1
|
Elgendy SA, Soliman MM, Shukry M, Mohammed LA, Nasr HE, Althobaiti S, Almalki DA, Alotaibi KS, Albattal SB, Elnoury HA. Screening impacts of Tilmicosin-induced hepatic and renal toxicity in rats: protection by Rhodiola rosea extract through the involvement of oxidative stress, antioxidants, and inflammatory cytokines biomarkers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7623-7637. [PMID: 38689072 DOI: 10.1007/s00210-024-03089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
Tilmicosin (TIL) is a semisynthetic macrolide antibiotic with a broad spectrum of activity derived from tylosin. TIL is effective in the treatment of bovine and ovine respiratory diseases caused by different microbes. In parallel, Rhodiola rosea (RHO) is a popular herbal remedy because of its anti-inflammatory and antioxidant qualities. The experiment lasted for 12 days. Depending on the experimental group, the animals received either distilled water or RHO root extract dissolved in distilled water for 12 days through a stomach tube, and the single subcutaneous injection on day 6 of the experiment of either 500 μL of 0.9% NaCl or TIL dissolved in 500 μL 0.9% NaCl. Samples and blood were collected for serum analysis, gene expression, and immunohistochemistry screening at liver and kidney levels. TIL injection increased serum levels of hepatic and renal markers (ALP, ALT, AST, TC, TG, creatinine, and urea) with decreased total proteins. In parallel, TIL induced hepatic and renal oxidative stress as there was an increase in malondialdehyde levels, with a decrease in catalase and reduced glutathione activities. Of interest, pre-administration of RHO inhibited TIL-induced increase in hepato-renal markers, decreased oxidative stress, and increased liver and kidney antioxidant activities. Quantitative RT-PCR showed that TIL increased the liver's HSP70 (heat shock protein), NFkB, and TNF-α mRNA expression. Moreover, TIL upregulated the expression of desmin, nestin, and vimentin expression in the kidney. The upregulated genes were decreased significantly in the protective group that received RHO. Serum inflammatory cytokines and genes of inflammatory markers were affected in liver tissues (HSP70, NFkB, and TNF-α) and kidney tissues (desmin, nestin, and vimentin)-TIL-induced hepatic vacuolation and congestion together with glomerular atrophy. The immunoreactivity of PCNA and HMGB1 was examined immunohistochemically. At cellular levels, PCNA was decreased while HMGB1 immunoreactivity was increased in TIL-injected rats, which was improved by pre-administration of RHO. RHO administration protected the altered changes in liver and renal histology. Current findings support the possible use of RHO to shield the liver and kidney from the negative effects of tilmicosin.
Collapse
Affiliation(s)
- Salwa A Elgendy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, 13511, Egypt
| | - Mohamed Mohamed Soliman
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Lina Abdelhady Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, 13511, Egypt
| | - Hend Elsayed Nasr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, 13511, Egypt
| | - Saed Althobaiti
- Department of Biology, Turabah University College, Taif University, Taif, 21995, Saudi Arabia
| | - Daklallah A Almalki
- Biology Department, Faculty of Science and Arts, Al-Mikhwah, Al-Baha University, Al-Baha, Saudi Arabia
| | - Khalid S Alotaibi
- General Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Shatha B Albattal
- General Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Heba A Elnoury
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, 13511, Egypt
| |
Collapse
|
2
|
Wang R, Mao Y, Yu C, Rong Z, Wang R, Wang Y, Lv L, Gao Y, Wang Z, Zhang H. Research Progress of Natural Products with the Activity of Anti-nonalcoholic Steatohepatitis. Mini Rev Med Chem 2024; 24:1894-1929. [PMID: 38752645 DOI: 10.2174/0113895575306598240503054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 10/16/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), a multi-target disease, is becoming a global epidemic. Although several anti-NASH drug candidates are being evaluated in late-stage clinical trials, none have been approved by the FDA to date. Given the global prevalence of the disease, the lack of effective drugs, and the very limited therapeutic efficacy of most of the existing synthetic drugs focusing on a single target, there is an urgent need to continue to develop new therapeutic agents. In contrast, many natural products, including pure compounds and crude extracts, possess hepatoprotective activities. Usually, these natural components are characterized by multi-targeting and low side effects. Therefore, natural products are important resources for the development of new anti- NASH drugs. In this paper, we focus on reviewing the anti-NASH potential, structure, and some of the side effects of natural products based on structural classification. We hope this mini-review will help researchers design and develop new anti-NASH drugs, especially based on the structure of natural products.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuheng Mao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chunping Yu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenji Rong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruyue Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yixin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Linjin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
3
|
Yang Y, Liang F, Gao J, Li J, Jiang C, Xie W, Wu S, Wang Y, Yi J. Salidroside Ameliorates Ischemia/Reperfusion-Induced Human Cardiomyocyte Injury by Inhibiting the Circ_0097682/miR-671-5p/USP46 Pathway. Cardiovasc Toxicol 2023; 23:406-418. [PMID: 37740139 DOI: 10.1007/s12012-023-09808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
Salidroside shows an inhibitory effect on myocardial ischemia/reperfusion (I/R) injury; however, the underlying mechanism remains to be explored. The present work analyzes the mechanism that drives salidroside to ameliorate I/R-induced human cardiomyocyte injury. Human cardiomyocytes were subjected to I/R treatment to simulate a myocardial infarction cell model. Cell viability, cell proliferation, and cell apoptosis were analyzed by CCK-8 assay, EdU assay, and flow cytometry analysis, respectively. RNA expression levels of circ_0097682, miR-671-5p, and F-box and ubiquitin-specific peptidase 46 (USP46) were detected by qRT-PCR. Protein expression was measured by Western blotting assay. The levels of IL-6, IL-1β, and TNF-α in cell supernatant were detected by enzyme-linked immunosorbent assays. Salidroside treatment relieved I/R-induced inhibitory effect on AC16 cell proliferation and promoting effects on cell apoptosis, inflammation, and oxidative stress. Salidroside inhibited circ_0097682 expression in I/R-treated AC16 cells. Salidroside-mediated inhibition of I/R-induced cell injury involved the downregulation of circ_0097682 expression. In addition, circ_0097682 bound to miR-671-5p in AC16 cells, and miR-671-5p inhibitors rescued salidroside pretreatment-mediated effects in I/R-treated AC16 cells. Moreover, miR-671-5p targeted USP46 in AC16 cells, and USP46 introduction partially relieved circ_0097682 depletion or salidroside pretreatment-induced effects in I/R-treated AC16 cells. Salidroside ameliorated I/R-induced AC16 cell injury by inhibiting the circ_0097682/miR-671-5p/USP46 pathway.
Collapse
Affiliation(s)
- Yuyang Yang
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Fangqian Liang
- Department of General Practice, North China University of Science and Technology Affiliated Hospital, No. 73, Jianshe South Road, Lubei District, Tangshan, 063000, Hebei, China
| | - Jingyuan Gao
- Department of General Practice, North China University of Science and Technology Affiliated Hospital, No. 73, Jianshe South Road, Lubei District, Tangshan, 063000, Hebei, China.
| | - Jian Li
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Chunhua Jiang
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Wei Xie
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Shujuan Wu
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Ya Wang
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| | - Jing Yi
- College of Traditional Chinese Medicine, North China University of Science Technology, Qinhuangdao, China
| |
Collapse
|
4
|
Xu J, Zhao L, Zhang X, Ying K, Zhou R, Cai W, Wu X, Jiang H, Xu Q, Miao D, Zeng Y, Yu F. Salidroside ameliorates acetaminophen-induced acute liver injury through the inhibition of endoplasmic reticulum stress-mediated ferroptosis by activating the AMPK/SIRT1 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115331. [PMID: 37556956 DOI: 10.1016/j.ecoenv.2023.115331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Acetaminophen (APAP) overdose has long been considered a major cause of drug-induced liver injury. Ferroptosis is a type of programmed cell death mediated by iron-dependent lipid peroxidation. Endoplasmic reticulum (ER) stress is a systemic response triggered by the accumulation of unfolded or misfolded proteins in the ER. Ferroptosis and ER stress have been proven to contribute to the progression of APAP-induced acute liver injury (ALI). It was reported that salidroside protects against APAP-induced ALI, but the potential mechanism remain unknown. In this study, male C57BL/6 J mice were intraperitoneally (i.p.) injected APAP (500 mg/kg) to induce an ALI model. Salidroside was i.p. injected at a dose of 100 mg/kg 2 h prior to APAP administration. Mice were sacrificed 12 h after APAP injection and the liver and serum of the mice were obtained for histological and biochemistry analysis. AML12 cells were used in in vitro assays. The results indicated that salidroside mitigated glutathione degradation via inhibiting cation transport regulator homolog 1 (CHAC1) to attenuate ferroptosis, and simultaneously suppressing PERK-eIF2α-ATF4 axis-mediated ER stress, thus alleviating APAP-induced ALI. However, PERK activator CCT020312 and overexpression of ATF4 inhibited the protective function of salidroside on CHAC1-mediated ferroptosis. Besides this, activation of the AMPK/SIRT1 signaling pathway by salidroside was demonstrated to have a protective effect against APAP-induced ALI. Interestingly, selective inhibition of SIRT1 ameliorated the protective effects of salidroside on ER stress and ferroptosis. Overall, salidroside plays a significant part in the mitigation of APAP-induced ALI by activating the AMPK/SIRT1 signaling to inhibit ER stress-mediated ferroptosis in the ATF4-CHAC1 axis.
Collapse
Affiliation(s)
- Jun Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luying Zhao
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangting Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kanglei Ying
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruoru Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weimin Cai
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao Wu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoran Jiang
- Department of Urology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dan Miao
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Gao Z, Zhan H, Zong W, Sun M, Linghu L, Wang G, Meng F, Chen M. Salidroside alleviates acetaminophen-induced hepatotoxicity via Sirt1-mediated activation of Akt/Nrf2 pathway and suppression of NF-κB/NLRP3 inflammasome axis. Life Sci 2023:121793. [PMID: 37224954 DOI: 10.1016/j.lfs.2023.121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
Acetaminophen (APAP) overdose-induced hepatotoxicity is the most common cause of drug-induced liver injury worldwide, which is significantly linked to oxidative stress and sterile inflammation. Salidroside is the main active component extracted from Rhodiola rosea L., with anti-oxidative and anti-inflammatory activities. Herein, we investigated the protective effects of salidroside on APAP-induced liver injury and its underlying mechanisms. Pretreatment with salidroside reversed the impacts of APAP on cell viability, LDH release, and cell apoptosis in L02 cells. Moreover, the phenomena of ROS accumulation and MMP collapse caused by APAP were reverted by salidroside. Salidroside elevated the levels of nuclear Nrf2, HO-1, and NQO1. Using PI3k/Akt inhibitor LY294002 further confirmed that salidroside mediated the Nrf2 nuclear translocation through the Akt pathway. Pretreatment with Nrf2 siRNA or LY294002 markedly prevented the anti-apoptotic effect of salidroside. Additionally, salidroside reduced the levels of nuclear NF-κB, NLRP3, ASC, cleaved caspase-1, and mature IL-1β elevated by APAP. Moreover, salidroside pretreatment increased Sirt1 expression, whereas Sirt1 knock-down diminished the protective activities of salidroside, simultaneously reversing the up-regulation of the Akt/Nrf2 pathway and the down-regulation of NF-κB/NLRP3 inflammasome axis mediated by salidroside. We then used C57BL/6 mice to establish APAP-induced liver injury models and found that salidroside significantly alleviated liver injury. Furthermore, western blot analyses showed that salidroside promoted the Sirt1 expression, activated the Akt/Nrf2 pathway, and inhibited the NF-κB/NLRP3 inflammasome axis in APAP-treated mice. The findings of this study support a possible application of salidroside in the amelioration of APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhengshan Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Honghong Zhan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Wei Zong
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Miaomiao Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Lang Linghu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Guowei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Fancheng Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Min Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
6
|
Calabrese EJ, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Rhodiola rosea and Salidroside commonly induce hormesis, with particular focus on longevity and neuroprotection. Chem Biol Interact 2023; 380:110540. [PMID: 37169278 DOI: 10.1016/j.cbi.2023.110540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
The biological effects of Rhodiola rosea extracts and one of its major constituents, Salidroside, were evaluated for their capacity to induce hormesis/hormetic effects. The findings indicate that the Rhodiola rosea extracts and Salidroside commonly induce hormetic dose responses within a broad range of biological models, cell types and across a broad range of endpoints, with particular emphasis on longevity and neuroprotective endpoints. This paper represents the first integrative documentation and assessment of Rhodiola rosea extracts and Salidroside induction of hormetic effects. These findings have important biomedical applications and should have an important impact with respect to critical study design, dose selection and other experimental features.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
7
|
Chilvery S, Yelne A, Khurana A, Saifi MA, Bansod S, Anchi P, Godugu C. Acetaminophen induced hepatotoxicity: An overview of the promising protective effects of natural products and herbal formulations. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154510. [PMID: 36332383 DOI: 10.1016/j.phymed.2022.154510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The liver plays an important role in regulating the metabolic processes and is the most frequently targeted organ by toxic chemicals. Acetaminophen (APAP) is a well-known anti-allergic, anti-pyretic, non-steroidal anti-inflammatory drug (NSAID), which upon overdose leads to hepatotoxicity, the major adverse event of this over-the-counter drug. PURPOSE APAP overdose induced acute liver injury is the second most common cause that often requires liver transplantation worldwide, for which N-acetyl cysteine is the only synthetic drug clinically approved as an antidote. So, it was felt that there is a need for the novel therapeutic approach for the treatment of liver diseases with less adverse effects. This review provides detailed analysis of the different plant extracts; phytochemicals and herbal formulations for the amelioration of APAP-induced liver injury. METHOD The data was collected using different online resources including PubMed, ScienceDirect, Google Scholar, Springer, and Web of Science using keywords given below. RESULTS Over the past decades various reports have revealed that plant-based approaches may be a better treatment choice for the APAP-induced hepatotoxicity in pre-clinical experimental conditions. Moreover, herbal compounds provide several advantages over the synthetic drugs with fewer side effects, easy availability and less cost for the treatment of life-threatening diseases. CONCLUSION The current review summarizes the hepatoprotective effects and therapeutic mechanisms of various plant extracts, active phytoconstituents and herbal formulations with potential application against APAP induced hepatotoxicity as the numbers of hepatoprotective natural products are more without clinical relativity. Further, pre-clinical pharmacological research will contribute to the designing of natural products as medicines with encouraging prospects for clinical application.
Collapse
Affiliation(s)
- Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Yelne
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
8
|
Qu B, Liu X, Liang Y, Zheng K, Zhang C, Lu L. Salidroside in the Treatment of NAFLD/NASH. Chem Biodivers 2022; 19:e202200401. [PMID: 36210339 DOI: 10.1002/cbdv.202200401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the commonest reason for chronic liver diseases in the world and is commonly related to the hepatic manifestation of the metabolic syndrome. Non-alcoholic steatohepatitis (NASH) is a deteriorating form of NAFLD, which can eventually develop into fibrosis, cirrhosis, and liver cancer. The reason for NAFLD/NASH development is complicated, such as liver lipid metabolism, oxidative stress, inflammatory response, apoptosis and autophagy, liver fibrosis and gut microbiota. Apart from bariatric surgery and lifestyle changes, officially approved drug therapy for NAFLD/NASH treatment is lacking. Salidroside (SDS) is a phenolic compound extensively distributed in the tubers of Rhodiola plants, which possesses many significant biological activities. This review summarized the related targets regulated by SDS in treating NAFLD/NASH. It is indicated that SDS could improve the status of NAFLD/NASH by ameliorating abnormal lipid metabolism, inhibiting oxidative stress, regulating apoptosis and autophagy, reducing inflammatory response, alleviating fibrosis and regulating gut microbiota. In conclusion, although the multiple bioactivities of SDS have been confirmed, the clinical data are inadequate and need to become the focus of attention in the later study.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Xuemao Liu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Yanjiao Liang
- Department of Oncology Center, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Keke Zheng
- Department of Oncology Center, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Chunling Zhang
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| |
Collapse
|
9
|
Cui Z, Jin N, Amevor FK, Shu G, Du X, Kang X, Ning Z, Deng X, Tian Y, Zhu Q, Wang Y, Li D, Zhang Y, Wang X, Han X, Feng J, Zhao X. Dietary Supplementation of Salidroside Alleviates Liver Lipid Metabolism Disorder and Inflammatory Response to Promote Hepatocyte Regeneration via PI3K/AKT/Gsk3-β Pathway. Poult Sci 2022; 101:102034. [PMID: 35926351 PMCID: PMC9356167 DOI: 10.1016/j.psj.2022.102034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/07/2023] Open
Abstract
Fatty liver hemorrhagic syndrome (FLHS) is a chronic hepatic disease which occurs when there is a disorder in lipid metabolism. FLHS is often observed in caged laying hens and characterized by a decrease in egg production and dramatic increase of mortality. Salidroside (SDS) is an herbal drug which has shown numerous pharmacological activities, such as protecting mitochondrial function, attenuating cell apoptosis and inflammation, and promoting antioxidant defense system. We aimed to determine the therapeutic effects of SDS on FLHS in laying hens and investigate the underlying mechanisms through which SDS operates these functions. We constructed oleic acid (OA)-induced fatty liver model in vitro and high-fat diet-induced FLHS of laying hens in vivo. The results indicated that SDS inhibited OA-induced lipid accumulation in chicken primary hepatocytes, increased hepatocyte activity, elevated the mRNA expression of proliferation related genes PCNA, CDK2, and cyclinD1 and increased the protein levels of PCNA and CDK2 (P < 0.05), as well as decreased the cleavage levels of Caspase-9, Caspase-8, and Caspase-3 and apoptosis in hepatocytes (P < 0.05). Moreover, SDS promoted the phosphorylation levels of PDK1, AKT, and Gsk3-β, while inhibited the PI3K inhibitor (P < 0.05). Additionally, we found that high-fat diet-induced FLHS hens had heavier body weight, liver weight, and abdominal fat weight, and severe steatosis in histology, compared with the control group (Con). However, hens fed with SDS maintained lighter body weight, liver weight, and abdominal fat weight, as well as normal liver without hepatic steatosis. In addition, high-fat diet-induced FLHS hens had high levels of serum total cholesterol (TC), triglyceride (TG), alanine transaminase (ALT), and aspartate aminotransferase (AST) compared to the Con group, however, in the Model+SDS group, the levels of TC, TG, ALT, and AST decreased significantly, whereas the level of superoxide dismutase (SOD) increased significantly (P < 0.05). We also found that SDS significantly decreased the mRNA expression abundance of PPARγ, SCD, and FAS in the liver, as well as increased levels of PPARα and MTTP, and decreased the mRNA expression of TNF-α, IL-1β, IL-6, and IL-8 in the Model+SDS group (P < 0.05). In summary, this study showed that 0.3 mg/mL SDS attenuated ROS generation, inhibited lipid accumulation and hepatocyte apoptosis, and promoted hepatocyte proliferation by targeting the PI3K/AKT/Gsk3-β pathway in OA-induced fatty liver model in vitro, and 20 mg/kg SDS alleviated high-fat-diet-induced hepatic steatosis, oxidative stress, and inflammatory response in laying hens in vivo.
Collapse
Affiliation(s)
- Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China; College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Ningning Jin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Xincheng Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Xiaoqi Wang
- Agriculture and Animal Husbandry Comprehensive Service Center of Razi County, Tibet Autonomous Region, P. R. China
| | - Xue Han
- Guizhou Institute of Animal Husbandry and Veterinary Medicine, Guizhou province, P. R. China
| | - Jing Feng
- Institute of Animal Husbandry and Veterinary Medicine, College of Agriculture and Animal Husbandry, Tibet Autonomous Region, P. R. China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China.
| |
Collapse
|
10
|
Jasemi SV, Khazaei H, Momtaz S, Farzaei MH, Echeverría J. Natural products in the treatment of pulmonary emphysema: Therapeutic effects and mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153988. [PMID: 35217434 DOI: 10.1016/j.phymed.2022.153988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a class of lung diseases including chronic bronchitis, asthma, and emphysema. Long-time smoking is considered the main reason for developing emphysema. Emphysema can be defined as damage to the walls of the air sacs (alveoli) of the lung. It has been demonstrated that natural compounds with antioxidant and anti-inflammatory effects can effectively improve or protect the lung against this disease. This paper is dedicated to systematically review the effective natural compounds in the treatment of pulmonary emphysema. PURPOSE This is the first systematic and comprehensive review on the role of plant-derived secondary metabolites in managing and/or treating pulmonary emphysema STUDY DESIGN AND METHODS: A systematic and comprehensive review was done based on Scopus, PubMed, and Cochrane Library databases were searched using the "emphysema", "plant", "herb", and "phytochemical" keywords. Non-English, review, and repetitive articles were excluded from the study. Search results were included in the Prisma diagram. RESULTS From a total of 1285 results, finally, 22 articles were included in the present study. The results show that some herbs such as Scutellaria baicalensis Georgi and Monascus adlay and some phytochemicals such as gallic acid and quercetin and blackboard tree indole alkaloids affect more factors in improving the lung emphysema. Also, some natural compounds such as marijuana smoke and humic acid also play an aggravating role in this disease. It also seems that some of the medicinal plants such as PM014 herbal formula, pomegranate juice and açaí berry sometimes have side effects that are inconsistent with their therapeutic effects. CONCLUSION We concluded that natural compounds can effectively improve pulmonary emphysema due to their antioxidant, anti-inflammatory, and anti-apoptotic properties. However, additional studies are suggested to prove efficacy and side effects.
Collapse
Affiliation(s)
- Sayed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Science, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Lacerda Ribeiro MT, Paes Porto HK, de Oliveira DF, da Silva Castro PF, Rocha ML. Treatment with Paracetamol is not Associated with Increased Airway Sensitivity and Risk of Asthma in Rats. Curr Drug Saf 2020; 14:109-115. [PMID: 30806323 DOI: 10.2174/1574886314666190222194841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/01/2019] [Accepted: 02/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Some studies have linked the use of paracetamol (PAR) with adverse effects like wheezing, exacerbation of asthma symptoms and other respiratory problems. Other studies are inconclusive or deny this correlation. This makes the association between PAR and airway hypersensitivity very controversial and still under debate. OBJECTIVE This work investigated if chronic treatment with PAR in rats could directly affect the contraction and relaxation for different stimulus in isolated airways. METHODS Rats were treated for 2 weeks with PAR (400 mg/Kg, v.o.). The blood was collected for biochemical analysis (alanine aminotransferase (ALT), aspartate aminotransferase (AST), TBARs reaction and glutathione) and isolated tracheal rings were prepared in organ bath to measure isometric tone after contractile and relaxant stimulus. RESULTS Hepatic enzymes (ALT, AST) and lipid peroxidation were increased after PAR-treatment, while glutathione was decreased. Rats do not present any alteration in airway myocytes responsiveness, either to contractile or relaxant stimulus (i.e. cholinergic agonist, membrane depolarization, Ca2+ influx across sarcolemma, internal Ca2+ release from sarcoplasmic reticulum, Ca2+ channel blocking, β-agonist and NOmediating relaxation). CONCLUSION Despite increased oxidative stress and reduced antioxidant defense, chronic treatment with PAR does not induce airway hypersensitivity or risk of asthma in rats.
Collapse
Affiliation(s)
| | - Hellen Karine Paes Porto
- Faculty of Pharmacy, Federal University of Goias, Avenida Universitaria s/n, 74605-220, Goiania, Brazil
| | - Daniel Fernandes de Oliveira
- Clinical Laboratory, University Hospital, Federal University of Goias, 1ª Avenida, s/n, 74605-020, Goiania, Brazil
| | | | - Matheus Lavorenti Rocha
- Faculty of Pharmacy, Federal University of Goias, Avenida Universitaria s/n, 74605-220, Goiania, Brazil
| |
Collapse
|
12
|
Lin SY, Dan X, Du XX, Ran CL, Lu X, Ren SJ, Tang ZT, Yin LZ, He CL, Yuan ZX, Fu HL, Zhao XL, Shu G. Protective Effects of Salidroside against Carbon Tetrachloride (CCl 4)-Induced Liver Injury by Initiating Mitochondria to Resist Oxidative Stress in Mice. Int J Mol Sci 2019; 20:E3187. [PMID: 31261843 PMCID: PMC6651463 DOI: 10.3390/ijms20133187] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
The antioxidant effect of salidroside has been proven, but its role in liver injury is poorly understood. In this study, we aimed to evaluate the protective effects and mechanism of salidroside on liver injury induced by carbon tetrachloride (CCl4) in vivo. Mice were pretreated with salidroside (60 mg/kg, intraperitoneally injected, i.p.) once per day for 14 consecutive days and then administered with CCl4 (15.95 g/kg, i.p.) for 24 h to produce a liver injury model. Salidroside attenuated hepatic transaminase elevation in serum and ameliorated liver steatosis and necrosis, thereby suggesting its protective effect on the liver. Salidroside antagonized CCl4-induced toxicity by equilibrating antioxidation system, thereby inhibiting reactive oxygen species accumulation, and restoring mitochondrial structure and function. Salidroside exerts antioxidant and liver-protective effects by selectively inhibiting the activation of genes, including growth arrest and DNA -damage-inducible 45 α (Gadd45a), mitogen-activated protein kinase 7 (Mapk7), and related RAS viral oncogene homolog 2 (Rras2), which induce oxidative stress in the mitogen-activated protein kinase pathway. These results revealed that salidroside can protect the liver from CCl4-induced injury by resisting oxidative stress and protecting mitochondrial function.
Collapse
Affiliation(s)
- Shi-Yu Lin
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Dan
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Xia-Xia Du
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Chong-Lin Ran
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Lu
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Shao-Jun Ren
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Zi-Ting Tang
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Li-Zi Yin
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Chang-Liang He
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Xiang Yuan
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Hua-Lin Fu
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Ling Zhao
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Shu
- Department of Pharmacy, Veterinary Medicine College of Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
13
|
Zhao D, Sun X, Lv S, Sun M, Guo H, Zhai Y, Wang Z, Dai P, Zheng L, Ye M, Wang X. Salidroside attenuates oxidized low‑density lipoprotein‑induced endothelial cell injury via promotion of the AMPK/SIRT1 pathway. Int J Mol Med 2019; 43:2279-2290. [PMID: 30942428 PMCID: PMC6488166 DOI: 10.3892/ijmm.2019.4153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL)-induced endothelial damage contributes to the initiation and pathogenesis of atherosclerosis. Salidroside can alleviate atherosclerosis and attenuate endothelial cell injury induced by ox-LDL. However, the mechanisms involved in this process are not fully understood. Therefore, the purpose of the present study was to investigate the role of the adenosine monophosphate-activated protein kinase (AMPK)/sirtuin (SIRT)1 pathway in the protection of salidroside against ox-LDL-induced human umbilical vein endothelial cells (HUVECs) injuries. The results revealed that salidroside reverses ox-LDL-induced HUVECs injury as demonstrated by the upregulation of cell viability and downregulation of LDH release. In addition, salidroside increased the expression of the SIRT1 protein in ox-LDL-treated HUVECs. Next, it was demonstrated that SIRT1 knockdown induced by transfection with small interfering (si)RNA targeting SIRT1 (siSRT1) abolished the protection of salidroside against ox-LDL-induced HUVECs injuries. This was illustrated by a decrease in cell viability and an increase in LDH release, caspase-3 activity and apoptosis rate. Furthermore, salidroside mitigated ox-LDL-induced reactive oxygen species production, upregulated malondialdehyde content and NADPH oxidase 2 expression and decreased superoxide dismutase and glutathione peroxidase activities, while these effects were also reversed by siSIRT1 transfection. In addition, it was demonstrated that salidroside suppressed ox-LDL-induced mitochondrial dysfunction as demonstrated by the increase in mitochondrial membrane potential and decreases in cytochrome c expression, and Bax/Bcl-2 reductions. However, these effects were eliminated by SIRT1 knockdown. Finally, it was demonstrated that salidroside significantly upregulated the phosphorylated-AMPK expression in ox-LDL-treated HUVECs and AMPK knockdown induced by transfection with AMPK siRNA (siAMPK) leads to elimination of the salidroside-induced increase in cell viability and the decrease in LDH release. Notably, siAMPK transfection further decreased the expression of SIRT1. In conclusion, these results suggested that salidroside protects HUVECs against ox-LDL injury through inhibiting oxidative stress and improving mitochondrial dysfunction, which were dependent on activating the AMPK/SIRT1 pathway.
Collapse
Affiliation(s)
- Dongming Zhao
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Xinyi Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Shujie Lv
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Miying Sun
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Huatao Guo
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Yujia Zhai
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Zhi Wang
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Peng Dai
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Lina Zheng
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Mingzhe Ye
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Xinpeng Wang
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| |
Collapse
|
14
|
Wan S, Yang R, Zhang H, Li X, Gu M, Guan T, Ren J, Sun H, Dai C. Application of the SeDeM Expert System in Studies for Direct Compression Suitability on Mixture of Rhodiola Extract and an Excipient. AAPS PharmSciTech 2019; 20:105. [PMID: 30746569 DOI: 10.1208/s12249-019-1320-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/23/2019] [Indexed: 01/13/2023] Open
Abstract
The SeDeM expert system is used to reveal direct compression (DC) suitability of the active ingredients and excipients in preformulation. In this study, the system was used to predict compressibility of rhodiola extract (RhE) and its mixture with excipients. The parameter index (IP), parameter profile index (IPP), and good compressibility index (IGC) of RhE mixtures with different fillers were investigated. The results showed that RhE and mixture with lactose or starch were not suitable for DC according to the values of IP, IPP, and IGC, which can be corrected by pregelatinized starch (P-STA). The quality of tablets corrected by P-STA all satisfied the USP monograph limit. The findings from this study showed that the system is a useful tool to predict DC suitability on the mixture of RhE and an excipient.
Collapse
|
15
|
Saad MA, Rastanawi AA, El-Yamany MF. Alogliptin abates memory injuries of hepatic encephalopathy induced by acute paracetamol intoxication via switching-off autophagy-related apoptosis. Life Sci 2018; 215:11-21. [DOI: 10.1016/j.lfs.2018.10.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
|
16
|
Subramanya SB, Venkataraman B, Meeran MFN, Goyal SN, Patil CR, Ojha S. Therapeutic Potential of Plants and Plant Derived Phytochemicals against Acetaminophen-Induced Liver Injury. Int J Mol Sci 2018; 19:ijms19123776. [PMID: 30486484 PMCID: PMC6321362 DOI: 10.3390/ijms19123776] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/02/2018] [Accepted: 09/15/2018] [Indexed: 12/18/2022] Open
Abstract
Acetaminophen (APAP), which is also known as paracetamol or N-acetyl-p-aminophenol is a safe and potent drug for fever, pain and inflammation when used at its normal therapeutic doses. It is available as over-the-counter drug and used by all the age groups. The overdose results in acute liver failure that often requires liver transplantation. Current clinical therapy for APAP-induced liver toxicity is the administration of N-acetyl-cysteine (NAC), a sulphydryl compound an approved drug which acts by replenishing cellular glutathione (GSH) stores in the liver. Over the past five decades, several studies indicate that the safety and efficacy of herbal extracts or plant derived compounds that are used either as monotherapy or as an adjunct therapy along with conventional medicines for hepatotoxicity have shown favorable responses. Phytochemicals mitigate necrotic cell death and protect against APAP-induced liver toxicityby restoring cellular antioxidant defense system, limiting oxidative stress and subsequently protecting mitochondrial dysfunction and inflammation. Recent experimental evidences indicat that these phytochemicals also regulate differential gene expression to modulate various cellular pathways that are implicated in cellular protection. Therefore, in this review, we highlight the role of the phytochemicals, which are shown to be efficacious in clinically relevant APAP-induced hepatotoxicity experimental models. In this review, we have made comprehensive attempt to delineate the molecular mechanism and the cellular targets that are modulated by the phytochemicals to mediate the cytoprotective effect against APAP-induced hepatotoxicity. In this review, we have also defined the challenges and scope of phytochemicals to be developed as drugs to target APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sandeep B Subramanya
- Department of Physiology, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Sameer N Goyal
- Department of Pharmacology, SVKM's Institute of Pharmacy, Dhule, Maharashtra 424 001, India.
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425 405, India.
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425 405, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| |
Collapse
|
17
|
Feng J, Niu P, Chen K, Wu L, Liu T, Xu S, Li J, Li S, Wang W, Lu X, Yu Q, Liu N, Xu L, Wang F, Dai W, Xia Y, Fan X, Guo C. Salidroside mediates apoptosis and autophagy inhibition in concanavalin A-induced liver injury. Exp Ther Med 2018; 15:4599-4614. [PMID: 29805476 PMCID: PMC5958679 DOI: 10.3892/etm.2018.6053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
Salidroside (Sal) is a glycoside extract from Rhodiola rosea L. with anti-inflammatory, antioxidant, anticancer and cardioprotective properties. The present study explored the protective effects and the possible mechanisms of Sal on concanavalin A (ConA)-induced liver injury in mice. Balb/C mice were divided into five groups: Normal control (injected with normal saline), ConA (25 mg/kg), Sal (10 mg/kg) +ConA, Sal (20 mg/kg) + ConA (Sal injected 2 h prior to ConA injection) and Sal (20 mg/kg) only. The serum levels of liver enzymes, pro-inflammatory cytokines, and apoptosis- and autophagy-associated marker proteins were determined at 2, 8 and 24 h after ConA injection. LY294002 was further used to verify whether the phosphoinositide 3-kinase (PI3K)/Akt pathway was activated. Primary hepatocytes were isolated to verify the effect of Sal in vitro. The results indicated that Sal was a safe agent to reduce pathological damage and serum liver enzymes in ConA-induced liver injury. Sal suppressed inflammatory reactions in serum and liver tissues, and activated the PI3K/Akt signaling pathway to inhibit apoptosis and autophagy in vivo and in vitro, which could be reversed by LY294002. In conclusion, Sal attenuated ConA-induced liver injury by modulating PI3K/Akt pathway-mediated apoptosis and autophagy in mice.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Peiqin Niu
- Department of Gastroenterology, Shanghai Tenth People's Hospital Chongming Branch, Tongji University School of Medicine, Shanghai 202157, P.R. China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shizan Xu
- School of Clinical Medicine of Nanjing Medical University, Shanghai Tenth People's Hospital, Shanghai 200072, P.R. China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Wenwen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiya Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Qiang Yu
- School of Clinical Medicine of Nanjing Medical University, Shanghai Tenth People's Hospital, Shanghai 200072, P.R. China
| | - Ning Liu
- School of Clinical Medicine of Nanjing Medical University, Shanghai Tenth People's Hospital, Shanghai 200072, P.R. China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, P.R. China
| | - Weiqi Dai
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
18
|
Zuo W, Yan F, Zhang B, Hu X, Mei D. Salidroside improves brain ischemic injury by activating PI3K/Akt pathway and reduces complications induced by delayed tPA treatment. Eur J Pharmacol 2018; 830:128-138. [PMID: 29626425 DOI: 10.1016/j.ejphar.2018.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Cerebral ischemia causes blood-brain barrier (BBB) injury and thus increases the risk of complications secondary to thrombolysis, which limited its clinical application. This study aims to clarify the role and mechanism of salidroside (SALD) in alleviating brain ischemic injury and whether pretreatment of it could improve prognosis of delayed treatment of tissue plasminogen activator (t-PA). Rats were subjected to 3 h of middle cerebral artery occlusion (MCAO) and were intraperitoneally administered with 10, 20 or 40 mg/kg SALD before ischemia. 1.5% 5-triphenyl-2H-tetrazolium chloride (TTC) staining and neurological studies were performed to observe the effectiveness of SALD. The expressions and the distribution of phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) signaling were analyzed. Experiments were further conducted in isolated microvessels and human brain microvascular endothelial cells (HBMECs) to explore the protective mechanism of SALD. Finally, rats were subjected to 6 h of MCAO and 24 h of reperfusion. tPA was given with or without the pretreatment of SALD. Various approaches including gelatin zymography, western blot and immunofluorescence were used to evaluate the effect of this combination therapy. SALD could reduce cerebral ischemic injury and enhance HBMECs viability subjected to OGD. In vivo and in vitro studies showed the mechanism might be related to the activation of PI3K/Akt signaling by phosphorylating Akt on Ser473. Pretreatment of SALD could alleviate BBB injury and improve the outcome of delayed treatment of tPA. These results provide evidence that SALD might be an effective adjuvant to reduce the complications induced by delayed tPA treatment for brain ischemia.
Collapse
Affiliation(s)
- Wei Zuo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Feng Yan
- Center for Brain Disorders Research, Capital Mexical University, PR China; Beijing Institute for Brain Disorders, PR China; Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, PR China
| | - Bo Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xiaomin Hu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Dan Mei
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
19
|
Elbe H, Gul M, Cetin A, Taslidere E, Ozyalin F, Turkoz Y, Otlu A. Resveratrol reduces light and electron microscopic changes in acetaminophen-induced hepatotoxicity in rats: Role of iNOS expression. Ultrastruct Pathol 2017; 42:39-48. [PMID: 29192844 DOI: 10.1080/01913123.2017.1374313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Hepatotoxicity is a major complication of acetaminophen (APAP), a widely used analgesic and antipyretic drug. Resveratrol (RSV) is a naturally occurring diphenol and it has anticancer, antioxidant, and anti-inflammatory properties. OBJECTIVES In this study, the beneficial effects of RSV on APAP-induced hepatotoxicity was investigated in rats. MATERIALS AND METHODS Group 1: Ethanol, Group 2: Saline, Group 3: RSV (10 mg/kg/ip), Group 4: APAP (1000 mg/kg/ip/single dose), Group 5: APAP+RSV (20 min after administration of APAP). The rats were sacrificed 24 h after administration of APAP. Light and electron microscopic changes were evaluated. Levels of malondialdehyde (MDA) and glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) activities were determined in liver tissue. RESULTS Rats of the ethanol, saline, and RSV groups did not present any histopathological alterations. In the APAP group, we observed vascular congestion, necrosis, inflammation, sinusoidal dilatation, and loss of glycogen content. In the APAP+RSV group, these changes were markedly reduced. iNOS immunostaining showed very weak positive stained hepatocytes the sections of control, saline, and RSV groups. However, in the APAP group, iNOS immunostaining was most evident in pericentral hepatocytes. In the same areas in APAP+RSV group, intensity of iNOS immunostaining decreased. A significant increase in MDA and decreases in GSH level, CAT, and SOD activity indicated that APAP-induced hepatotoxicity was mediated through oxidative stress. Significant beneficial changes were noted in tissue oxidative stress indicators in rats treated with RSV. CONCLUSION These biochemical, histopathological, and ultrastructural findings revealed that RSV reduced the severity of APAP-induced alterations in liver.
Collapse
Affiliation(s)
- Hulya Elbe
- a Faculty of Medicine, Department of Histology and Embryology , Mugla Sıtkı Kocman University , Mugla , Turkey
| | - Mehmet Gul
- b Faculty of Medicine, Department of Histology and Embryology , Inonu University , Malatya , Turkey
| | - Asli Cetin
- b Faculty of Medicine, Department of Histology and Embryology , Inonu University , Malatya , Turkey
| | - Elif Taslidere
- c Faculty of Medicine, Department of Histology and Embryology , Bezmialem Vakif University , Istanbul , Turkey
| | - Fatma Ozyalin
- d Faculty of Medicine, Department of Medical Biochemistry , Inonu University , Malatya , Turkey
| | - Yusuf Turkoz
- d Faculty of Medicine, Department of Medical Biochemistry , Inonu University , Malatya , Turkey
| | - Ali Otlu
- b Faculty of Medicine, Department of Histology and Embryology , Inonu University , Malatya , Turkey
| |
Collapse
|
20
|
Eldutar E, Kandemir FM, Kucukler S, Caglayan C. Restorative effects of Chrysin pretreatment on oxidant-antioxidant status, inflammatory cytokine production, and apoptotic and autophagic markers in acute paracetamol-induced hepatotoxicity in rats: An experimental and biochemical study. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21960] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/08/2017] [Accepted: 06/21/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Eyup Eldutar
- Department of Biochemistry Faculty, of Veterinary Medicine; Ataturk University; Erzurum 25240 Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry Faculty, of Veterinary Medicine; Ataturk University; Erzurum 25240 Turkey
| | - Sefa Kucukler
- Department of Biochemistry Faculty, of Veterinary Medicine; Ataturk University; Erzurum 25240 Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine; Bingol University; Bingol 12000 Turkey
| |
Collapse
|
21
|
Shoda LK, Battista C, Siler SQ, Pisetsky DS, Watkins PB, Howell BA. Mechanistic Modelling of Drug-Induced Liver Injury: Investigating the Role of Innate Immune Responses. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017696074. [PMID: 28615926 PMCID: PMC5459514 DOI: 10.1177/1177625017696074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/04/2017] [Indexed: 12/19/2022]
Abstract
Drug-induced liver injury (DILI) remains an adverse event of significant concern for drug development and marketed drugs, and the field would benefit from better tools to identify liver liabilities early in development and/or to mitigate potential DILI risk in otherwise promising drugs. DILIsym software takes a quantitative systems toxicology approach to represent DILI in pre-clinical species and in humans for the mechanistic investigation of liver toxicity. In addition to multiple intrinsic mechanisms of hepatocyte toxicity (ie, oxidative stress, bile acid accumulation, mitochondrial dysfunction), DILIsym includes the interaction between hepatocytes and cells of the innate immune response in the amplification of liver injury and in liver regeneration. The representation of innate immune responses, detailed here, consolidates much of the available data on the innate immune response in DILI within a single framework and affords the opportunity to systematically investigate the contribution of the innate response to DILI.
Collapse
Affiliation(s)
- Lisl Km Shoda
- DILIsym Services, Inc., Research Triangle Park, NC, USA
| | - Christina Battista
- DILIsym Services, Inc., Research Triangle Park, NC, USA.,UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA
| | - Scott Q Siler
- DILIsym Services, Inc., Research Triangle Park, NC, USA
| | - David S Pisetsky
- Medical Research Service, Durham VA Medical Center and Duke University Medical Center, Durham, NC, USA
| | - Paul B Watkins
- UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA
| | | |
Collapse
|
22
|
Xiao D, Xiu Y, Yue H, Sun X, Zhao H, Liu S. A comparative study on chemical composition of total saponins extracted from fermented and white ginseng under the effect of macrophage phagocytotic function. J Ginseng Res 2017; 41:379-385. [PMID: 28701881 PMCID: PMC5489870 DOI: 10.1016/j.jgr.2017.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 11/28/2022] Open
Abstract
In this study, white ginseng was used as the raw material, which was fermented with Paecilomyces hepiali through solid culture medium, to produce ginsenosides with modified chemical composition. The characteristic chemical markers of the products thus produced were investigated using rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RRLC–QTOF–MS). Chemical profiling data were obtained, which were then subjected to multivariate statistical analysis for the systematic comparison of active ingredients in white ginseng and fermented ginseng to understand the beneficial properties of ginsenoside metabolites. In addition, the effects of these components on biological activity were investigated to understand the improvements in the phagocytic function of macrophages in zebrafish. According to the established RRLC–QTOF–MS chemical profiling, the contents in ginsenosides of high molecular weight, especially malonylated protopanaxadiol ginsenosides, were slightly reduced due to the fermentation, which were hydrolyzed into rare and minor ginsenosides. Moreover, the facilitation of macrophage phagocytic function in zebrafish following treatment with different ginseng extracts confirmed that the fermented ginseng is superior to white ginseng. Our results prove that there is a profound change in chemical constituents of ginsenosides during the fermentation process, which has a significant effect on the biological activity of these compounds.
Collapse
Affiliation(s)
- Dan Xiao
- Chang Chun University of Technology, Chang Chun, Jilin, China
| | - Yang Xiu
- Jilin Ginseng Academy, Chang Chun University of Chinese Medicine, Chang Chun, Jilin, China
| | - Hao Yue
- Jilin Ginseng Academy, Chang Chun University of Chinese Medicine, Chang Chun, Jilin, China
| | - Xiuli Sun
- Jilin Ginseng Academy, Chang Chun University of Chinese Medicine, Chang Chun, Jilin, China
| | - Huanxi Zhao
- Jilin Ginseng Academy, Chang Chun University of Chinese Medicine, Chang Chun, Jilin, China
| | - Shuying Liu
- Chang Chun University of Technology, Chang Chun, Jilin, China.,Jilin Ginseng Academy, Chang Chun University of Chinese Medicine, Chang Chun, Jilin, China
| |
Collapse
|
23
|
da Rocha BA, Ritter AMV, Ames FQ, Gonçalves OH, Leimann FV, Bracht L, Natali MRM, Cuman RKN, Bersani-Amado CA. Acetaminophen-induced hepatotoxicity: Preventive effect of trans anethole. Biomed Pharmacother 2017; 86:213-220. [DOI: 10.1016/j.biopha.2016.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 01/13/2023] Open
|
24
|
Salidroside Regulates Inflammatory Response in Raw 264.7 Macrophages via TLR4/TAK1 and Ameliorates Inflammation in Alcohol Binge Drinking-Induced Liver Injury. Molecules 2016; 21:molecules21111490. [PMID: 27834881 PMCID: PMC6272831 DOI: 10.3390/molecules21111490] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/15/2023] Open
Abstract
The current study was designed to investigate the anti-inflammatory effect of salidroside (SDS) and the underlying mechanism by using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro and a mouse model of binge drinking-induced liver injury in vivo. SDS downregulated protein expression of toll-like receptor 4 (TLR4) and CD14. SDS inhibited LPS-triggered phosphorylation of LPS-activated kinase 1 (TAK1), p38, c-Jun terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Degradation of IκB-α and nuclear translocation of nuclear factor (NF)-κB were effectively blocked by SDS. SDS concentration-dependently suppressed LPS mediated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels, as well as their downstream products, NO. SDS significantly inhibited protein secretion and mRNA expression of of interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Additionally C57BL/6 mice were orally administrated SDS for continuous 5 days, followed by three gavages of ethanol every 30 min. Alcohol binge drinking caused the increasing of hepatic lipid accumulation and serum transaminases levels. SDS pretreatment significantly alleviated liver inflammatory changes and serum transaminases levels. Further investigation indicated that SDS markedly decreased protein level of IL-1β in serum. Taken together, these data implied that SDS inhibits liver inflammation both in vitro and in vivo, and may be a promising candidate for the treatment of inflammatory liver injury.
Collapse
|
25
|
Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol 2016; 10:148-156. [PMID: 27744120 PMCID: PMC5065645 DOI: 10.1016/j.redox.2016.10.001] [Citation(s) in RCA: 357] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 02/06/2023] Open
Abstract
Acetaminophen (APAP) hepatotoxicity is characterized by an extensive oxidative stress. However, its source, pathophysiological role and possible therapeutic potential if targeted, have been controversially described. Earlier studies argued for cytochrome P450-generated reactive oxygen species (ROS) during APAP metabolism, which resulted in massive lipid peroxidation and subsequent liver injury. However, subsequent studies convincingly challenged this assumption and the current paradigm suggests that mitochondria are the main source of ROS, which impair mitochondrial function and are responsible for cell signaling resulting in cell death. Although immune cells can be a source of ROS in other models, no reliable evidence exists to support a role for immune cell-derived ROS in APAP hepatotoxicity. Recent studies suggest that mitochondrial targeted antioxidants can be viable therapeutic agents against hepatotoxicity induced by APAP overdose, and re-purposing existing drugs to target oxidative stress and other concurrent signaling events can be a promising strategy to increase its potential application in patients with APAP overdose. Oxidative stress plays a critical role in acetaminophen hepatotoxicity. Mitochondria are the main source of ROS and RNS that are responsible for the toxicity. Cytochrome P450 and inflammatory cells are probably not relevant sources of ROS for the toxicity. Mitochondrial oxidative stress is a promising therapeutic target against APAP overdose.
Collapse
|
26
|
Wang M, Luo L, Yao L, Wang C, Jiang K, Liu X, Xu M, Shen N, Guo S, Sun C, Yang Y. Salidroside improves glucose homeostasis in obese mice by repressing inflammation in white adipose tissues and improving leptin sensitivity in hypothalamus. Sci Rep 2016; 6:25399. [PMID: 27145908 PMCID: PMC4857131 DOI: 10.1038/srep25399] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/14/2016] [Indexed: 12/21/2022] Open
Abstract
Salidroside is a functionally versatile natural compound from the perennial flowering plant Rhodiola rosea L. Here, we examined obese mice treated with salidroside at the dosage of 50 mg/kg/day for 48 days. Mice treated with salidroside showed slightly decreased food intake, body weight and hepatic triglyceride content. Importantly, salidroside treatment significantly improved glucose and insulin tolerance. It also increased insulin singling in both liver and epididymal white adipose tissue (eWAT). In addition, salidroside markedly ameliorated hyperglycemia in treated mice, which is likely due to the suppression of gluconeogenesis by salidroside as the protein levels of a gluconeogenic enzyme G6Pase and a co-activator PGC-1α were all markedly decreased. Further analysis revealed that adipogenesis in eWAT was significantly decreased in salidroside treated mice. The infiltration of macrophages in eWAT and the productions of pro-inflammatory cytokines were also markedly suppressed by salidroside. Furthermore, the leptin signal transduction in hypothalamus was improved by salidroside. Taken together, these euglycemic effects of salidroside may due to repression of adipogenesis and inflammation in eWAT and stimulation of leptin signal transduction in hypothalamus. Thus, salidroside might be used as an effective anti-diabetic agent.
Collapse
Affiliation(s)
- Meihong Wang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, PRC
| | - Lan Luo
- Department of Geratology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PRC
| | - Lili Yao
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PRC
| | - Caiping Wang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, PRC
| | - Ketao Jiang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, PRC
| | - Xiaoyu Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, PRC
| | - Muchen Xu
- School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, PRC
| | - Ningmei Shen
- School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, PRC
| | - Shaodong Guo
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, USA
| | - Cheng Sun
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, PRC
| | - Yumin Yang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, PRC
| |
Collapse
|
27
|
Yang ZR, Wang HF, Zuo TC, Guan LL, Dai N. Salidroside alleviates oxidative stress in the liver with non- alcoholic steatohepatitis in rats. BMC Pharmacol Toxicol 2016; 17:16. [PMID: 27075663 PMCID: PMC4831194 DOI: 10.1186/s40360-016-0059-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 03/29/2016] [Indexed: 01/19/2023] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) is characterized by fat accumulation in the hepatocyte, inflammation, liver cell injury, and varying degrees of fibrosis, and can lead to oxidative stress in liver. Here, we investigated whether Salidroside, a natural phenolic antioxidant product, can protect rat from liver injury during NASH. Methods NASH model was established by feeding the male SD rats with high-fat and high-cholesterol diet for 14 weeks. Four groups of male SD rats including, normal diet control group, NASH model group, and Salidroside treatment group with150mg/kg and 300 mg/kg respectively, were studied. Salidroside was given by oral administration to NASH in rats from 9 weeks to 14 weeks. At the end of 14 weeks, liver and serum were harvested, and the liver injury, oxidative stress and histological features were evaluated. Results NASH rats exhibited significant increases in the following parameters as compared to normal diet control rats: fat droplets with foci of inflammatory cell infiltration in the liver. ALT, AST in serum and TG, TC in hepatocyte elevated. Oxidative responsive genes including CYP2E1 and Nox2 increased. Additionally, NASH model decreased antioxidant enzymes SOD, GSH, GPX, and CAT in the liver due to their rapid depletion after battling against oxidative stress. Compared to NASH model group, treatment rats with Salidroside effectively reduced lipid accumulation, inhibited liver injury in a does-dependent manner. Salidroside treatment restored antioxidant enzyme levels, inhibited expression of CYP2E1 and Nox2 mRNA in liver, which prevented the initial step of generating free radicals from NASH. Conclusion The data presented here show that oral administration of Salidroside prevented liver injury in the NASH model, likely through exerting antioxidant actions to suppress oxidative stress and the free radical–generating CYP2E1 enzyme, Nox2 in liver.
Collapse
Affiliation(s)
- Ze-ran Yang
- Department of Gastroenterology, the first Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Hui-fang Wang
- Department of Gastroenterology, the first Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Tie-cheng Zuo
- Department of Gastroenterology, the first Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Li-li Guan
- Department of Digestive Physiology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Ning Dai
- Department of Gastroenterology, the first Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Dalian, 116011, Liaoning Province, China.
| |
Collapse
|
28
|
Hu Z, Wang Z, Liu Y, Wu Y, Han X, Zheng J, Yan X, Wang Y. Metabolite Profile of Salidroside in Rats by Ultraperformance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry and High-Performance Liquid Chromatography Coupled with Quadrupole-Linear Ion Trap Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8999-9005. [PMID: 26461036 DOI: 10.1021/acs.jafc.5b04510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the present work, the salidroside metabolite profile in rat urine was investigated, and subsequently the metabolic pathways of salidroside were proposed. After administrations of salidroside at an oral dose of 100 or 500 mg/kg, rat urine samples were collected and pretreated with methanol to precipitate the proteins. The pretreated samples were analyzed by an Acquity ultraperformance liquid chromatography (UPLC) coupled with an HSS T3 column and detected by quadrupole time-of-flight mass spectrometry (Q-TOF-MS) or high-performance liquid chromatography coupled with hybrid triple-quadrupole linear ion trap mass spectrometry (HPLC/Q-trap-MS). A total of eight metabolites were detected and identified on the basis of the characteristics of their protonated ions in the urine samples. The results elucidated that salidroside was metabolized via glucuronidation, sulfation, deglycosylation, hydroxylation, methylation, and dehydroxylation pathways in vivo.
Collapse
Affiliation(s)
- Zhiwei Hu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University , Harbin 150040, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education , Harbin 150040, China
| | - Ziming Wang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University , Harbin 150040, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education , Harbin 150040, China
| | - Yong Liu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University , Harbin 150040, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education , Harbin 150040, China
- Heilongjiang Entry-Exit Inspection and Quarantine Bureau, Harbin 150001, China
| | - Yan Wu
- Heilongjiang Entry-Exit Inspection and Quarantine Bureau, Harbin 150001, China
| | - Xuejiao Han
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University , Harbin 150040, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education , Harbin 150040, China
| | - Jian Zheng
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University , Harbin 150040, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education , Harbin 150040, China
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University , Harbin 150040, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education , Harbin 150040, China
| | - Yang Wang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University , Harbin 150040, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education , Harbin 150040, China
| |
Collapse
|
29
|
Zou H, Liu X, Han T, Hu D, Wang Y, Yuan Y, Gu J, Bian J, Zhu J, Liu ZP. Salidroside Protects against Cadmium-Induced Hepatotoxicity in Rats via GJIC and MAPK Pathways. PLoS One 2015; 10:e0129788. [PMID: 26070151 PMCID: PMC4466396 DOI: 10.1371/journal.pone.0129788] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/13/2015] [Indexed: 12/29/2022] Open
Abstract
It is known that cadmium (Cd) induces cytotoxicity in hepatocytes; however, the underlying mechanism is unclear. Here, we studied the molecular mechanisms of Cd-induced hepatotoxicity in rat liver cells (BRL 3A) and in vivo. We observed that Cd treatment was associated with a time- and concentration-dependent decrease in the cell index (CI) of BRL 3A cells and cellular organelle ultrastructure injury in the rat liver. Meanwhile, Cd treatment resulted in the inhibition of gap junction intercellular communication (GJIC) and activation of mitogen-activated protein kinase (MAPK) pathways. Gap junction blocker 18-β-glycyrrhetinic acid (GA), administered in combination with Cd, exacerbated cytotoxic injury in BRL 3A cells; however, GA had a protective effect on healthy cells co-cultured with Cd-exposed cells in a co-culture system. Cd-induced cytotoxic injury could be attenuated by co-treatment with an extracellular signal-regulated kinase (ERK) inhibitor (U0126) and a p38 inhibitor (SB202190) but was not affected by co-treatment with a c-Jun N-terminal kinase (JNK) inhibitor (SP600125). These results indicate that ERK and p38 play critical roles in Cd-induced hepatotoxicity and mediate the function of gap junctions. Moreover, MAPKs induce changes in GJIC by controlling connexin gene expression, while GJIC has little effect on the Cd-induced activation of MAPK pathways. Collectively, our study has identified a possible mechanistic pathway of Cd-induced hepatotoxicity in vitro and in vivo, and identified the participation of GJIC and MAPK-mediated pathways in Cd-induced hepatotoxicity. Furthermore, we have shown that salidroside may be a functional chemopreventative agent that ameliorates the negative effects of Cd via GJIC and MAPK pathways.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Tao Han
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Di Hu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Yi Wang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Zong-ping Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| |
Collapse
|
30
|
Wang YH, Xu XJ, Li HL. Hepatoprotective effects of Mimic of Manganese superoxide dismutase against carbon tetrachloride-induced hepatic injury. Int Immunopharmacol 2014; 22:126-32. [DOI: 10.1016/j.intimp.2014.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/16/2014] [Accepted: 06/10/2014] [Indexed: 11/27/2022]
|
31
|
Roychowdhury S, Chiang DJ, McMullen MR, Nagy LE. Moderate, chronic ethanol feeding exacerbates carbon-tetrachloride-induced hepatic fibrosis via hepatocyte-specific hypoxia inducible factor 1α. Pharmacol Res Perspect 2014; 2:e00061. [PMID: 25089199 PMCID: PMC4115456 DOI: 10.1002/prp2.61] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The hypoxia-sensing transcriptional factor HIF1α is implicated in a variety of hepato-pathological conditions; however, the contribution of hepatocyte-derived HIF1α during progression of alcoholic liver injury is still controversial. HIF1α induces a variety of genes including those involved in apoptosis via p53 activation. Increased hepatocyte apoptosis is critical for progression of liver inflammation, stellate cell activation, and fibrosis. Using hepatocyte-specific HIF1α-deficient mice (ΔHepHIF1α−/−), here we investigated the contribution of HIF1α to ethanol-induced hepatocyte apoptosis and its role in amplification of fibrosis after carbon tetrachloride (CCl4) exposure. Moderate ethanol feeding (11% of kcal) induced accumulation of hypoxia-sensitive pimonidazole adducts and HIF1α expression in the liver within 4 days of ethanol feeding. Chronic CCl4 treatment increased M30-positive cells, a marker of hepatocyte apoptosis in pair-fed control mice. Concomitant ethanol feeding (11% of kcal) amplified CCl4-induced hepatocyte apoptosis in livers of wild-type mice, associated with elevated p53K386 acetylation, PUMA expression, and Ly6c+ cell infiltration. Subsequent to increased apoptosis, ethanol-enhanced induction of profibrotic markers, including stellate cell activation, collagen 1 expression, and extracellular matrix deposition following CCl4 exposure. Ethanol-induced exacerbation of hepatocyte apoptosis, p53K386 acetylation, and PUMA expression following CCl4 exposure was attenuated in livers of ΔHepHIF1α−/− mice. This protection was also associated with a reduction in Ly6c+ cell infiltration and decreased fibrosis in livers of ΔHepHIF1α−/− mice. In summary, these results indicate that moderate ethanol exposure leads to hypoxia/HIF1α-mediated signaling in hepatocytes and induction of p53-dependent apoptosis of hepatocytes, resulting in increased hepatic fibrosis during chronic CCl4 exposure.
Collapse
Affiliation(s)
- Sanjoy Roychowdhury
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Dian J Chiang
- Department of Gastroenterology, Cleveland Clinic, Cleveland, Ohio
| | - Megan R McMullen
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | - Laura E Nagy
- Center for Liver Disease Research, Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio ; Department of Gastroenterology, Cleveland Clinic, Cleveland, Ohio ; Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
32
|
Henrique da Silva G, Barros PP, Silva Gonçalves GM, Landi MA. Hepatoprotective effect of Lycopodium clavatum 30CH on experimental model of paracetamol-induced liver damage in rats. HOMEOPATHY 2014; 104:29-35. [PMID: 25576269 DOI: 10.1016/j.homp.2014.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/24/2014] [Accepted: 05/23/2014] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Homeopathic Lycopodium clavatum is indicated for disorders of the digestive system and its accessory organs, including atony of the liver and liver tissue failure. Tis suggests that it may have action on drug-induced hepatitis, as occurs in paracetamol overdose. PURPOSE To evaluate the effectiveness of Lycopodium clavatum 30C (Lyc) as a hepatoprotector against liver damage experimentally induced by paracetamol (Pct) in Wistar rats. METHODOLOGY Thirty animals subdivided into 6 groups were used. Animals from the treated groups were pretreated for 8 days with Lyc 30c (0.25 ml/day), receiving a dose of 3 g/kg of Pct on the 8th day. A positive control group received similar treatment, replacing Lyc 30c with 30% ethanol and a negative control received only 30% ethanol. After 24 and 72 h, the animals were sacrificed for tissue and blood sample collection. Subsequently, enzyme serum measurements indicative of liver damage (aspartate-aminotransferase (AST) and Alanine-aminotransferase (ALT)) and liver histological and morphometric analyses were performed. RESULTS Pretreatment with Lyc 30c reduced hepatic lesions produced by Pct overdose as evidenced by a significant reduction (p < 0.05) in ALT levels in the LyP 24h-group (901.04 ± 92.05 U/l) compared to the respective control group (1866.28 ± 585.44 U/l), promoted a significant decrease in the number of acinar zone 1 affected by necrosis and inflammatory infiltration (15.46 ± 13.86 clr/cm(2) in LyP72 for 73.75 ± 16.60 clr/cm(2) in PC72), and inhibition of 1,2-glycol (glycogen) depletion in zone 3 (a significant reduction in Lyc 72 h group animals in comparison to the control group). Significant changes concerning the development of fibrosis or alterations in transaminase levels were not observed after 72 h. CONCLUSION Lyc 30c exerted a moderate hepatoprotective effect on acute Pct-induced hepatitis, mainly shown by a histological decrease in necrosis and inflammatory foci, preserved glycogen and other 1,2-glycols in zone 3 and reduced serum levels of ALT and AST.
Collapse
|
33
|
Guo N, Ding W, Wang Y, Hu Z, Wang Z, Wang Y. An LC-MS/MS method for the determination of salidroside and its metabolite p-tyrosol in rat liver tissues. PHARMACEUTICAL BIOLOGY 2014; 52:637-645. [PMID: 24479765 DOI: 10.3109/13880209.2013.863946] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/05/2013] [Indexed: 06/03/2023]
Abstract
CONTEXT Salidroside and its metabolite p-tyrosol are two major phenols in the genus Rhodiola L. (Crassulaceae). They have been confirmed to possess various pharmacological properties and are used for the prophylaxis and therapeutics of many diseases. Several analytical methods have been developed for the determination of the two compounds in plant materials and biological plasma matrices. However, these methods are not optimal for biological samples containing complex organic interferences, such as liver and brain tissues. OBJECTIVE This study aimed to further develop and validate a simple and specific LC-MS/MS method for the determination of salidroside and its metabolite p-tyrosol in rat liver tissues using paracetamol as the internal standard (IS). MATERIALS AND METHODS Salidroside and p-tyrosol with the IS paracetamol and liver tissues were used as model compounds and biological samples. Samples were processed by protein precipitation (PP) with methanol, the supernatant was dried under nitrogen and the residue was reconstituted in a mobile phase that consisted of a mixture of acetonitrile and water (1:9, v/v). Salidroside and p-tyrosol were detected in negative mode under multiple reaction monitoring (MRM) by a triple quadrupole tandem mass spectrometer coupled with electrospray ionization. RESULTS Standard curves were linear over the concentration range of 50-2000 ng/mL with correlation coefficients of 0.995 or better for both salidroside and p-tyrosol. The intra- and inter-day accuracy for salidroside ranged between 104.90 and 112.73% with a precision of 3.51-14.27%. For p-tyrosol, the intra- and inter-day accuracy was between 92.38 and 100.59%, and the precision was 8.54% or less. The stability data showed that no significant degradation occurred under the experimental conditions. The recoveries were 111.44, 108.10, and 102.00% for salidroside at concentrations of 50, 500 and 2000 ng/mL, respectively, and were 105.44, 105.50, and 113.04% for tyrosol at concentrations of 50, 500 and 2000 ng/mL, respectively. The matrix effects were 83.85-92.45% for salidroside and 85.61-92.49% for p-tyrosol at three QC levels. This method was successfully applied to a liver tissue distribution study of salidroside and its metabolite p-tyrosol in rats. DISCUSSION AND CONCLUSION This newly established method is validated as simple, reliable and accurate. It can be used as a valid analytical method for the intrinsic quality control of biological matrices, especially tissue samples.
Collapse
Affiliation(s)
- Na Guo
- School of Municipal and Environmental Engineering, Harbin Institute of Technology , Harbin , China
| | | | | | | | | | | |
Collapse
|
34
|
Wang J, Li JZ, Lu AX, Zhang KF, Li BJ. Anticancer effect of salidroside on A549 lung cancer cells through inhibition of oxidative stress and phospho-p38 expression. Oncol Lett 2014; 7:1159-1164. [PMID: 24944685 PMCID: PMC3961258 DOI: 10.3892/ol.2014.1863] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/19/2013] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress is important in carcinogenesis and metastasis. Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L., shows potent antioxidant properties. The aim of the present study was to investigate the roles of salidroside in cell proliferation, the cell cycle, apoptosis, invasion and epithelial-mesenchymal transition (EMT) in A549 cells. The human alveolar adenocarcinoma cell line, A549, was incubated with various concentrations of salidroside (0, 1, 5, 10 and 20 μg/ml) and cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Propidium iodide (PI) staining was used to determine the cell cycle by flow cytometry. Cell apoptosis was detected by Annexin V-fluorescein isothiocyanate and PI double-staining, and tumor invasion was detected by Boyden chamber invasion assay. Western blot analysis was performed to detect the expression of EMT markers, Snail and phospho-p38. The results showed that salidroside significantly reduced the proliferation of A549 cells, inhibited cell cycle arrest in the G0/G1 phase and induced apoptosis. Salidroside inhibited transforming growth factor-β-induced tumor invasion and suppressed the protein expression of Snail. As an antioxidant, salidroside inhibited the intracellular reactive oxygen species (ROS) formation in a dose-dependent manner in A549 cells, and depletion of intracellular ROS by vitamin C suppressed apoptosis by salidroside treatment. Salidroside was also found to inhibit the expression of phospho-p38 in A549 cells. In conclusion, salidroside inhibits cell proliferation, the cell cycle and metastasis and induces apoptosis, which may be due to its interference in the intracellular ROS generation, thereby, downregulating the ROS-phospho-p38 signaling pathway.
Collapse
Affiliation(s)
- Jun Wang
- Department of Oncology, The Central Hospital of Taian, Taian, Shandong 271000, P.R. China
| | - Jian-Zhe Li
- Department of Oncology, The Central Hospital of Taian, Taian, Shandong 271000, P.R. China
| | - Ai-Xia Lu
- Department of Oncology, The Central Hospital of Taian, Taian, Shandong 271000, P.R. China
| | - Ke-Fen Zhang
- Department of Medical Laboratory, Taishan Sanatorium, Taian, Shandong 271000, P.R. China
| | - Bao-Jiang Li
- Department of Breast Surgery, The Central Hospital of Taian, Taian, Shandong 271000, P.R. China
| |
Collapse
|
35
|
Hepatoprotective Effect of Pretreatment with Thymus vulgaris Essential Oil in Experimental Model of Acetaminophen-Induced Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:954136. [PMID: 24639884 PMCID: PMC3932235 DOI: 10.1155/2014/954136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/23/2013] [Indexed: 11/17/2022]
Abstract
Acute liver damage caused by acetaminophen overdose is a significant clinical problem and could benefit from new therapeutic strategies. Objective. This study investigated the hepatoprotective effect of Thymus vulgaris essential oil (TEO), which is used popularly for various beneficial effects, such as its antiseptic, carminative, and antimicrobial effects. The hepatoprotective activity of TEO was determined by assessing serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) in mice. Their livers were then used to determine myeloperoxidase (MPO) enzyme activity and subjected to histological analysis. In vitro antioxidant activity was evaluated by assessing the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH•)-scavenging effects of TEO and TEO-induced lipid peroxidation. TEO reduced the levels of the serum marker enzymes AST, ALT, and ALP and MPO activity. The histopathological analysis indicated that TEO prevented acetaminophen-induced necrosis. The essential oil also exhibited antioxidant activity, reflected by its DPPH radical-scavenging effects and in the lipid peroxidation assay. These results suggest that TEO has hepatoprotective effects on acetaminophen-induced hepatic damage in mice.
Collapse
|
36
|
Yuan Y, Wu SJ, Liu X, Zhang LL. Antioxidant effect of salidroside and its protective effect against furan-induced hepatocyte damage in mice. Food Funct 2014; 4:763-9. [PMID: 23507802 DOI: 10.1039/c3fo00013c] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Furan, a widely used industrial compound, has been found in many heat-treated foods, especially baby food. The presence of furan in food raises concerns about public health. In this study, we evaluated the protective effect of salidroside (SR) against furan-induced hepatocyte damage in mice livers. The in vitro antioxidant effects of SR were also evaluated. The results suggested that furan significantly increased hepatocyte damage, as proven by the increased activities of aminotransferase (AST), alanine aminotransferase (ALT) and levels of direct bilirubin (DBIL). Furan also caused oxidative stress, as evidenced by increased reactive oxygen species (ROS) production as well as malondialdehyde (MDA) levels and glutathione S-transferase (GST) activity in mice livers. Pretreatment with SR markedly attenuated the activities of AST, ALT, GST and the levels of DBIL, ROS, and MDA in a dose-dependent manner. The protective effects of SR against furan-induced hepatocyte damage were due to its excellent ability to scavenge free radicals such as 2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radicals, ˙OH, 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl radicals and ˙O(2)(-). Thus, SR exerted excellent antioxidant effects, and it may be a novel therapeutic and preventive agent for oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Quartermaster Technology, Jilin University, Changchun, China, 130062.
| | | | | | | |
Collapse
|
37
|
Chen S, Zhou H, Lin M, Mi R, Li L. Decoction vs extracts-mixed solution: effect of yiqihuoxue formula on non-alcoholic fatty liver disease in rats. J TRADIT CHIN MED 2014; 33:513-7. [PMID: 24187874 DOI: 10.1016/s0254-6272(13)60157-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To investigate the effects on non-alcoholic fatty liver disease (NAFLD) in rats of the decoction of Yiqihuoxue formula and the solution prepared with the extracts from the individual herbal medicines of the formula. METHODS The rat models of NAFLD were established with high-fat diet (HFD) for 10 weeks. Thirty-two rats were randomly divided into 4 groups: the control group, the model group, the decoction group and the solution group, 8 for each group. From the 6th week, drinking water, the decoction and the solution were intragastrically administrated accordingly to the rats for 5 weeks. The pathological changes of the liver tissues were observed with Hematoxylin and eosin staining, triglyceride levels in liver tissues measured, serum alanine aminotransferase (ALT) activity measured, and serum gastrin and motilin tested. RESULTS Fatty degeneration and vacuole-like changes to various degrees occurred in hepatic cells of the model group. Indicators for fat metabolism, serum ALT activity and hepatic triglyceride level significantly increased, while serum gastrin and motilin levels significantly decreased. Serum ALT activity and the fatty deposition in hepatocytes were significantly reduced. In the meantime, the expressions of gastrin and motilin in the serum rose significantly in the treatment groups. CONCLUSION Both the decoction and the extracts-mixed solution had effect on NAFLD of protecting the liver function and reducing the fatty deposition in liver, which might be achieved by regulating the expression of gastrin and motilin.
Collapse
Affiliation(s)
- Shaodong Chen
- Traditional Chinese Medicine Department, Medical College of Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
38
|
Protective Effect of Acacia nilotica (L.) against Acetaminophen-Induced Hepatocellular Damage in Wistar Rats. Adv Pharmacol Sci 2013; 2013:987692. [PMID: 23864853 PMCID: PMC3707210 DOI: 10.1155/2013/987692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/21/2013] [Accepted: 05/29/2013] [Indexed: 12/04/2022] Open
Abstract
The potential biological functions of A. nilotica have long been described in traditional system of medicine. However, the protective effect of A. nilotica on acetaminophen-induced hepatotoxicity is still unknown. The present study attempted to investigate the protective effect of A. nilotica against acetaminophen-induced hepatic damage in Wistar rats. The biochemical liver functional tests Alanine transaminase (ALT), Aspartate transaminase (AST), Alkaline phosphatase (ALP), total bilirubin, total protein, oxidative stress test (Lipid peroxidation), antioxidant parameter glutathione (GSH), and histopathological changes were examined. Our results show that the pretreatment with A. nilotica (250 mg/kg·bw) orally revealed attenuation of serum activities of ALT, AST, ALP, liver weight, and total bilirubin levels that were enhanced by administration of acetaminophen. Further, pretreatment with extract elevated the total protein and GSH level and decreased the level of LPO. Histopathological analysis confirmed the alleviation of liver damage and reduced lesions caused by acetaminophen. The present study undoubtedly provides a proof that hepatoprotective action of A. nilotica extract may rely on its effect on reducing the oxidative stress in acetaminophen-induced hepatic damage in rat model.
Collapse
|
39
|
Noh JR, Kim YH, Hwang JH, Gang GT, Kim KS, Lee IK, Yun BS, Lee CH. Davallialactone protects against acetaminophen overdose-induced liver injuries in mice. Food Chem Toxicol 2013; 58:14-21. [PMID: 23583805 DOI: 10.1016/j.fct.2013.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/14/2013] [Accepted: 04/04/2013] [Indexed: 01/22/2023]
Abstract
Oxidative stress is closely associated with acetaminophen (APAP)-induced toxicity. Davallialactone (DAVA), a hispidin analog derived from the mushroom Inonotus xeranticus, has antioxidant properties. This study evaluated whether DAVA plays protective roles against APAP hepatotoxicity in mice. Pretreatments with DAVA (10 mg/kg) prior to exposures of mice to a hepatotoxic dose of 600 mg/kg APAP significantly increased survival rate compared to APAP alone. To verify this effect, mice were treated with 400 mg/kg APAP 30 min after DAVA administration and were then sacrificed after 0.5, 1, 3, and 6 h. APAP alone caused severe liver injuries as characterized by increased plasma GOT and GPT levels, ATP and GSH depletion, and peroxynitrite and 4-HNE formations. These liver damages induced by APAP were significantly attenuated by DAVA pretreatments. The GSH/GSSG ratio nearly recovered to the levels observed in non-APAP-treated mice at 6h after APAP treatment in DAVA-pretreated mice. Furthermore, while hepatic ROS levels were increased by APAP exposures, pretreatments with DAVA completely blocked ROS formation. In addition, APAP-induced sustained activations of JNK and ERK were remarkably reduced by DAVA pretreatment. In conclusion, these results suggest that DAVA plays protective roles against APAP-mediated hepatotoxicity through function as ROS scavenger.
Collapse
Affiliation(s)
- Jung-Ran Noh
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Jaeschke H, Williams CD, McGill MR, Xie Y, Ramachandran A. Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food Chem Toxicol 2013; 55:279-89. [PMID: 23353004 DOI: 10.1016/j.fct.2012.12.063] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 01/08/2023]
Abstract
Extracts from medicinal plants, many of which have been used for centuries, are increasingly tested in models of hepatotoxicity. One of the most popular models to evaluate the hepatoprotective potential of natural products is acetaminophen (APAP)-induced liver injury, although other hepatotoxicity models such as carbon tetrachloride, thioacetamide, ethanol and endotoxin are occasionally used. APAP overdose is a clinically relevant model of drug-induced liver injury. Critical mechanisms and signaling pathways, which trigger necrotic cell death and sterile inflammation, are discussed. Although there is increasing understanding of the pathophysiology of APAP-induced liver injury, the mechanism is complex and prone to misinterpretation, especially when unknown chemicals such as plant extracts are tested. This review discusses the fundamental aspects that need to be considered when using this model, such as selection of the animal species or in vitro system, timing and dose-responses of signaling events, metabolic activation and protein adduct formation, the role of lipid peroxidation and apoptotic versus necrotic cell death, and the impact of the ensuing sterile inflammatory response. The goal is to enable researchers to select the appropriate model and experimental conditions for testing of natural products that will yield clinically relevant results and allow valid interpretations of the pharmacological mechanisms.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
41
|
Wang T, Zhang X, Xie W. Cistanche deserticola Y. C. Ma, "Desert Ginseng": A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:1123-41. [DOI: 10.1142/s0192415x12500838] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cistanche deserticola Y. C. Ma (C. deserticola, "Rou Cong Rong" in Chinese) is an officinal plant that grows in arid or semi-arid areas. The dried fleshy stem of C. deserticola has been generally used as a tonic in China and Japan for many years. Modern pharmacology studies have since demonstrated that C. deserticola possesses broad medicinal functions, especially for use in hormone regulation, aperient, immunomodulatory, neuroprotective, antioxidative, anti-apoptotic, anti-nociceptive, anti-inflammatory, anti-fatigue activities and the promotion of bone formation. The phenylethanoid glycosides (PhGs) presented in C. deserticola have been identified as the major active components. This review summarizes the up-to-date and comprehensive information on C. deserticola covering the aspects of the botany, traditional uses, phytochemistry, and pharmacology.
Collapse
Affiliation(s)
- Tian Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaoying Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wenyan Xie
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
42
|
Methyl helicterate protects against CCl4-induced liver injury in rats by inhibiting oxidative stress, NF-κB activation, Fas/FasL pathway and cytochrome P4502E1 level. Food Chem Toxicol 2012; 50:3413-20. [DOI: 10.1016/j.fct.2012.07.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/27/2012] [Accepted: 07/28/2012] [Indexed: 01/05/2023]
|
43
|
Free radical scavenging and hepatoprotective effects of salidroside analogs on CCl4-induced cytotoxicity in LO2 cells. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0247-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Protective effect of Ornithogalum saundersiae Ait (Liliaceae) against acetaminophen-induced acute liver in-jury via CYP2E1 and HIF-1α. Chin J Nat Med 2012. [DOI: 10.3724/sp.j.1009.2012.00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Li D, Fu Y, Zhang W, Su G, Liu B, Guo M, Li F, Liang D, Liu Z, Zhang X, Cao Y, Zhang N, Yang Z. Salidroside attenuates inflammatory responses by suppressing nuclear factor-κB and mitogen activated protein kinases activation in lipopolysaccharide-induced mastitis in mice. Inflamm Res 2012; 62:9-15. [DOI: 10.1007/s00011-012-0545-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/03/2012] [Accepted: 08/06/2012] [Indexed: 11/29/2022] Open
|
46
|
Betto MRB, Lazarotto LF, Watanabe TTN, Driemeier D, Leite CE, Campos MM. Effects of treatment with enalapril on hepatotoxicity induced by acetaminophen in mice. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:933-43. [DOI: 10.1007/s00210-012-0774-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 06/14/2012] [Indexed: 12/27/2022]
|
47
|
Kim H, Kim Y, Guk K, Yoo D, Lim H, Kang G, Lee D. Fully biodegradable and cationic poly(amino oxalate) particles for the treatment of acetaminophen-induced acute liver failure. Int J Pharm 2012; 434:243-50. [PMID: 22664461 DOI: 10.1016/j.ijpharm.2012.05.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 05/23/2012] [Accepted: 05/27/2012] [Indexed: 01/13/2023]
Abstract
Acute inflammatory diseases are one of major causes of death in the world and there is great need for developing drug delivery systems that can target drugs to macrophages and enhance their therapeutic efficacy. Poly(amino oxalate) (PAOX) is a new family of fully biodegradable polymer that possesses tertiary amine groups in its backbone and has rapid hydrolytic degradation. In this study, we developed PAOX particles as drug delivery systems for treating acute liver failure (ALF) by taking the advantages of the natural propensity of particulate drug delivery systems to localize to the mononuclear phagocyte system, particularly to liver macrophages. PAOX particles showed a fast drug release kinetics and excellent biocompatibility in vitro and in vivo. A majority of PAOX particles were accumulated in liver, providing a rational strategy for effective treatment of ALF. A mouse model of acetaminophen (APAP)-induced ALF was used to evaluate the potential of PAOX particles using pentoxifylline (PTX) as a model drug. Treatment of PTX-loaded PAOX particles significantly reduced the activity of alanine transaminase (ALT) and inhibited hepatic cell damages in APAP-intoxicated mice. The high therapeutic efficacy of PTX-loaded PAOX particles for ALF treatment may be attributed to the unique properties of PAOX particles, which can target passively liver, stimulate cellular uptake and trigger a colloid osmotic disruption of the phagosome to release encapsulated PTX into the cytosol. Taken together, we believe that PAOX particles are a promising drug delivery candidate for the treatment of acute inflammatory diseases.
Collapse
Affiliation(s)
- Hyungmin Kim
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Qian EW, Ge DT, Kong SK. Salidroside protects human erythrocytes against hydrogen peroxide-induced apoptosis. JOURNAL OF NATURAL PRODUCTS 2012; 75:531-537. [PMID: 22483064 DOI: 10.1021/np200555s] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Rhodiola rosea is a commonly used folk medicine for the treatment of high altitude sickness, mountain malhypoxia, and anoxia. Its active ingredient, salidroside [2-(4-hydroxyphenyl)ethyl β-D-glucopyranoside (1)], has been reported to have a broad spectrum of biological effects. However, the protective role of 1 in human erythrocytes remains unclear. This study therefore has investigated the effects of 1 on oxidative stress-induced apoptosis in human erythrocytes (also known as eryptosis or erythroptosis). Compound 1 increased cell survival significantly and prevented human erythrocytes from undergoing eryptosis/erythroptosis mediated by H(2)O(2), as confirmed by the decreased expression of phosphatidylserine on the cell surface and reduced leakage of calcein through the damaged membrane. Mechanistically, 1 was found to exert its protective effects through its antioxidative activity and the inhibition of caspase-3 activation and stress-induced intracellular Ca(2+) rise in a dose-dependent manner. Compound 1 is a protective agent in human erythrocytes against oxidative stress and may be a good adaptogen to enhance the body's resistance to stress and fatigue.
Collapse
Affiliation(s)
- Erin Wei Qian
- Programme of Biochemistry, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | | | | |
Collapse
|
49
|
Nath B, Szabo G. Hypoxia and hypoxia inducible factors: diverse roles in liver diseases. HEPATOLOGY (BALTIMORE, MD.) 2012. [PMID: 22120903 DOI: 10.1002/hep.25497]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia has been shown to have a role in the pathogenesis of several forms of liver disease. The hypoxia inducible factors (HIFs) are a family of evolutionarily conserved transcriptional regulators that affect a homeostatic response to low oxygen tension and have been identified as key mediators of angiogenesis, inflammation, and metabolism. In this review we summarize the evidence for a role of HIFs across a range of hepatic pathophysiology. We describe regulation of the HIFs and review investigations that demonstrate a role for HIFs in the development of liver fibrosis, activation of innate immune pathways, hepatocellular carcinoma, as well as other liver diseases in both human disease as well as murine models.
Collapse
Affiliation(s)
- Bharath Nath
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
50
|
Hepatoprotective effects of total saponins isolated from Taraphochlamys affinis against carbon tetrachloride induced liver injury in rats. Food Chem Toxicol 2012; 50:713-8. [DOI: 10.1016/j.fct.2011.12.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 12/24/2022]
|