1
|
Schnider TW, Nieuwenhuijs-Moeke GJ, Beck-Schimmer B, Hemmerling TM. Pro-Con Debate: Should All General Anesthesia Be Done Using Target-Controlled Propofol Infusion Guided by Objective Monitoring of Depth of Anesthesia? Anesth Analg 2023; 137:565-575. [PMID: 37590801 DOI: 10.1213/ane.0000000000006293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
In this Pro-Con commentary article, we discuss whether all general anesthesia should be done using target-controlled propofol anesthesia guided by monitoring of depth of anesthesia. This is an ongoing debate since more than 25 years, representing a scientific, cultural as well as geographical divide in the anesthesia community. The Pro side argues that total intravenous anesthesia causes less postoperative nausea and higher patient satisfaction than anesthesia using volatile anesthetics. Target-controlled infusion (TCI) of anesthetic agents allows for better titration of intravenous anesthesia using pharmacokinetic models. Processed EEG monitors, such as bispectral index monitoring, allows for better assessing the effect of TCI anesthesia than solely assessment of clinical parameters, such as ECG or blood pressure. The combination of TCI propofol and objective depth of anesthesia monitoring allows creating a pharmacokinetic-pharmacodynamic profile for each patient. Finally, anesthesia using volatile anesthetics poses health risks for healthcare professionals and contributes to greenhouse effect. The Con side argues that for procedures accompanied with ischemia and reperfusion injury of an organ or tissue and for patients suffering from a severe inflammation' the use of volatile anesthetics might well have its advantages above propofol. In times of sudden shortage of drugs, volatile anesthetics can overcome the restriction in the operating theater or even on the intensive care unit, which is another advantage. Volatile anesthetics can be used for induction of anesthesia when IV access is impossible, end-tidal measurements of volatile anesthetic concentration allows confirmation that patients receive anesthetics. Taking environmental considerations into account, both propofol and volatile anesthetics bear certain harm to the environment, be it as waste product or as greenhouse gases. The authors therefore suggest to carefully considering advantages and disadvantages for each patient in its according environment. A well-balanced choice based on the available literature is recommended. The authors recommend careful consideration of advantages and disadvantages of each technique when tailoring an anesthetic to meet patient needs. Where appropriate, anesthesia providers are encouraged to account for unique features of anesthetic drug behavior, patient-reported and observed postoperative outcomes, and economic and environmental considerations when choosing any of the 2 described techniques.
Collapse
Affiliation(s)
- Thomas W Schnider
- From the Department for Anesthesiology, Intensive, Rescue and Pain medicine, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Gertrude J Nieuwenhuijs-Moeke
- Department of Anesthesiology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | | | | |
Collapse
|
2
|
Nieuwenhuijs-Moeke GJ, Bosch DJ, Leuvenink HG. Molecular Aspects of Volatile Anesthetic-Induced Organ Protection and Its Potential in Kidney Transplantation. Int J Mol Sci 2021; 22:ijms22052727. [PMID: 33800423 PMCID: PMC7962839 DOI: 10.3390/ijms22052727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is inevitable in kidney transplantation and negatively impacts graft and patient outcome. Reperfusion takes place in the recipient and most of the injury following ischemia and reperfusion occurs during this reperfusion phase; therefore, the intra-operative period seems an attractive window of opportunity to modulate IRI and improve short- and potentially long-term graft outcome. Commonly used volatile anesthetics such as sevoflurane and isoflurane have been shown to interfere with many of the pathophysiological processes involved in the injurious cascade of IRI. Therefore, volatile anesthetic (VA) agents might be the preferred anesthetics used during the transplantation procedure. This review highlights the molecular and cellular protective points of engagement of VA shown in in vitro studies and in vivo animal experiments, and the potential translation of these results to the clinical setting of kidney transplantation.
Collapse
Affiliation(s)
- Gertrude J. Nieuwenhuijs-Moeke
- Department of Anesthesiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-631623075
| | - Dirk J. Bosch
- Department of Anesthesiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Henri G.D. Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
3
|
Gunata M, Parlakpinar H. A review of myocardial ischaemia/reperfusion injury: Pathophysiology, experimental models, biomarkers, genetics and pharmacological treatment. Cell Biochem Funct 2020; 39:190-217. [PMID: 32892450 DOI: 10.1002/cbf.3587] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases are known to be the most fatal diseases worldwide. Ischaemia/reperfusion (I/R) injury is at the centre of the pathology of the most common cardiovascular diseases. According to the World Health Organization estimates, ischaemic heart disease is the leading global cause of death, causing more than 9 million deaths in 2016. After cardiovascular events, thrombolysis, percutaneous transluminal coronary angioplasty or coronary bypass surgery are applied as treatment. However, after restoring coronary blood flow, myocardial I/R injury may occur. It is known that this damage occurs due to many pathophysiological mechanisms, especially increasing reactive oxygen types. Besides causing cardiomyocyte death through multiple mechanisms, it may be an important reason for affecting other cell types such as platelets, fibroblasts, endothelial and smooth muscle cells and immune cells. Also, polymorphonuclear leukocytes are associated with myocardial I/R damage during reperfusion. This damage may be insufficient in patients with co-morbidity, as it is demonstrated that it can be prevented by various endogenous antioxidant systems. In this context, the resulting data suggest that optimal cardioprotection may require a combination of additional or synergistic multi-target treatments. In this review, we discussed the pathophysiology, experimental models, biomarkers, treatment and its relationship with genetics in myocardial I/R injury. SIGNIFICANCE OF THE STUDY: This review summarized current information on myocardial ischaemia/reperfusion injury (pathophysiology, experimental models, biomarkers, genetics and pharmacological therapy) for researchers and reveals guiding data for researchers, especially in the field of cardiovascular system and pharmacology.
Collapse
Affiliation(s)
- Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
4
|
Grievink H, Kuzmina N, Chevion M, Drenger B. Sevoflurane postconditioning is not mediated by ferritin accumulation and cannot be rescued by simvastatin in isolated streptozotocin-induced diabetic rat hearts. PLoS One 2019; 14:e0211238. [PMID: 30682140 PMCID: PMC6347357 DOI: 10.1371/journal.pone.0211238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/09/2019] [Indexed: 11/24/2022] Open
Abstract
Sevoflurane postconditioning (sevo postC) is an attractive and amenable approach that can protect the myocardium against ischemia/reperfusion (I/R)-injury. Unlike ischemic preconditioning (IPC), sevo postC does not require additional induced ischemic periods to a heart that is already at risk. IPC was previously shown to generate myocardial protection against I/R-injury through regulation of iron homeostasis and de novo ferritin synthesis, a process found to be impaired in the diabetic state. The current study investigated whether alterations in iron homeostasis and ferritin mRNA and protein accumulation are also involved in the cardioprotective effects generated by sevo postC. It was also investigated whether the protective effects of sevo postC in the diabetic state can be salvaged by simvastatin, through inducing nitric oxide (NO) bioavailability/activity, in isolated streptozotocin (STZ)-induced diabetic hearts (DH). Isolated rat hearts from healthy Controls and diabetic animals were retrogradely perfused using the Langendorff configuration and subjected to prolonged ischemia and reperfusion, with and without (2.4 and 3.6%) sevo postC and/or pre-treatment with simvastatin (0.5 mg/kg). Sevo postC significantly reduced infarct size and improved myocardial function in healthy Controls but not in isolated DH. The sevo postC mediated myocardial protection against I/R-injury was not associated with de novo ferrtin synthesis. Furthermore, simvastatin aggravated myocardial injury after sevo postC in STZ-induced DHs, likely due to increasing NO levels. Despite the known mechanistic overlaps between PC and postC stimuli, distinct differences underlie the cardioprotective interventions against myocardial I/R-injury and are impaired in the DH. Sevo postC mediated cardioprotection, unlike IPC, does not involve de novo ferritin accumulation and cannot be rescued by simvastatin in STZ-induced DHs.
Collapse
Affiliation(s)
- Hilbert Grievink
- Department of Anesthesiology and Critical Care and Pain Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
- Department of Biochemistry and Molecular Biology Hebrew University of Jerusalem, Jerusalem, Israel
- Cyclotron/Radiochemistry/MicroPET Unit, Hadassah Hebrew University Hospital, Hadassah Medical Organization, Jerusalem, Israel
- * E-mail:
| | - Natalia Kuzmina
- Department of Anesthesiology and Critical Care and Pain Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Mordechai Chevion
- Department of Biochemistry and Molecular Biology Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Drenger
- Department of Anesthesiology and Critical Care and Pain Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
5
|
Sevoflurane prevents hypoxia/reoxygenation-induced cardiomyocyte apoptosis by inhibiting PI3KC3-mediated autophagy. Hum Cell 2018; 32:150-159. [DOI: 10.1007/s13577-018-00230-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/03/2018] [Indexed: 12/30/2022]
|
6
|
Pagliaro P, Femminò S, Popara J, Penna C. Mitochondria in Cardiac Postconditioning. Front Physiol 2018; 9:287. [PMID: 29632499 PMCID: PMC5879113 DOI: 10.3389/fphys.2018.00287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondria play a pivotal role in cardioprotection. Here we report some fundamental studies which considered the role of mitochondrial components (connexin 43, mitochondrial KATP channels and mitochondrial permeability transition pore) in postconditioning cardioprotection. We briefly discuss the role of mitochondria, reactive oxygen species and gaseous molecules in postconditioning. Also the effects of anesthetics-used as cardioprotective substances-is briefly considered in the context of postconditioning. The role of mitochondrial postconditioning signaling in determining the limitation of cell death is underpinned. Issues in clinical translation are briefly considered. The aim of the present mini-review is to discuss in a historical perspective the role of main mitochondria mechanisms in cardiac postconditioning.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Jasmin Popara
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Wu J, Yu J, Xie P, Maimaitili Y, Wang J, Yang L, Ma H, Zhang X, Yang Y, Zheng H. Sevoflurane postconditioning protects the myocardium against ischemia/reperfusion injury via activation of the JAK2-STAT3 pathway. PeerJ 2017; 5:e3196. [PMID: 28392989 PMCID: PMC5382923 DOI: 10.7717/peerj.3196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/17/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sevoflurane postconditioning (S-post) has similar cardioprotective effects as ischemic preconditioning. However, the underlying mechanism of S-post has not been fully elucidated. Janus kinase signaling transduction/transcription activator (JAK2-STAT3) plays an important role in cardioprotection. The purpose of this study was to determine whether the cardioprotective effects of S-post are associated with activation of the JAK2-STAT3 signal pathway. METHODS An adult male Sprague-Dawley (SD) rat model of myocardial ischemia/reperfusion (I/R) injury was established using the Langendorff isolated heart perfusion apparatus. At the beginning of reperfusion, 2.4% sevoflurane alone or in combination with AG490 (a JAK2 selective inhibitor) was used as a postconditioning treatment. The cardiac function indicators, myocardial infarct size, lactic dehydrogenase (LDH) release, mitochondrial ultrastructure, mitochondrial reactive oxygen species (ROS) generation rates, ATP content, protein expression of p-JAK, p-STAT3, Bcl-2 and Bax were measured. RESULTS Compared with the I/R group, S-post significantly increased the expression of p-JAK, p-STAT3 and Bcl-2 and reduced the protein expression of Bax, which markedly decreased the myocardial infarction areas, improved the cardiac function indicators and the mitochondrial ultrastructure, decreased the mitochondrial ROS and increased the ATP content. However, the cardioprotective effects of S-post were abolished by treatment with a JAK2 selective inhibitor (p < 0.05). CONCLUSION This study demonstrates that the cardioprotective effects of S-post are associated with the activation of JAK2-STAT3. The mechanism may be related to an increased expression of p-JAK2 and p-STAT3 after S-post, which reduced mitochondrial ROS generation and increased mitochondrial ATP content, thereby reducing apoptosis and myocardial infarct size.
Collapse
Affiliation(s)
- Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Jin Yu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Peng Xie
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Yiliyaer Maimaitili
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Jiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Long Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Haiping Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Xing Zhang
- Department of Aerospace Medicine, Fourth Military Medical University , Xi'an, Shanxi , China
| | - Yining Yang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Hong Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| |
Collapse
|
8
|
Jabaudon M, Boucher P, Imhoff E, Chabanne R, Faure JS, Roszyk L, Thibault S, Blondonnet R, Clairefond G, Guérin R, Perbet S, Cayot S, Godet T, Pereira B, Sapin V, Bazin JE, Futier E, Constantin JM. Sevoflurane for Sedation in Acute Respiratory Distress Syndrome. A Randomized Controlled Pilot Study. Am J Respir Crit Care Med 2017; 195:792-800. [DOI: 10.1164/rccm.201604-0686oc] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Matthieu Jabaudon
- Department of Perioperative Medicine
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | | | | | | | - Laurence Roszyk
- Department of Medical Biochemistry and Molecular Biology, and
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Sandrine Thibault
- Department of Clinical Research and Innovation (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France; and
| | - Raiko Blondonnet
- Department of Perioperative Medicine
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Gael Clairefond
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | - Sébastien Perbet
- Department of Perioperative Medicine
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | | | - Bruno Pereira
- Department of Clinical Research and Innovation (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France; and
| | - Vincent Sapin
- Department of Medical Biochemistry and Molecular Biology, and
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | - Emmanuel Futier
- Department of Perioperative Medicine
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Jean-Michel Constantin
- Department of Perioperative Medicine
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| |
Collapse
|
9
|
Zheng P, Xie Z, Yuan Y, Sui W, Wang C, Gao X, Zhao Y, Zhang F, Gu Y, Hu P, Ye J, Feng X, Zhang L. Plin5 alleviates myocardial ischaemia/reperfusion injury by reducing oxidative stress through inhibiting the lipolysis of lipid droplets. Sci Rep 2017; 7:42574. [PMID: 28218306 PMCID: PMC5316932 DOI: 10.1038/srep42574] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Myocardial ischaemia-reperfusion (I/R) injury is a complex pathophysiological process. Current research has suggested that energy metabolism disorders, of which the abnormal consumption of fatty acids is closely related, compose the main pathological basis for myocardial I/R injury. Lipid droplets (LD) are critical regulators of lipid metabolism by LD-associated proteins. Among the lipid droplet proteins, the perilipin family members regulate lipolysis and lipogenesis through different mechanisms. Plin5, an important perilipin protein, promotes LD generation and lowers fatty acid oxidation, thus protecting the myocardium from lipotoxicity. This study investigated the protective effects of Plin5 in I/R myocardium. Our results indicated that Plin5 deficiency exacerbated the myocardial infarct area, aggravated left ventricular systolic dysfunction, reduced lipid storage, and elevated free fatty acids. Plin5-deficient myocardium exhibited severely damaged mitochondria, elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) activity. Furthermore, the decreased phosphorylation of PI3K/Akt in Plin5-null cardiomyocytes might contribute to I/R injury aggravation. In conclusion, Plin5, a new regulator of myocardial lipid metabolism, decreases free fatty acid peroxidation by inhibiting the lipolysis of intracellular lipid droplets, thus providing cardioprotection against I/R injury and shedding new light on therapeutic solutions for I/R diseases.
Collapse
Affiliation(s)
- Pengfei Zheng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Cardiology, The Sixteenth Hospital of PLA, Aletai 836500, Xinjiang Province, China
| | - Zhonglin Xie
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yuan Yuan
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Wen Sui
- Department of Stomatology Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong Province, China
| | - Chao Wang
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xing Gao
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yuanlin Zhao
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Feng Zhang
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yu Gu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Peizhen Hu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jing Ye
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xuyang Feng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Lijun Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
10
|
Yu J, Wu J, Xie P, Maimaitili Y, Wang J, Xia Z, Gao F, Zhang X, Zheng H. Sevoflurane postconditioning attenuates cardiomyocyte hypoxia/reoxygenation injury via restoring mitochondrial morphology. PeerJ 2016; 4:e2659. [PMID: 27833818 PMCID: PMC5101611 DOI: 10.7717/peerj.2659] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/05/2016] [Indexed: 12/25/2022] Open
Abstract
Background Anesthetic postconditioning is a cellular protective approach whereby exposure to a volatile anesthetic renders a tissue more resistant to subsequent ischemic/reperfusion event. Sevoflurane postconditioning (SPostC) has been shown to exert cardioprotection against ischemia/reperfusion injury, but the underlying mechanism is unclear. We hypothesized that SPostC protects cardiomyocytes against hypoxia/reoxygenation (H/R) injury by maintaining/restoring mitochondrial morphological integrity, a critical determinant of cell fate. Methods Primary cultures of neonatal rat cardiomyocytes (NCMs) were subjected to H/R injury (3 h of hypoxia followed by 3 h reoxygenation). Intervention with SPostC (2.4% sevoflurane) was administered for 15 min upon the onset of reoxygenation. Cell viability, Lactate dehydrogenase (LDH) level, cell death, mitochondrial morphology, mitochondrial membrane potential and mitochondrial permeability transition pore (mPTP) opening were assessed after intervention. Mitochondrial fusion and fission regulating proteins (Drp1, Fis1, Mfn1, Mfn2 and Opa1) were assessed by immunofluorescence staining and western blotting was performed to determine the level of protein expression. Results Cardiomyocyte H/R injury resulted in significant increases in LDH release and cell death that were concomitant with reduced cell viability and reduced mitochondrial interconnectivity (mean area/perimeter ratio) and mitochondrial elongation, and with reduced mitochondrial membrane potential and increased mPTP opening. All the above changes were significantly attenuated by SPostC. Furthermore, H/R resulted in significant reductions in mitochondrial fusion proteins Mfn1, Mfn2 and Opa1 and significant enhancement of fission proteins Drp1 and Fis1. SPostC significantly enhanced Mfn2 and Opa1 and reduced Drp1, without significant impact on Mfn1 and Fis1. Conclusions Sevoflurane postconditioning attenuates cardiomyocytes hypoxia/reoxygenation injury (HRI) by restoring mitochondrial fusion/fission balance and morphology.
Collapse
Affiliation(s)
- Jin Yu
- Department of Anethesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Jianjiang Wu
- Department of Anethesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Peng Xie
- Department of Anethesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Yiliyaer Maimaitili
- Department of Anethesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Jiang Wang
- Department of Anethesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| | - Zhengyuan Xia
- Department of Anethesiology, University of Hong Kong , Hongkong , China
| | - Feng Gao
- Department of Aerospace Medicine, School of Basic Medical Sciences, Fourth Military Medical University , Xi'an, Shaanxi , China
| | - Xing Zhang
- Department of Aerospace Medicine, School of Basic Medical Sciences, Fourth Military Medical University , Xi'an, Shaanxi , China
| | - Hong Zheng
- Department of Anethesiology, The First Affiliated Hospital of Xinjiang Medical University , Urumqi, Xinjiang , China
| |
Collapse
|
11
|
Zou D, Geng N, Chen Y, Ren L, Liu X, Wan J, Guo S, Wang S. Ranolazine improves oxidative stress and mitochondrial function in the atrium of acetylcholine-CaCl2 induced atrial fibrillation rats. Life Sci 2016; 156:7-14. [DOI: 10.1016/j.lfs.2016.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 05/08/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
|
12
|
Lemoine S, Tritapepe L, Hanouz JL, Puddu PE. The mechanisms of cardio-protective effects of desflurane and sevoflurane at the time of reperfusion: anaesthetic post-conditioning potentially translatable to humans? Br J Anaesth 2016; 116:456-75. [PMID: 26794826 DOI: 10.1093/bja/aev451] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Myocardial conditioning is actually an essential strategy in the management of ischaemia-reperfusion injury. The concept of anaesthetic post-conditioning is intriguing, its action occurring at a pivotal moment (that of reperfusion when ischaemia reperfusion lesions are initiated) where the activation of these cardio-protective mechanisms could overpower the mechanisms leading to ischaemia reperfusion injuries. Desflurane and sevoflurane are volatile anaesthetics frequently used during cardiac surgery. This review focuses on the efficacy of desflurane and sevoflurane administered during early reperfusion as a potential cardio-protective strategy. In the context of experimental studies in animal models and in human atrial tissues in vitro, the mechanisms underlying the cardio-protective effect of these agents and their capacity to induce post-conditioning have been reviewed in detail, underlining the role of reactive oxygen species generation, the activation of the cellular signalling pathways, and the actions on mitochondria along with the translatable actions in humans; this might well be sufficient to set the basis for launching randomized clinical studies, actually needed to confirm this strategy as one of real impact.
Collapse
Affiliation(s)
- S Lemoine
- Department of Anaesthesiology and Intensive Care, France and Faculty of Medicine, Centre Hospitalier Universitaire de Caen, Normandie Université, Pôle d'Anesthésie-Réanimation Chirurgicale - Niveau 6, CHU de Caen, Avenue Cote de Nacre, Caen Cedex 14033, France
| | - L Tritapepe
- Department of Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - J L Hanouz
- Department of Anaesthesiology and Intensive Care, France and Faculty of Medicine, Centre Hospitalier Universitaire de Caen, Normandie Université, Pôle d'Anesthésie-Réanimation Chirurgicale - Niveau 6, CHU de Caen, Avenue Cote de Nacre, Caen Cedex 14033, France
| | - P E Puddu
- Department of Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Li H, Chen D, Fang N, Yao Y, Li L. Age-associated differences in response to sevoflurane postconditioning in rats. SCAND CARDIOVASC J 2015; 50:128-36. [PMID: 26667494 DOI: 10.3109/14017431.2015.1122830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Experimental evidence suggests that anesthetic preconditioning and postconditioning could effectively attenuate myocardial ischemia/reperfusion (I/R) injury. In this study, we aimed at investigating whether there are age-associated differences in response to sevoflurane postconditioning during myocardial I/R injury in young and old rats, and explore the underlying molecular mechanisms. METHODS Young and old rats were subjected to 30 min myocardial ischemia, followed by 2 h of reperfusion, with or without sevoflurane postconditioning. RESULTS Both 1 and 2 minimal aveolar concentration (MAC) sevoflurane postconditioning reduced infarct size (IS) (34 ± 3% and 32 ± 2% vs. 58 ± 5%, p < 0.05) and apoptotic index (8 ± 1% and 7 ± 1% vs. 15 ± 2%, p < 0.05) in young rats, compared to young control group. In contrast, they could not reduce IS (45 ± 3% and 43 ± 3% vs. 47 ± 3%, p > 0.05) and apoptotic index (28 ± 3% and 25 ± 2%, vs. 26 ± 2%, p > 0.05) in old rats, compared to old control group. Mechanistically, we found that the phosphorylation of both Akt and ERK1/2 but not STAT3 was substantially enhanced after sevoflurane postconditioning in young rats, compared to young control group, but not in old rats, relative to old control group. CONCLUSION There are age-related differences after exposure to sevoflurane postconditioning that protects young, but not old rat hearts against I/R injury, which may be at least associated with the inability to activate Akt and ERK1/2.
Collapse
Affiliation(s)
- Huatong Li
- a Department of Anesthesiology , the Second Hospital of Tianjin Medical University , Tianjin , China ;,b Department of Anesthesiology , Fuwai Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing , China
| | - Dong Chen
- b Department of Anesthesiology , Fuwai Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing , China
| | - Nengxin Fang
- b Department of Anesthesiology , Fuwai Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing , China
| | - Yuntai Yao
- b Department of Anesthesiology , Fuwai Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing , China
| | - Lihuan Li
- b Department of Anesthesiology , Fuwai Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing , China
| |
Collapse
|
14
|
Cao J, Xie H, Sun Y, Zhu J, Ying M, Qiao S, Shao Q, Wu H, Wang C. Sevoflurane post-conditioning reduces rat myocardial ischemia reperfusion injury through an increase in NOS and a decrease in phopshorylated NHE1 levels. Int J Mol Med 2015; 36:1529-37. [PMID: 26459736 PMCID: PMC4678156 DOI: 10.3892/ijmm.2015.2366] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022] Open
Abstract
The protective effects of sevoflurane post-conditioning against myocardial ischemia/reperfusion (I/R) injury (MIRI) have been previously reported. However, the mechanisms responsible for these protective effects remain elusive. In this study, in order to investigate the molecular mechanisms responsible for the protective effects of sevoflurane post-conditioning on isolated rat hearts subjected to MIRI, Sprague-Dawley rat hearts were randomly divided into the following 6 groups: i) the sham-operated control; ii) 2.5% sevoflurane; iii) ischemia/reperfusion (I/R); iv) 2.5% sevoflurane post-conditioning plus I/R; v) 2.5% sevoflurane post-conditioning + NG-nitro-L-arginine methyl ester (L-NAME) plus I/R; and vi) L-NAME plus I/R. The infarct size was measured using 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Additionally, the myocardial nitric oxide (NO), NO synthase (NOS) and nicotinamide adenine dinucleotide (NAD+) levels were determined. Autophagosomes and apoptosomes in the myocardium were detected by transmission electron microscopy. The levels of Bcl-2, cleaved caspase-3, Beclin-1, microtubule-associated protein light chain 3 (LC3)-I/II, Na+/H+ exchanger 1 (NHE1) and phosphorylated NHE1 protein were measured by western blot analysis. NHE1 mRNA levels were measured by reverse transcription-quantitative polymerase chain reaction. Compared with the I/R group, 15 min of exposure to 2.5% sevoflurane during early reperfusion significantly decreased the myocardial infarct size, the autophagic vacuole numbers, the NHE1 mRNA and protein expression of cleaved caspase-3, Beclin-1 and LC3-I/II. Post-conditioning with 2.5% sevoflurane also increased the NO and NOS levels and Bcl-2 protein expression (P<0.05 or P<0.01). Notably, the cardioprotective effects of sevoflurane were partly abolished by the NOS inhibitor, L-NAME. The findings of the present study suggest that sevoflurane post-conditioning protects the myocardium against I/R injury and reduces the myocardial infarct size. The underlying protective mechanisms are associated with the inhibition of mitochondrial permeability transition pore opening, and with the attenuation of cardiomyoctye apoptosis and excessive autophagy. These effects are mediated through an increase in NOS and a decrease in phopshorylated NHE1 levels.
Collapse
Affiliation(s)
- Jianfang Cao
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hong Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ying Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jiang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ming Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Shigang Qiao
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Qin Shao
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Haorong Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Chen Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
15
|
Protective Effect of Sevoflurane Postconditioning against Cardiac Ischemia/Reperfusion Injury via Ameliorating Mitochondrial Impairment, Oxidative Stress and Rescuing Autophagic Clearance. PLoS One 2015; 10:e0134666. [PMID: 26263161 PMCID: PMC4532466 DOI: 10.1371/journal.pone.0134666] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 07/13/2015] [Indexed: 01/29/2023] Open
Abstract
Background and Purpose Myocardial infarction leads to heart failure. Autophagy is excessively activated in myocardial ischemia/reperfusion (I/R) in rats. The aim of this study is to investigate whether the protection of sevoflurane postconditioning (SPC) in myocardial I/R is through restored impaired autophagic flux. Methods Except for the sham control (SHAM) group, each rat underwent 30 min occlusion of the left anterior descending coronary (LAD) followed by 2 h reperfusion. Cardiac infarction was determined by 2,3,5-triphenyltetrazolium chloride triazole (TTC) staining. Cardiac function was examined by hemodynamics and echocardiography. The activation of autophagy was evaluated by autophagosome accumulation, LC3 conversion and p62 degradation. Potential molecular mechanisms were investigated by immunoblotting, real-time PCR and immunofluorescence staining. Results SPC improved the hemodynamic parameters, cardiac dysfunction, histopathological and ultrastructural damages, and decreased myocardial infarction size after myocardial I/R injury (P < 0.05 vs. I/R group). Compared with the cases in I/R group, myocardial ATP and NAD+ content, mitochondrial function related genes and proteins, and the expressions of SOD2 and HO-1 were increased, while the expressions of ROS and Vimentin were decreased in the SPC group (P < 0.05 vs. I/R group). SPC significantly activated Akt/mTOR signaling, and inhibited the formation of Vps34/Beclin1 complex via increasing expression of Bcl2 protein (P < 0.05 vs. I/R group). SPC suppressed elevated expressions of LC3 II/I ratio, Beclin1, Atg5 and Atg7 in I/R rat, which indicated that SPC inhibited over-activation of autophagy, and promoted autophagosome clearance. Meanwhile, SPC significantly suppressed the decline of Opa1 and increases of Drp1 and Parkin induced by I/R injury (P < 0.05 vs. I/R group). Moreover, SPC maintained the contents of ATP by reducing impaired mitochondria. Conclusion SPC protects rat hearts against I/R injury via ameliorating mitochondrial impairment, oxidative stress and rescuing autophagic clearance.
Collapse
|
16
|
Yao YT, Liu DH, Li LH. Comparison of cardio-protective effects induced by different modalities of sevoflurane conditioning in isolated rat hearts. Perfusion 2015; 31:156-63. [PMID: 26060199 DOI: 10.1177/0267659115590833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To examine whether the combination of anesthetic preconditioning and anesthetic postconditioning could elicit additional cardio-protection as compared to either anesthetic preconditioning or anesthetic postconditioning alone and its underlying mechanism. METHODS Isolated rat hearts were randomized into one of four groups: CTRL group (30 min of ischemia followed by 120 min of reperfusion alone); SpreC group (3% sevoflurane preconditioning was administered for 15 min followed by 10 min of washout before ischemia); SpostC group (3% sevoflurane postconditioning was administered during the first 15 min of reperfusion after ischemia); SpreC+SpostC group (the protocols of SpreC and SpostC were combined). Hemodynamics, myocardial infarct size, lactate dehydrogenase and creatine kinase-MB in collected effluent, phosphorylation of PKB/Akt and ERK 1/2 and content of nicotinamide adenine dinucleotide in the left ventricular tissue were compared among the four groups. RESULTS When compared with unprotected Control hearts, those in the sevoflurane-treated groups (SpreC, SpostC and SpreC+SpostC) showed significantly better functional recovery, reduced myocardial infarct size and decreased lactate dehydrogenase and creatine kinase-MB release. Comparison of the above-mentioned variables among the three sevoflurane-treated groups showed that maximal cardio-protection was obtained in the SpreC+SpostC group. Both SpreC and SpreC+SpostC induced a biphasic response in protein kinase B (PKB/Akt) and extracellular signal-regulated kinase (ERK 1/2) phosphorylation, while SpostC induced only one phase. The effects on phosphorylation of both PKB/Akt and ERK 1/2 induced by SpreC and SpostC were found to be additive during reperfusion. The combination of SpreC and SpostC also had additive effects on inhibiting mitochondrial permeability transition pore (mPTP) opening induced by ischemia-reperfusion. CONCLUSION These findings suggested that the cardio-protection induced by SpreC and SpostC could be additive via the involvement of PKB/Akt, ERK 1/2 and mPTP.
Collapse
Affiliation(s)
- Yun-tai Yao
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ding-hua Liu
- Department of Laboratory Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Li-huan Li
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Ye Z, Xia P, Cheng ZG, Guo Q. Neuroprotection induced by sevoflurane-delayed post-conditioning is attributable to increased phosphorylation of mitochondrial GSK-3β through the PI3K/Akt survival pathway. J Neurol Sci 2015; 348:216-25. [PMID: 25555490 DOI: 10.1016/j.jns.2014.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/16/2014] [Accepted: 12/07/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Post-conditioning with volatile anesthetics can create ischemic tolerance against cerebral ischemia-reperfusion injury. The present study was designed to determine whether delayed exposure to sevoflurane could induce ischemic tolerance and if this effect was dependent on increasing phosphorylated Akt-Ser473 and GSK-3β-Ser9 expression in the mitochondria, via a mechanism involving the PI3K/Akt pathway. METHODS Adult male Sprague-Dawley rats were subjected to focal cerebral ischemia. Sevoflurane post-conditioning was achieved by administration of 2.5% sevoflurane for 60 min, 15 min after reperfusion. Phosphorylated Akt-Ser473 and GSK-3β-Ser9 in the cytosol and mitochondria of the ischemic penumbra were evaluated 4, 12, 24, and 72 h after reperfusion. Neurological deficit score and activity of caspase-3 and -9 were evaluated 24 and 72 h after reperfusion. Apoptosis, as measured by TUNEL staining and cerebral infarct size,was determined 24h after reperfusion. RESULTS Sevoflurane-delayed post-conditioning significantly increased levels of phosphorylated Akt-Ser473 and GSK-3β-Ser9 in the mitochondria and inhibited the activities of caspase-3 and -9, showing an improved neurological deficit score and a decreased infarct size. However, LY294002, a selective PI3K inhibitor, not only eliminated the neuroprotection of sevoflurane, as indicated by an increased infarct size and a larger number of TUNEL-positive cells, but also reversed the elevation of p-Akt and p-GSK-3β expression in the mitochondria induced by sevoflurane post-conditioning. CONCLUSIONS Our data suggested that delayed application of sevoflurane after reperfusion provides neuroprotection by activating phosphorylated Akt-Ser473 and GSK-3β-Ser9 in the mitochondria via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Zhi Ye
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - Pingping Xia
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - Zhi-gang Cheng
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - Qulian Guo
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China.
| |
Collapse
|
18
|
Apelin-APJ effects of ginsenoside-Rb1 depending on hypoxia-induced factor 1α in hypoxia neonatal cardiomyocytes. Chin J Integr Med 2014; 21:139-46. [PMID: 24893658 DOI: 10.1007/s11655-014-1774-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate whether ginsenoside-Rb1 (Gs-Rb1) inhibits the apoptosis of hypoxia cardiomyocytes by up-regulating apelin-APJ system and whether the system is affected by hypoxia-induced factor 1α (Hif-1α). METHODS Neonatal rat cardiomyocytes were randomly divided into 6 groups: a control group, a simple CoCl group, a simple Gs-Rb1 group, a CoCl and Gs-Rb1 hypoxia group, a CoCl and 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) group, a CoCl and YC-1 group and a Gs-Rb1 group, in which YC-1 inhibits the synthesis and accelerates the degradation of Hif-1a. The concentration of CoCl, Gs-Rb1 and YC-1 was 500 μmol/L, 200 μmol/L and 5 μmol/L, respectively; the apoptosis ratio was analyzed with a flow cytometer; and apelin, APJ and Hif-1α were assayed with immunocytochemistry, Western blot assays and reverse transcription polymerase chain reaction (RT-PCR). RESULTS (1) The anti-apoptosis effect of Gs-Rb1 on hypoxia cardiomyocytes was significantly inhibited by YC-1; (2) Hypoxia significantly up-graded the expression of mRNA and protein of apelin; this effect was further reinforced by Gs-Rb1 and significantly inhibited by YC-1; (3) Gs-Rb1 further strengthened the expression of APJ mRNA and APJ proteins once hypoxia occurred, which was significantly inhibited by YC-1; (4) Gs-Rb1 significantly increased the expression of Hif-1α, which was completely abolished by YC-1; (5) There was a negative relationship between AR and apelin (or APJ, including mRNA and protein), a positive correlation between apelin (or APJ) protein and Hif-1a protein, in hypoxia cardiomyocytes. CONCLUSION The apelin-APJ system plays an important role in the anti-apoptosis effect of Gs-Rb1 on hypoxia neonatal cardiomyocytes, which was partly adjusted by Hif-1α.
Collapse
|
19
|
Zhou C, Li L, Li H, Gong J, Fang N. Delayed remote preconditioning induces cardioprotection: role of heme oxygenase-1. J Surg Res 2014; 191:51-7. [PMID: 24746951 DOI: 10.1016/j.jss.2014.03.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/25/2014] [Accepted: 03/18/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The role of heme oxygenase-1 (HO-1) in the cardioprotection induced by delayed remote ischemic preconditioning (DRIPC) has not been investigated. Therefore, this study was designed to investigate whether HO-1 is involved in DRIPC-mediated cardioprotection in an isolated perfused rat heart model. MATERIALS AND METHODS Isolated rat hearts were subjected to 30 min ischemia followed by 60 min reperfusion. DRIPC (four cycles 5-min occlusion and 5-min reflow at the unilateral hind limb once per day for 1, 2, or 3 d before heart isolation, abbreviated as D1RIPC, D2RIPC, or D3RIPC respectively). Infarct size, myocardial troponin levels, and heart function were measured. The protein and messenger RNA levels of HO-1 were determined. RESULTS DRIPC facilitated postischemic cardiac functional recovery and decreased cardiac enzyme release. The infarct size-limiting effect of DRIPC was more pronounced in the D3RIPC group (10.22 ± 2.57%) than the D1RIPC group (22.34 ± 4.02%, P < 0.001) or the D2RIPC group (14.60 ± 3.13%, P = 0.034). These effects in the D1RIPC group could be blocked by Zinc Protoporphyrin IX (ZnPP) (an HO-1 specific inhibitor). DRIPC-mediated cardioprotection was associated with enhanced HO-1 protein expression (D1RIPC, 0.11 ± 0.03; versus 0.15 ± 0.06 in the D2RIPC group, P = 0.06; versus 0.20 ± 0.04 in the D3RIPC group, P = 0.04) and messenger RNA levels of HO-1 expression. CONCLUSIONS Our findings suggest that HO-1 is involved in the cardioprotection induced by DRIPC, and that increase in the number of preconditioning stimuli may enhance cardioprotective effects accompanied with increased HO-1 level.
Collapse
Affiliation(s)
- Chenghui Zhou
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng District, Beijing China
| | - Lihuan Li
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng District, Beijing China.
| | - Huatong Li
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng District, Beijing China
| | - Junsong Gong
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng District, Beijing China
| | - Nengxin Fang
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng District, Beijing China
| |
Collapse
|
20
|
Zhou C, Li H, Yao Y, Li L. Delayed remote ischemic preconditioning produces an additive cardioprotection to sevoflurane postconditioning through an enhanced heme oxygenase 1 level partly via nuclear factor erythroid 2-related factor 2 nuclear translocation. J Cardiovasc Pharmacol Ther 2014; 19:558-66. [PMID: 24651515 DOI: 10.1177/1074248414524479] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although both sevoflurane postconditioning (SPoC) and delayed remote ischemic preconditioning (DRIPC) have been proved effective in various animal and human studies, the combined effect of these 2 strategies remains unclear. Therefore, this study was designed to investigate this effect and elucidate the related signal mechanisms in a Langendorff perfused rat heart model. After 30-minute balanced perfusion, isolated hearts were subjected to 30-minute ischemia followed by 60-minute reperfusion except 90-minute perfusion for control. A synergic cardioprotective effect of SPoC (3% v/v) and DRIPC (4 cycles 5-minute occlusion/5-minute reflow at the unilateral hindlimb once per day for 3 days before heart isolation) was observed with facilitated cardiac functional recovery and decreased cardiac enzyme release. The infarct size-limiting effect was more pronounced in the combined group (6.76% ± 2.18%) than in the SPoC group (16.50% ± 4.55%, P < .001) or in the DRIPC group (10.22% ± 2.57%, P = .047). Subsequent analysis revealed that an enhanced heme oxygenase 1 (HO-1) expression, but not protein kinase B/AKt or extracellular signal-regulated kinase 1 and 2 activation, was involved in the synergic cardioprotective effect, which was further confirmed in the messenger RNA level of HO-1. Such trend was also observed in the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, an upstream regulation of HO-1. In addition, correlation analysis showed a significantly positive relationship between HO-1 expression and Nrf2 translocation (r = 0.729, P < .001). Hence, we conclude that DRIPC may produce an additive cardioprotection to SPoC through an enhanced HO-1 expression partly via Nrf2 translocation.
Collapse
Affiliation(s)
- Chenghui Zhou
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huatong Li
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuntai Yao
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lihuan Li
- Department of Anesthesiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
LI H, ZHOU C, CHEN D, FANG N, YAO Y, LI L. Failure to protect against myocardial ischemia-reperfusion injury with sevoflurane postconditioning in old rats in vivo. Acta Anaesthesiol Scand 2013; 57:1024-31. [PMID: 23848060 DOI: 10.1111/aas.12156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Sevoflurane post-conditioning (SpostC) protects young hearts against ischemia-reperfusion injury. It is unknown whether the infarct-limiting effect is also maintained in aged cohorts and whether there are age-associated differences in the underlying mechanisms. METHODS Young or old rats were randomly subjected to 30-min myocardial ischemia, followed by 120-min reperfusion in vivo, with or without SpostC in the presence or absence of phosphatidylinositol 3-kinase (PI3K) or mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor. Western blotting was used to determine the phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2). Myocardial nicotinamide adenine dinucleotide (NAD(+) ) level was measured to indicate mitochondrial permeability transition pore (mPTP) opening. RESULTS SpostC significantly decreased infarct size in young (35 ± 4% vs. 56 ± 3%, P < 0.05) but not old rats (45 ± 3% vs. 47 ± 4%, P > 0.05) compared with each control group. SpostC substantially augmented phosphorylation of Akt (0.74 ± 0.03 arbitrary units vs. 0.27 ± 0.03 arbitrary units, P < 0.05) or ERK1/2 (0.85 ± 0.04 arbitrary units vs. 0.29 ± 0.04 arbitrary units, P < 0.05) compared with control group, which was abolished by PI3K or MEK1/2 inhibitor in young rats, respectively, but failed to activate Akt and ERK1/2 in old rats. NAD(+) level (nmol/g tissue) was higher in SpostC group in young (118.57 ± 9.27 vs. 46.78 ± 4.54, P < 0.05) but not old rats (58.50 ± 7.16 vs. 61.15 ± 5.50, P > 0.05) compared with each control group. PI3K or MEK1/2 inhibitor abrogated the infarct-sparing effect and inhibition of loss of NAD(+) induced by SpostC in young rats, respectively. CONCLUSION SpostC-mediated cardioprotection in young rats is not effective in senescent rats, which may at least be the consequence of failure to activate Akt and ERK1/2, and resultant failure to inhibit mPTP opening.
Collapse
Affiliation(s)
- H. LI
- Department of Anesthesiology; Fuwai Cardiovascular Hospital; Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing; China
| | - C. ZHOU
- Department of Anesthesiology; Fuwai Cardiovascular Hospital; Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing; China
| | - D. CHEN
- Department of Anesthesiology; Fuwai Cardiovascular Hospital; Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing; China
| | - N. FANG
- Department of Anesthesiology; Fuwai Cardiovascular Hospital; Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing; China
| | - Y. YAO
- Department of Anesthesiology; Fuwai Cardiovascular Hospital; Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing; China
| | - L. LI
- Department of Anesthesiology; Fuwai Cardiovascular Hospital; Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing; China
| |
Collapse
|
22
|
Penna C, Settanni F, Tullio F, Trovato L, Pagliaro P, Alloatti G, Ghigo E, Granata R. GH-releasing hormone induces cardioprotection in isolated male rat heart via activation of RISK and SAFE pathways. Endocrinology 2013; 154:1624-35. [PMID: 23417421 DOI: 10.1210/en.2012-2064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GHRH stimulates GH synthesis and release from the pituitary and exerts direct effects in extrapituitary tissues. We have previously shown that pretreatment with GHRH reduces cardiomyocyte apoptosis and improves heart function in isolated rat hearts subjected to ischemia/reperfusion (I/R). Here, we determined whether GHRH given at reperfusion reduces myocardial reperfusion injury and investigated the molecular mechanisms involved in GHRH effects. Isolated rat hearts subjected to I/R were treated at the onset of reperfusion with: 1) GHRH; 2) GHRH+GHRH antagonist JV-1-36; 3) GHRH+mitochondrial ATP-dependent potassium channel inhibitor 5-hydroxydecanoate; 4) GHRH+mitochondrial permeability transition pore opener atractyloside; 5) GHRH+ phosphoinositide 3-kinase/Akt inhibitor Wortmannin (WM); and 6) GHRH+signal transducer and activator of transcription-3 inhibitor tyrphostin-AG490 (AG490). GHRH reduced infarct size at the end of reperfusion and reverted contractility dysfunction in I/R hearts. These effects were inhibited by either JV-1-36, 5-hydroxydecanoate, atractylosid, WM, or AG490. Western blot analysis on left ventricles showed GHRH-induced phosphorylation of either the reperfusion injury salvage kinases (RISK), phosphoinositide 3-kinase/Akt, ERK1/2, and glycogen synthase kinase-3β or signal transducer and activator of transcription-3, as part of the survivor activating factor enhancement (SAFE) pathway. GHRH-induced activation of RISK and SAFE pathways was blocked by JV-1-36, WM, and AG490. Furthermore, GHRH increased the phosphorylation of endothelial nitric oxide synthase and AMP-activated protein kinase and preserved postischemic nicotinamide adenine dinucleotide (NAD(+)) levels. These results suggest that GHRH protects the heart from I/R injury through receptor-mediated mechanisms, leading to activation of RISK and SAFE pathways, which converge on mitochondria and possibly on AMP-activated protein kinase.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Torino, 10126 Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
van den Brom CE, Bulte CS, Loer SA, Bouwman RA, Boer C. Diabetes, perioperative ischaemia and volatile anaesthetics: consequences of derangements in myocardial substrate metabolism. Cardiovasc Diabetol 2013; 12:42. [PMID: 23452502 PMCID: PMC3599199 DOI: 10.1186/1475-2840-12-42] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/21/2013] [Indexed: 12/18/2022] Open
Abstract
Volatile anaesthetics exert protective effects on the heart against perioperative ischaemic injury. However, there is growing evidence that these cardioprotective properties are reduced in case of type 2 diabetes mellitus. A strong predictor of postoperative cardiac function is myocardial substrate metabolism. In the type 2 diabetic heart, substrate metabolism is shifted from glucose utilisation to fatty acid oxidation, resulting in metabolic inflexibility and cardiac dysfunction. The ischaemic heart also loses its metabolic flexibility and can switch to glucose or fatty acid oxidation as its preferential state, which may deteriorate cardiac function even further in case of type 2 diabetes mellitus.Recent experimental studies suggest that the cardioprotective properties of volatile anaesthetics partly rely on changing myocardial substrate metabolism. Interventions that target at restoration of metabolic derangements, like lifestyle and pharmacological interventions, may therefore be an interesting candidate to reduce perioperative complications. This review will focus on the current knowledge regarding myocardial substrate metabolism during volatile anaesthesia in the obese and type 2 diabetic heart during perioperative ischaemia.
Collapse
Affiliation(s)
- Charissa E van den Brom
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, VU University Medical Center, De Boelelaan 1117, Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Vivar R, Humeres C, Ayala P, Olmedo I, Catalán M, García L, Lavandero S, Díaz-Araya G. TGF-β1 prevents simulated ischemia/reperfusion-induced cardiac fibroblast apoptosis by activation of both canonical and non-canonical signaling pathways. Biochim Biophys Acta Mol Basis Dis 2013; 1832:754-62. [PMID: 23416528 DOI: 10.1016/j.bbadis.2013.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/30/2012] [Accepted: 02/07/2013] [Indexed: 12/01/2022]
Abstract
Ischemia/reperfusion injury is a major cause of myocardial death. In the heart, cardiac fibroblasts play a critical role in healing post myocardial infarction. TGF-β1 has shown cardioprotective effects in cardiac damage; however, if TGF-β1 can prevent cardiac fibroblast death triggered by ischemia/reperfusion is unknown. Therefore, we test this hypothesis, and whether the canonical and/or non-canonical TGF-β1 signaling pathways are involved in this protective effect. Cultured rat cardiac fibroblasts were subjected to simulated ischemia/reperfusion. Cell viability was analyzed by trypan blue exclusion and propidium iodide by flow cytometry. The processing of procaspases 8, 9 and 3 to their active forms was assessed by Western blot, whereas subG1 population was evaluated by flow cytometry. Levels of total and phosphorylated forms of ERK1/2, Akt and Smad2/3 were determined by Western blot. The role of these signaling pathways on the protective effect of TGF-β1 was studied using specific chemical inhibitors. Simulated ischemia over 8h triggers a significant cardiac fibroblast death, which increased by reperfusion, with apoptosis actively involved. These effects were only prevented by the addition of TGF-β1 during reperfusion. TGF-β1 pretreatment increased the levels of phosphorylated forms of ERK1/2, Akt and Smad2/3. The inhibition of ERK1/2, Akt and Smad3 also blocked the preventive effects of TGF-β1 on cardiac fibroblast apoptosis induced by simulated ischemia/reperfusion. Overall, our data suggest that TGF-β1 prevents cardiac fibroblast apoptosis induced by simulated ischemia-reperfusion through the canonical (Smad3) and non canonical (ERK1/2 and Akt) signaling pathways.
Collapse
Affiliation(s)
- Raúl Vivar
- Centro Estudios Moleculares de la Célula, Facultad de Ciencias Químicas y Farmacéuticas/Facultad de Medicina, Universidad de Chile, Chile
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cardioprotective effect of sevoflurane and propofol during anaesthesia and the postoperative period in coronary bypass graft surgery. Eur J Anaesthesiol 2012; 29:561-9. [DOI: 10.1097/eja.0b013e3283560aea] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Sun Z, Hamilton KL, Reardon KF. Phosphoproteomics and molecular cardiology: Techniques, applications and challenges. J Mol Cell Cardiol 2012; 53:354-68. [DOI: 10.1016/j.yjmcc.2012.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/26/2012] [Accepted: 06/03/2012] [Indexed: 12/16/2022]
|
27
|
WIKLUND A, GUSTAVSSON D, EBBERYD A, SUNDMAN E, SCHULTE G, JONSSON FAGERLUND M, ERIKSSON LI. Prolonged attenuation of acetylcholine-induced phosphorylation of extracellular signal-regulated kinase 1/2 following sevoflurane exposure. Acta Anaesthesiol Scand 2012; 56:608-15. [PMID: 22288781 DOI: 10.1111/j.1399-6576.2011.02632.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2011] [Indexed: 01/04/2023]
Abstract
BACKGROUND Volatile anaesthetics are known to affect cholinergic receptors. Perturbation of cholinergic signalling can cause cognitive deficits. In this study, we wanted to evaluate acetylcholine-induced intracellular signalling following sevoflurane exposure. METHODS Pheochromocytoma12 PC12 cells were exposed to 4.6% sevoflurane for 2 h. Subsequently, Western blotting was used to measure acetylcholine-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK) 1/2 and basal Protein kinase B (AKT) phosphorylation. RESULTS After exposure, acetylcholine-induced ERK 1/2 phosphorylation was reduced to 58 ± 8% [95% confidence interval (CI): 38-77%, P = 0.003] compared with non-exposed controls. At 30 min after the end of sevoflurane administration [at 0.7% sevoflurane (0.102 mM)], ERK 1/2 phosphorylation remained reduced to 57 ± 7% (95% CI: 39-74%, P = 0.001) and was at 120 min [0.02% (0.003 mM] still reduced to 63 ± 10% (95% CI: 37-88%, P = 0.01), compared with control. At 360 min after exposure, acetylcholine-induced ERK 1/2 phosphorylation had recovered to 98 ± 16% (95% CI: 45-152%, P = 0.98) compared with control. In contrast, immediately after sevoflurane exposure, basal AKT phosphorylation was increased by 228 ± 37% (95% CI: 133-324%, P = 0.02) but had returned to control levels at 30 min after exposure, 172 ± 67% (95% CI: 0-356%, P = 0.34). CONCLUSION Sevoflurane exposure has differential effects on different intracellular signalling pathways. On one hand, we observed a prolonged attenuation of acetylcholine-induced ERK 1/2 phosphorylation that persisted even when sevoflurane concentrations close to detection level. On the other hand, basal AKT phosphorylation was increased twofold during sevoflurane exposure, with a rapid return to baseline levels after exposure. We speculate that the effects on acetylcholine-induced intracellular signalling observed in our in vitro model could be of relevance also for cholinergic signalling in vivo following sevoflurane exposure.
Collapse
Affiliation(s)
| | - D. GUSTAVSSON
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine; Karolinska Institutet; Stockholm; Sweden
| | - A. EBBERYD
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine; Karolinska Institutet; Stockholm; Sweden
| | | | - G. SCHULTE
- Department of Physiology and Pharmacology; Section for Receptor Biology and Signaling; Karolinska Institutet; Stockholm; Sweden
| | | | | |
Collapse
|
28
|
Andrews DT, Royse C, Royse AG. The mitochondrial permeability transition pore and its role in anaesthesia-triggered cellular protection during ischaemia-reperfusion injury. Anaesth Intensive Care 2012; 40:46-70. [PMID: 22313063 DOI: 10.1177/0310057x1204000106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review summarises the most recent data in support of the role of the mitochondrial permeability transition pore (mPTP) in ischaemia-reperfusion injury, how anaesthetic agents interact with this molecular channel, and the relevance this holds for current anaesthetic practice. Ischaemia results in damage to the electron transport chain of enzymes and sets into play the assembly of a non-specific mega-channel (the mPTP) that transgresses the inner mitochondrial membrane. During reperfusion, uncontrolled opening of the mPTP causes widespread depolarisation of the inner mitochondrial membrane, hydrolysis of ATP, mitochondrial rupture and eventual necrotic cell death. Similarly, transient opening of the mPTP during less substantial ischaemia leads to differential swelling of the intermembrane space compared to the mitochondrial matrix, rupture of the outer mitochondrial membrane and release of pro-apoptotic factors into the cytosol. Recent data suggests that cellular protection from volatile anaesthetic agents follows specific downstream interactions with this molecular channel that are initiated early during anaesthesia. Intravenous anaesthetic agents also prevent the opening of the mPTP during reperfusion. Although by dissimilar mechanisms, both volatiles and propofol promote cell survival by preventing uncontrolled opening of the mPTP after ischaemia. It is now considered that anaesthetic-induced closure of the mPTP is the underlying effector mechanism that is responsible for the cytoprotection previously demonstrated in clinical studies investigating anaesthetic-mediated cardiac and neuroprotection. Manipulation of mPTP function offers a novel means of preventing ischaemic cell injury. Anaesthetic agents occupy a unique niche in the pharmacological armamentarium available for use in preventing cell death following ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- David T Andrews
- Department of Anaesthesia, Mater Misericordiae Health Services, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
29
|
The effect of sevoflurane postconditioning on cardioprotection against ischemia-reperfusion injury in rabbits. Mol Biol Rep 2012; 39:6049-57. [DOI: 10.1007/s11033-011-1419-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
|
30
|
Raedschelders K, Ansley DM, Chen DDY. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther 2011; 133:230-55. [PMID: 22138603 DOI: 10.1016/j.pharmthera.2011.11.004] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/04/2011] [Indexed: 02/07/2023]
Abstract
Myocardial ischemia-reperfusion injury is an important cause of impaired heart function in the early postoperative period subsequent to cardiac surgery. Reactive oxygen species (ROS) generation increases during both ischemia and reperfusion and it plays a central role in the pathophysiology of intraoperative myocardial injury. Unfortunately, the cellular source of these ROS during ischemia and reperfusion is often poorly defined. Similarly, individual ROS members tend to be grouped together as free radicals with a uniform reactivity towards biomolecules and with deleterious effects collectively ascribed under the vague umbrella of oxidative stress. This review aims to clarify the identity, origin, and progression of ROS during myocardial ischemia and reperfusion. Additionally, this review aims to describe the biochemical reactions and cellular processes that are initiated by specific ROS that work in concert to ultimately yield the clinical manifestations of myocardial ischemia-reperfusion. Lastly, this review provides an overview of several key cardioprotective strategies that target myocardial ischemia-reperfusion injury from the perspective of ROS generation. This overview is illustrated with example clinical studies that have attempted to translate these strategies to reduce the severity of ischemia-reperfusion injury during coronary artery bypass grafting surgery.
Collapse
Affiliation(s)
- Koen Raedschelders
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine. The University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
31
|
Hellström J, Öwall A, Bergström J, Sackey PV. Cardiac outcome after sevoflurane versus propofol sedation following coronary bypass surgery: a pilot study. Acta Anaesthesiol Scand 2011; 55:460-7. [PMID: 21342154 DOI: 10.1111/j.1399-6576.2011.02405.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Studies of volatile anesthetic administration during coronary artery bypass grafting (CABG) report reduced serum levels of post-operative cardiac troponin-T (cTnT). Our primary objective was to evaluate whether short-term sedation with sevoflurane in the intensive care unit (ICU)--after CABG--could affect the release of cTnT, compared with propofol sedation. METHODS Following isolated CABG with cardiopulmonary bypass, 100 patients were randomized to either sevoflurane via the Anesthetic Conserving Device (AnaConDa(®)) or propofol for ICU sedation. Study drugs were administered for 2 h during mechanical ventilation and thereafter until extubation criteria were met. The primary endpoint was cTnT 12 h post-operatively. Crude cTnT data were not normally distributed and therefore compared with the Mann-Whitney U-test. Because of the skewed pre-operative and post-operative cTnT data, we performed a post hoc analysis of the change in cTnT between pre-operative values and 12 h post-operatively. RESULTS There was no statistically significant difference between groups in the primary endpoint cTnT values at 12 h post-operatively, cardiac events or the need for hemodynamic support. In the post hoc analysis, the cTnT increase from pre-operative values to 12 h post-operatively was less pronounced in the sevoflurane group (P=0.008). CONCLUSION Post-operative short-term sevoflurane sedation following CABG, in comparison with propofol, did not affect the cTnT values at 12 h post-operatively and clinical outcome was equal between groups. The result from the post hoc analysis, with less cTnT change over time, is nevertheless hypothesis-generating and warrants a larger study.
Collapse
Affiliation(s)
- J Hellström
- Institution of Molecular Medicine and Surgery, Section of Cardiothoracic Surgery and Anesthesiology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
32
|
Kong HL, Li ZQ, Zhao YJ, Zhao SM, Zhu L, Li T, Fu Y, Li HJ. Ginsenoside Rb1 protects cardiomyocytes against CoCl2-induced apoptosis in neonatal rats by inhibiting mitochondria permeability transition pore opening. Acta Pharmacol Sin 2010; 31:687-95. [PMID: 20523339 DOI: 10.1038/aps.2010.52] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM To investigate whether mitochondria permeability transition pore (mPTP) opening was involved in ginsenoside Rb1 (Gs-Rb1) induced anti-hypoxia effects in neonatal rat cardiomyocytes ex vivo. METHODS Cardiomyocytes were randomly divided into 7 groups: control group, hypoxia group (500 micromol/L CoCl(2)), Gs-Rb1 200 micromol/L group (CoCl(2) intervention+Gs-Rb1), wortmannin (PI3K inhibitor) 0.5 micromol/L group, wortmannin+Gs-Rb1 group, adenine 9-beta-D-arabinofuranoside (Ara A, AMPK inhibitor) 500 micromol/L group, and Ara A and Gs-Rb1 group. Apoptosis rate was determined by using flow cytometry. The opening of the transient mPTP was assessed by using co-loading with calcein AM and CoCl(2) in high conductance mode. Expression of GSK-3beta, cytochrome c, caspase-3 and poly (ADP-ribose) polymerase (PARP) was measured by using Western blotting. DeltaGSK-3beta was defined as the ratio of p-Ser9-GSK-3beta to total GSK-3beta. RESULTS CoCl(2) significantly stimulated mPTP opening and up-regulated the level of DeltaGSK-3beta. There was a statistically significant positive correlation between apoptosis rate and mPTP opening, between apoptosis rate and DeltaGSK-3beta, and between mPTP opening and DeltaGSK-3beta. Gs-Rb1 significantly inhibited mPTP opening induced by hypoxia (41.3%+/-2.0%, P<0.001) . Gs-Rb1 caused a 77.3%+/-3.2% reduction in the expression of GSK-3beta protein (P<0.001) and a significant increase of 1.182+/-0.007-fold (P=0.0001) in p-Ser9-GSK-3beta compared with control group. Wortmannin and Ara A significantly inhibited the effect of Gs-Rb1 on mPTP opening and DeltaGSK-3beta. Gs-Rb1 significantly decreased expression of cytochrome c (66.1%+/-1.7%, P=0.001), caspase-3 (56.5%+/-2.7%, P=0.001) and cleaved poly ADP-ribose polymerase (PARP) (57.9%+/-1.4%, P=0.001). CONCLUSION Gs-Rb1 exerted anti-hypoxia effect on neonatal rat cardiomyocytes by inhibiting GSK-3beta-mediated mPTP opening.
Collapse
|