggest the apoptotic process of cells by mercuric chloride.
Collapse
Affiliation(s)
- Eun-Jung Park
- College of Pharmacy, Dongduk Women's University, #23-1, Wolgok-dong, Seongbuk-gu, Seoul 136-714, Republic of Korea
| | | |
Collapse
|
38
|
Dai X, Sun Y, Jiang Z. Protective effects of vitamin E against oxidative damage induced by Abeta1-40Cu(II) complexes. Acta Biochim Biophys Sin (Shanghai) 2007; 39:123-30. [PMID: 17277887 DOI: 10.1111/j.1745-7270.2007.00261.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
beta-amyloid peptide (Abeta) is considered to be responsible for the formation of senile plaques, which is the hallmark of Alzheimer's disease (AD). Oxidative stress, manifested by protein oxidation and lipid peroxidation, among other alterations, is a characteristic of AD brain. A growing body of evidence has been presented in support of Abeta(1-40) forming an oligomeric complex that binds copper at a CuZn superoxide dismutase-like binding site. Abeta(1-40)Cu(II) complexes generate neurotoxic hydrogen peroxide (H(2)O(2)) from O(2) via Cu(2+) reduction, though the precise reaction mechanism is unclear. The toxicity of Abeta(1-40) or the Abeta(1-40)Cu(II) complexes to cultured primary cortical neurons was partially attenuated when (+)-alpha-tocopherol (vitamin E) as free radical antioxidant was added at a concentration of 100 mM. The data derived from lactate dehydrogenase (LDH) release and the formation of H(2)O(2) confirmed the results from the MTT assay. These findings indicate that copper binding to Abeta(1-40) can give rise to greater production of H(2)O(2), which leads to a breakdown in the integrity of the plasma membrane and subsequent neuronal death. Groups treated with vitamin E exhibited much slighter damage, suggesting that vitamin E plays a key role in protecting neuronal cells from dysfunction or death.
Collapse
Affiliation(s)
- Xueling Dai
- College of Applied Sciences and Humanities of Beijing Union University, Beijing 100083, China
| | | | | |
Collapse
|