1
|
Xue J, Liu Z, Liao Y, Zhang X, Liu Y, Mo L, Dong R, Li Q, Sun X, Xie J, Yang P. Undersized telomeres in regulatory T cells link to the pathogenesis of allergic rhinitis. iScience 2024; 27:108615. [PMID: 38205251 PMCID: PMC10777067 DOI: 10.1016/j.isci.2023.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
Telomeres are an important biomarker in the cell destiny. The relationship between telomeres and regulatory T cells (Tregs) has not yet been investigated. The objective of this study is to evaluate the link between Tregs' telomere length and allergic rhinitis (AR)'s pathogenesis. Here, we report that low telomerase activity and high endoplasmic reticulum stress status were observed in Tregs from AR patients, as shown in the results. Immune regulatory molecules levels were correlated with the length of Tregs' telomeres. The immune-suppressive functions of Tregs were associated with the telomere length/Telomerase reverse transcriptase/Telomerase protein component 1 status in Tregs. The levels of telomere length/telomerase in airway Tregs were reduced by sensitization. Endoplasmic reticulum stress signaling pathway of proline-rich receptor-like protein kinase-eukaryotic translation initiation factor 2A (eIF2a) was associated with the regulation of telomerase. Inhibiting eIF2a had an effect on upregulating telomerase activity in Tregs and mitigating experimental AR.
Collapse
Affiliation(s)
- Jinmei Xue
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education of China, Shanxi Medical University, Taiyuan, China
| | - Yun Liao
- Shenzhen Clinical School of Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Xiwen Zhang
- Shenzhen Clinical School of Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Yu Liu
- Department of General Practice Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Lihua Mo
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
- Department of General Practice Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Rui Dong
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Qiang Li
- Department of Otolaryngology, Head & Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Xizhuo Sun
- Department of General Practice Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education of China, Shanxi Medical University, Taiyuan, China
| | - Pingchang Yang
- Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Lynch DG, Narayan RK, Li C. Multi-Mechanistic Approaches to the Treatment of Traumatic Brain Injury: A Review. J Clin Med 2023; 12:jcm12062179. [PMID: 36983181 PMCID: PMC10052098 DOI: 10.3390/jcm12062179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Despite extensive research efforts, the majority of trialed monotherapies to date have failed to demonstrate significant benefit. It has been suggested that this is due to the complex pathophysiology of TBI, which may possibly be addressed by a combination of therapeutic interventions. In this article, we have reviewed combinations of different pharmacologic treatments, combinations of non-pharmacologic interventions, and combined pharmacologic and non-pharmacologic interventions for TBI. Both preclinical and clinical studies have been included. While promising results have been found in animal models, clinical trials of combination therapies have not yet shown clear benefit. This may possibly be due to their application without consideration of the evolving pathophysiology of TBI. Improvements of this paradigm may come from novel interventions guided by multimodal neuromonitoring and multimodal imaging techniques, as well as the application of multi-targeted non-pharmacologic and endogenous therapies. There also needs to be a greater representation of female subjects in preclinical and clinical studies.
Collapse
Affiliation(s)
- Daniel G. Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549, USA
| | - Raj K. Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, St. Francis Hospital, Roslyn, NY 11576, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549, USA
- Department of Neurosurgery, Northwell Health, Manhasset, NY 11030, USA
- Correspondence:
| |
Collapse
|
3
|
GADD34 Ablation Exacerbates Retinal Degeneration in P23H RHO Mice. Int J Mol Sci 2022; 23:ijms232213748. [PMID: 36430227 PMCID: PMC9697375 DOI: 10.3390/ijms232213748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The UPR is sustainably activated in degenerating retinas, leading to translational inhibition via p-eIF2α. Recent findings have demonstrated that ablation of growth arrest and DNA damage-inducible protein 34 (GADD34), a protein phosphatase 1 regulatory subunit permitting translational machinery operation through p-eIF2α elevation, does not impact the rate of translation in fast-degenerating rd16 mice. The current study aimed to validate whether P23H RHO mice degenerating at a slower pace manifest translational attenuation and whether GADD34 ablation impacts the rate of retinal degeneration via further suppression of retinal protein synthesis and apoptotic cell death. For this study, mice were examined with ERG and histological analyses. The molecular assessment was conducted in the naïve and LPS-challenged mice using Western blot and qRT-PCR analyses. Thus, this study demonstrates that the P23H RHO retinas manifest translational attenuation. However, GADD34 ablation resulted in a more prominent p-eIF2a increase without impacting the translation rate. GADD34 deficiency also led to a reduction in scotopic ERG amplitudes and an increased number of TUNEL-positive cells. Molecular analysis revealed that GADD34 deficiency reduces the expression of p-STAT3 and Il-6 while increasing the expression of Tnfa. Overall, the data indicate that GADD34 plays a multifunctional role. Under chronic UPR activation, GADD34 acts as a feedback player, dephosphorylating p-eIF2a, although this role does not seem to be critical. Additionally, GADD34 controls cytokine expression and STAT3 activation. Perhaps these molecular events are particularly important in controlling the pace of retinal degeneration.
Collapse
|
4
|
Zhang X, Yang G, Chen Y, Mu Z, Zhou H, Zhang L. Resveratrol pre-treatment alleviated caerulein-induced acute pancreatitis in high-fat diet-feeding mice via suppressing the NF-κB proinflammatory signaling and improving the gut microbiota. BMC Complement Med Ther 2022; 22:189. [PMID: 35842665 PMCID: PMC9288014 DOI: 10.1186/s12906-022-03664-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND hyperlipidemia acute pancreatitis (HTG-AP) is a major hidden danger affecting human health, however, whether there is a protective effect of resveratrol on HTG-AP is unclear. Therefore our study was aimed to investigate the preventive effect and the underlying mechanism of resveratrol in the HTG-AP mice model. METHODS This research was divided into two parts. In the first part, mice were adaptively fed with normal chow or HFD for 6 weeks. From the second week, resveratrol-treated mice were in intragastric administration with resveratrol (45 mg/kg/d) for 4 weeks. In the second part, the procedures were the same as the first part. After the last intragastric administration with resveratrol, all mice were intraperitoneal injections of cerulean. RESULTS We found resveratrol effectively inhibited pancreatic pathological injury in the HFD, AP, and HTG-AP mice. Resveratrol reduced the LPS, IL-6, TNF-α, and MCP-1 expressions in the HFD mice. Resveratrol also reduced TNF-α, MDA, and MCP-1 expressions and increased SOD and T-AOC expressions in the AP and HTG-AP mice. Furthermore, resveratrol suppressed the NF-κB pro-inflammatory signaling pathway in pancreatic tissues in the AP and HTG-AP mice. Moreover, resveratrol improved the gut microbiota in the HFD mice. CONCLUSION The resveratrol pre-treatment could attenuate pancreas injury, inflammation, and oxidative stress in the HTG-AP mice, via restraining the NF-κB signaling pathway and regulating gut microbiota. Therefore, Our study proved that the resveratrol pre-treatment had a preventive effect on HTG-AP.
Collapse
Affiliation(s)
- Xiaoying Zhang
- School of Basic Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Guodong Yang
- Department of Gastroenterology and Hepatology, Affiliated Hospital of North Sichuan Medical College, No.63, Cultural Rd., Shunqing Dist, Nanchong, 637000, Sichuan Province, China.
| | - Yulin Chen
- North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Zhao Mu
- North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Haiyue Zhou
- North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Luoyao Zhang
- North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| |
Collapse
|
5
|
Carrà G, Avalle L, Seclì L, Brancaccio M, Morotti A. Shedding Light on NF-κB Functions in Cellular Organelles. Front Cell Dev Biol 2022; 10:841646. [PMID: 35620053 PMCID: PMC9127296 DOI: 10.3389/fcell.2022.841646] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
NF-κB is diffusely recognized as a transcriptional factor able to modulate the expression of various genes involved in a broad spectrum of cellular functions, including proliferation, survival and migration. NF-κB is, however, also acting outside the nucleus and beyond its ability to binds to DNA. NF-κB is indeed found to localize inside different cellular organelles, such as mitochondria, endoplasmic reticulum, Golgi and nucleoli, where it acts through different partners in mediating various biological functions. Here, we discuss the relationship linking NF-κB to the cellular organelles, and how this crosstalk between cellular organelles and NF-κB signalling may be evaluated for anticancer therapies.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
6
|
Xie Q, Gao S, Lei M, Li Z. Hesperidin suppresses ERS-induced inflammation in the pathogenesis of non-alcoholic fatty liver disease. Aging (Albany NY) 2022; 14:1265-1279. [PMID: 35143415 PMCID: PMC8876922 DOI: 10.18632/aging.203817] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022]
Abstract
Objective: The current study aimed to establish a non-alcoholic fatty liver disease (NAFLD) model using HFD-fed SD rats and FFA-stimulated human THP-1 cells to examine whether hesperidin (HSP) plays a role in endoplasmic reticulum stress (ERS)-induced inflammation in the pathogenesis of NAFLD. Methods: Oil red O staining was used to determine the effect of HSP on hepatic steatosis in rat liver tissues. Differentially expressed genes (DEGs) were subjected to functional enrichment analysis by bioinformatics. Western blotting was used to detect the protein expression of GRP94, ATF6, ATF4, p-PERK, p-IRE1α, IL-1β, IL-6, and TNF-α in liver tissues and THP-1 cell lines, and the expression of GRP94 and p-PERK in vitro was detected through immunofluorescence staining. Results: HSP significantly decreased the weight gain, hepatic steatosis but not serum lipid profile and suppressed the serum levels of inflammatory factors in HFD-fed rats. It was revealed by bioinformatics analysis that the inflammatory response and IRE1α activation were enriched signaling pathways in NAFLD. The expression of ERS-related biomarkers, GRP94, ATF6, ATF4, p-PERK and p- IRE1α, was significantly suppressed by HSP in vivo and in vitro. Moreover, the inflammatory markers, including IL-1β, IL-6, and TNF-α, were also decreased by HSP in vivo and in vitro. Immunofluorescence staining exposed that the expression of GRP94 and p-PERK was decreased by HSP in vitro. Conclusion: HSP may suppress ERS-induced inflammation in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Qi Xie
- Department of Nutrition, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.,Hebei Province Key Laboratory of Nutrition and Health, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Shuqing Gao
- Department of Nutrition, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Min Lei
- Department of Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zengning Li
- Hebei Province Key Laboratory of Nutrition and Health, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China.,Department of Nutrition, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
7
|
Shangguan Y, Chen Y, Ma Y, Zhao Y, He Y, Li W. Salubrinal protects against inflammatory response in macrophage and attenuates psoriasiform skin inflammation by antagonizing NF-κB signaling pathway. Biochem Biophys Res Commun 2021; 589:63-70. [PMID: 34891043 DOI: 10.1016/j.bbrc.2021.11.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/26/2021] [Accepted: 11/17/2021] [Indexed: 11/02/2022]
Abstract
Psoriasiform skin inflammation is the common chronic skin inflammatory disease with no effective clinical therapy. Salubrinal is a multifunctional molecule playing a protective role in several conditions. Recently, studies have reported that Salubrinal is a potential therapeutic agent for inflammatory diseases. However, the protective role of Salubrinal in psoriasis-like skin inflammation remains unknown. In this article, imiquimod (IMQ)-induced psoriasis models were established in wild-type mice to explore the role of Salubrinal in the development of psoriasis. As a result, the IMQ-induced mouse models exhibited typical skin inflammation, which was alleviated by the administration of Salubrinal. Furthermore, RAW264.7 macrophage was stimulated with Lipopolysaccharide(LPS) in the presence or absence of Salubrinal. LPS stimulation elevated the expression of various inflammatory biomarkers, while the administration of Salubrinal abolished the function of LPS in RAW264.7 macrophages. In addition, the activation of the nuclear factor-kappa B (NF-κB) signaling pathway in both the LPS-stimulated RAW264.7 macrophage and psoriasis mouse models was antagonized by the administration of Salubrinal. Collectively, Salubrinal might be considered as a promising therapeutic agent for psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Yangtao Shangguan
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yongkun Chen
- Department of Ultrasound, The Fourth People's Hospital of Jinan, Jinan, Shandong Province, 250031, PR China
| | - Yihui Ma
- Department of Pathology, Heze Mudan People's Hospital (Heze Central Hospital), Heze, Shandong, 274000, PR China
| | - Yunpeng Zhao
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yeteng He
- Department of Orthopaedics, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, PR China.
| | - Weiwei Li
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
8
|
da Silva DC, Valentão P, Andrade PB, Pereira DM. Endoplasmic reticulum stress signaling in cancer and neurodegenerative disorders: Tools and strategies to understand its complexity. Pharmacol Res 2020; 155:104702. [PMID: 32068119 DOI: 10.1016/j.phrs.2020.104702] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) comprises a network of tubules and vesicles that constitutes the largest organelle of the eukaryotic cell. Being the location where most proteins are synthesized and folded, it is crucial for the upkeep of cellular homeostasis. Disturbed ER homeostasis triggers the activation of a conserved molecular machinery, termed the unfolded protein response (UPR), that comprises three major signaling branches, initiated by the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and the activating transcription factor 6 (ATF6). Given the impact of this intricate signaling network upon an extensive list of cellular processes, including protein turnover and autophagy, ER stress is involved in the onset and progression of multiple diseases, including cancer and neurodegenerative disorders. There is, for this reason, an increasing number of publications focused on characterizing and/or modulating ER stress, which have resulted in a wide array of techniques employed to study ER-related molecular events. This review aims to sum up the essentials on the current knowledge of the molecular biology of endoplasmic reticulum stress, while highlighting the available tools used in studies of this nature.
Collapse
Affiliation(s)
- Daniela Correia da Silva
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal.
| |
Collapse
|
9
|
Heart Protection by Herb Formula BanXia BaiZhu TianMa Decoction in Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5612929. [PMID: 31827552 PMCID: PMC6885217 DOI: 10.1155/2019/5612929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/02/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023]
Abstract
Modern research has shown that BanXia BaiZhu TianMa decoction (BBT) has the potential effect of lowering BP in vitro and in vivo. However, its therapeutic mechanism has not been clearly defined. The present study was designed to evaluate the protective effect of BBT on the heart by examining heart functioning and anti-inflammatory characteristics and to obtain scientific evidence for its further medical applications. BBT was extracted by decocting the herb extraction and analysed by HPLC. The left ventricular mass index (LVMI) was measured, and a histological examination of samples of the heart was performed. Inflammatory status was investigated by measuring tissue levels of interleukin-1 (IL-1), interleukin-6 (IL-6), tumour necrosis factor (TNF-α), inducible nitric oxide synthase (iNOS), and molecules of the nuclear factor κB (NF-κB) pathway. The BBT treatment significantly reversed the course of hypertension-derived heart damage. Meanwhile, the herb formula markedly reduced levels of IL-1, IL-6, TNF-α, and iNOS. In addition, the traditional compound suppressed the activity of the NF-κB pathway. The present study provides evidence of heart protection by BBT in SHRs. The action mechanisms may be partially attributable to the anti-inflammatory characteristic of the formula. Understanding the pharmacological action of BBT will benefit its impending use.
Collapse
|
10
|
Balakrishnan B, Siddiqi A, Mella J, Lupo A, Li E, Hollien J, Johnson J, Lai K. Salubrinal enhances eIF2α phosphorylation and improves fertility in a mouse model of Classic Galactosemia. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165516. [PMID: 31362041 DOI: 10.1016/j.bbadis.2019.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Loss of galactose-1 phosphate uridylyltransferase (GALT) activity in humans results in Classic Galactosemia, and the GalT-deficient (GalT-/-) mouse mimics the patient condition. GalT-/- ovaries display elevated endoplasmic reticulum (ER) stress marker, BiP, and downregulated canonical phosphatidylinositol 3-kinase (Pi3k)/protein kinase B (Akt) growth/pro-survival signaling. Numbers of primordial follicles are reduced in the mutants, recapitulating the accelerated ovarian aging seen in human patients. We previously found that oral administration of the compound Salubrinal (an eIF2α phosphatase inhibitor), resulted in reduction of ovarian BiP expression, rescued Pi3k/Akt signaling, and a doubling of primordial follicles in GalT-/- adults. Here, we further characterized galactosemic stress in GalT-/- mice versus wild-type (WT) controls, and examined whether Salubrinal treatment improved broader reproductive parameters. We assessed the expression levels of factors of the unfolded protein response (UPR), and found that BiP, phospho-Perk, and phospho-eIF2α were all elevated in GalT-/- ovaries. However, neither IKK activation (NFκB pathway) nor alternative Xbp1 splicing downstream of ER membrane protein Ire1α activation was induced, suggesting an Xbp1-independent UPR in galactosemic stress. Moreover, Salubrinal treatment significantly increased the number of ovulated eggs in mutant animals after gonadotrophic superovulation. Salubrinal treatment also normalized estrus cycle stage lengths and resulted in significantly larger litter sizes than vehicle-treated mutants. Overall, we show that Salubrinal protects against galactosemia-induced primordial follicle loss in a fashion that includes suppressing the de-phosphorylation of eIF2α, and that intervention in this way significantly improves and extends ovarian function, fertility, and fecundity.
Collapse
Affiliation(s)
- B Balakrishnan
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, United States
| | - A Siddiqi
- Department of Pathology and Laboratory Medicine, University of Florida College of Medicine, United States
| | - J Mella
- School of Biological Sciences, University of Utah College of Science, United States
| | - A Lupo
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, United States
| | - E Li
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, United States
| | - J Hollien
- School of Biological Sciences, University of Utah College of Science, United States
| | - J Johnson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado, United States.
| | - K Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, United States.
| |
Collapse
|
11
|
Claes Z, Jonkhout M, Crespillo-Casado A, Bollen M. The antibiotic robenidine exhibits guanabenz-like cytoprotective properties by a mechanism independent of protein phosphatase PP1:PPP1R15A. J Biol Chem 2019; 294:13478-13486. [PMID: 31337709 DOI: 10.1074/jbc.ra119.008857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/22/2019] [Indexed: 01/11/2023] Open
Abstract
The aminoguanidine compound robenidine is widely used as an antibiotic for the control of coccidiosis, a protozoal infection in poultry and rabbits. Interestingly, robenidine is structurally similar to guanabenz (analogs), which are currently undergoing clinical trials as cytoprotective agents for the management of neurodegenerative diseases. Here we show that robenidine and guanabenz protect cells from a tunicamycin-induced unfolded protein response to a similar degree. Both compounds also reduced the tumor necrosis factor α-induced activation of NF-κB. The cytoprotective effects of guanabenz (analogs) have been explained previously by their ability to maintain eIF2α phosphorylation by allosterically inhibiting protein phosphatase PP1:PPP1R15A. However, using a novel split-luciferase-based protein-protein interaction assay, we demonstrate here that neither robenidine nor guanabenz disrupt the interaction between PPP1R15A and either PP1 or eIF2α in intact cells. Moreover, both drugs also inhibited the unfolded protein response in cells that expressed a nonphosphorylatable mutant (S51A) of eIF2α. Our results identify robenidine as a PP1:PPP1R15A-independent cytoprotective compound that holds potential for the management of protein misfolding-associated diseases.
Collapse
Affiliation(s)
- Zander Claes
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | - Marloes Jonkhout
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | - Ana Crespillo-Casado
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Mathieu Bollen
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
12
|
The Effect of Chronic Inflammation and Oxidative and Endoplasmic Reticulum Stress in the Course of Metabolic Syndrome and Its Therapy. Stem Cells Int 2018; 2018:4274361. [PMID: 30425746 PMCID: PMC6217741 DOI: 10.1155/2018/4274361] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) is highly associated with a modern lifestyle. The prevalence of MetS has reached epidemic proportion and is still rising. The main cause of MetS and finally type 2 diabetes occurrence is excessive nutrient intake, lack of physical activity, and inflammatory cytokines secretion. These factors lead to redistribution of body fat and oxidative and endoplasmic reticulum (ER) stress occurrence, resulting in insulin resistance, increase adipocyte differentiation, and much elevated levels of proinflammatory cytokines. Cellular therapies, especially mesenchymal stem cell (MSC) transplantation, seem to be promising in the MetS and type 2 diabetes treatments, due to their immunomodulatory effect and multipotent capacity; adipose-derived stem cells (ASCs) play a crucial role in MSC-based cellular therapies. In this review, we focused on etiopathology of MetS, especially on the crosstalk between chronic inflammation, oxidative stress, and ER stress and their effect on MetS-related disease occurrence, as well as future perspectives of cellular therapies. We also provide an overview of therapeutic approaches that target endoplasmic reticulum and oxidative stress.
Collapse
|
13
|
Schmitz ML, Shaban MS, Albert BV, Gökçen A, Kracht M. The Crosstalk of Endoplasmic Reticulum (ER) Stress Pathways with NF-κB: Complex Mechanisms Relevant for Cancer, Inflammation and Infection. Biomedicines 2018; 6:biomedicines6020058. [PMID: 29772680 PMCID: PMC6027367 DOI: 10.3390/biomedicines6020058] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
Stressful conditions occuring during cancer, inflammation or infection activate adaptive responses that are controlled by the unfolded protein response (UPR) and the nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) signaling pathway. These systems can be triggered by chemical compounds but also by cytokines, toll-like receptor ligands, nucleic acids, lipids, bacteria and viruses. Despite representing unique signaling cascades, new data indicate that the UPR and NF-κB pathways converge within the nucleus through ten major transcription factors (TFs), namely activating transcription factor (ATF)4, ATF3, CCAAT/enhancer-binding protein (CEBP) homologous protein (CHOP), X-box-binding protein (XBP)1, ATF6α and the five NF-κB subunits. The combinatorial occupancy of numerous genomic regions (enhancers and promoters) coordinates the transcriptional activation or repression of hundreds of genes that collectively determine the balance between metabolic and inflammatory phenotypes and the extent of apoptosis and autophagy or repair of cell damage and survival. Here, we also discuss results from genetic experiments and chemical activators of endoplasmic reticulum (ER) stress that suggest a link to the cytosolic inhibitor of NF-κB (IκB)α degradation pathway. These data show that the UPR affects this major control point of NF-κB activation through several mechanisms. Taken together, available evidence indicates that the UPR and NF-κB interact at multiple levels. This crosstalk provides ample opportunities to fine-tune cellular stress responses and could also be exploited therapeutically in the future.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University Giessen, D-35392 Giessen, Germany.
| | - M Samer Shaban
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, D-35392 Giessen, Germany.
| | - B Vincent Albert
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, D-35392 Giessen, Germany.
| | - Anke Gökçen
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, D-35392 Giessen, Germany.
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, D-35392 Giessen, Germany.
- Rudolf-Buchheim-Institute of Pharmacology, Universities of Giessen and Marburg Lung Center (UGMLC), Schubertstrasse 81, D-35392 Giessen, Germany.
| |
Collapse
|
14
|
Liu S, Liu Y, Minami K, Chen A, Wan Q, Yin Y, Gan L, Xu A, Matsuura N, Koizumi M, Liu Y, Na S, Li J, Nakshatri H, Li BY, Yokota H. Inhibiting checkpoint kinase 1 protects bone from bone resorption by mammary tumor in a mouse model. Oncotarget 2018; 9:9364-9378. [PMID: 29507695 PMCID: PMC5823640 DOI: 10.18632/oncotarget.24286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/13/2018] [Indexed: 12/22/2022] Open
Abstract
DNA damage response plays a critical role in tumor growth, but little is known about its potential role in bone metabolism. We employed selective inhibitors of Chk1 and examined their effects on the proliferation and migration of mammary tumor cells as well as the development of osteoblasts and osteoclasts. Further, using a mouse model of bone metastasis we evaluated the effects of Chk1 inhibitors on bone quality. Chk1 inhibitors blocked the proliferation, survival, and migration of tumor cells in vitro and suppressed the development of bone-resorbing osteoclasts by downregulating NFATc1. In the mouse model, Chk1 inhibitor reduced osteolytic lesions and prevented mechanical weakening of the femur and tibia. Analysis of RNA-seq expression data indicated that the observed effects were mediated through the regulation of eukaryotic translation initiation factor 2 alpha, stress to the endoplasmic reticulum, S100 proteins, and bone remodeling-linked genes. Our findings suggest that targeting Chk1 signaling without adding DNA damaging agents may protect bone from degradation while suppressing tumor growth and migration.
Collapse
Affiliation(s)
- Shengzhi Liu
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China.,Department of Biomedical Engineering, Indiana University at Purdue University, Indianapolis, IN 46202, USA
| | - Yang Liu
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China.,Department of Biomedical Engineering, Indiana University at Purdue University, Indianapolis, IN 46202, USA
| | - Kazumasa Minami
- Department of Biomedical Engineering, Indiana University at Purdue University, Indianapolis, IN 46202, USA.,Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine Suita, Osaka 565-0871, Japan
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University at Purdue University, Indianapolis, IN 46202, USA
| | - Qiaoqiao Wan
- Department of Biomedical Engineering, Indiana University at Purdue University, Indianapolis, IN 46202, USA
| | - Yukun Yin
- Department of Biology, Indiana University at Purdue University, Indianapolis, IN 46202, USA
| | - Liangying Gan
- Department of Biology, Indiana University at Purdue University, Indianapolis, IN 46202, USA
| | - Aihua Xu
- Department of Biology, Indiana University at Purdue University, Indianapolis, IN 46202, USA
| | - Nariaki Matsuura
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka 537-8511, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine Suita, Osaka 565-0871, Japan
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University at Purdue University, Indianapolis, IN 46202, USA
| | - Jiliang Li
- Department of Biology, Indiana University at Purdue University, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University at Purdue University, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Qiu J, You X, Wu G. Effects of Tripterygium glycoside treatment on experimental autoimmune encephalomyelitis. Mol Med Rep 2017; 16:8283-8288. [PMID: 28983582 DOI: 10.3892/mmr.2017.7627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 07/17/2017] [Indexed: 11/06/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease mediated by CD4+ T cells. It is characterized by mononuclear cell infiltration around the small blood vessels in the central nervous system (CNS). Previous investigations have found that apoptosis is associated with the occurrence and development of autoimmune disease, and that mononuclear cell apoptosis and clearance from the CNS is one of the repair mechanisms of EAE. Tripterygium wilfordii glycoside (TWP) is an organic matter isolated from Tripterygium wilfordii, which has anti‑inflammatory and immunosuppressive effects. In the present study, male Lewis rats were randomly divided into a normal control, EAE and TWP groups. Rats in EAE and TWP groups received injections of emulsified EAE antigen (myelin protein) at two points on the footpad while control group received PBS. The TWP group was then treated with TWP daily for 21 days. Symptoms and nerve function scores were observed and evaluated. Specimens of blood, brain and spinal cord were collected for further pathological examination, Tunel assay, ELISA and immunohistochemistry were performed to examine the effect of TWP on the onset of EAE, and changes in CNS inflammatory infiltration, cell apoptosis, and the expression of nuclear factor (NF)‑κB P65 and interleukin (IL)‑2. The results showed that the TWP treatment group exhibited decreased EAE and delayed onset, compared with the control. The clinical symptoms were significantly reduced and alleviation of inflammatory cell infiltration was observed. Compared with the EAE group, a higher inflammatory cell apoptotic rate, and reduced serum levels of IL‑2 and NF‑κB p65‑positive cells were observed in the TWP treatment group. Therefore, TWP effectively inhibited EAE via the inhibition of CNS inflammatory cell infiltration, enhancement of inflammatory cell apoptosis, and downregulation of the expression of NF‑κB and IL‑2.
Collapse
Affiliation(s)
- Jianmin Qiu
- Department of Internal Medicine Neurology, Fujian Putian First Hospital, Putian, Fujian 351100, P.R. China
| | - Xuelian You
- Department of Internal Medicine Neurology, Fujian Putian First Hospital, Putian, Fujian 351100, P.R. China
| | - Gang Wu
- Department of Internal Medicine Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| |
Collapse
|
16
|
Integrated Stress Response as a Therapeutic Target for CNS Injuries. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6953156. [PMID: 28536699 PMCID: PMC5425910 DOI: 10.1155/2017/6953156] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/24/2017] [Accepted: 04/05/2017] [Indexed: 11/25/2022]
Abstract
Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR). This pathway is an innate protective mechanism, with encouraging potential as therapeutic target for CNS injury repair. In this review, we will focus on the progress in understanding the role of the ISR and we will discuss the effects of various small molecules that target the ISR on different animal models of CNS injury.
Collapse
|
17
|
Rittiner JE, Caffall ZF, Hernández-Martinez R, Sanderson SM, Pearson JL, Tsukayama KK, Liu AY, Xiao C, Tracy S, Shipman MK, Hickey P, Johnson J, Scott B, Stacy M, Saunders-Pullman R, Bressman S, Simonyan K, Sharma N, Ozelius LJ, Cirulli ET, Calakos N. Functional Genomic Analyses of Mendelian and Sporadic Disease Identify Impaired eIF2α Signaling as a Generalizable Mechanism for Dystonia. Neuron 2016; 92:1238-1251. [PMID: 27939583 DOI: 10.1016/j.neuron.2016.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/27/2016] [Accepted: 11/04/2016] [Indexed: 01/09/2023]
Abstract
Dystonia is a brain disorder causing involuntary, often painful movements. Apart from a role for dopamine deficiency in some forms, the cellular mechanisms underlying most dystonias are currently unknown. Here, we discover a role for deficient eIF2α signaling in DYT1 dystonia, a rare inherited generalized form, through a genome-wide RNAi screen. Subsequent experiments including patient-derived cells and a mouse model support both a pathogenic role and therapeutic potential for eIF2α pathway perturbations. We further find genetic and functional evidence supporting similar pathway impairment in patients with sporadic cervical dystonia, due to rare coding variation in the eIF2α effector ATF4. Considering also that another dystonia, DYT16, involves a gene upstream of the eIF2α pathway, these results mechanistically link multiple forms of dystonia and put forth a new overall cellular mechanism for dystonia pathogenesis, impairment of eIF2α signaling, a pathway known for its roles in cellular stress responses and synaptic plasticity.
Collapse
Affiliation(s)
| | | | | | | | - James L Pearson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA; Department of RNAi Screening Facility, Duke University, Durham, NC 27708, USA
| | | | - Anna Y Liu
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Changrui Xiao
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Samantha Tracy
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | | | - Patrick Hickey
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Julia Johnson
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Burton Scott
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Mark Stacy
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, NY 10003, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susan Bressman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, NY 10003, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristina Simonyan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth T Cirulli
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA; Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27708, USA
| | - Nicole Calakos
- Department of Neurology, Duke University, Durham, NC 27708, USA; Department of Neurobiology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
18
|
Yao Z, Nie L, Zhao Y, Zhang Y, Liu Y, Li J, Cheng L. Salubrinal Suppresses IL-17-Induced Upregulation of MMP-13 and Extracellular Matrix Degradation Through the NF-kB Pathway in Human Nucleus Pulposus Cells. Inflammation 2016; 39:1997-2007. [DOI: 10.1007/s10753-016-0435-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|