1
|
Koyama Y, Hosomi S, Yoshiya K. Editorial: Body temperature homeostasis: the biological thermostat. Front Neurosci 2024; 18:1527270. [PMID: 39669128 PMCID: PMC11634809 DOI: 10.3389/fnins.2024.1527270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Affiliation(s)
- Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Sanae Hosomi
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuhisa Yoshiya
- Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, Osaka, Japan
| |
Collapse
|
2
|
Bosque M, Margalef R, Llaveria A, Santafe MM. Stress increases the spontaneous release of ACh and may be involved in the generation and maintenance of myofascial trigger points in mouse. Behav Brain Res 2023; 452:114572. [PMID: 37421986 DOI: 10.1016/j.bbr.2023.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
An increase in spontaneous neurotransmission may be related to myofascial pain. Sympathetic neurons innervate most of the neuromuscular junction sand are involved in the modulation of synaptic transmission. Therefore, a direct action of stress on acetylcholine release is expected. For this reason, this study aims to evaluate the relationship between stress and spontaneous neurotransmission. Five acute stressors (immobilization, forced swimming, food and water deprivation, social isolation and ultrasound) were tested in 6 weeks adult Swiss male mice. Subsequently, these types of stress were combined to generate a model of chronic stress. The study of ACh release was evaluated before and after the application of stress by intracellular recording of spontaneous neurotransmission (mEPPs). In each one of the stressors, an increase in the frequency of mEPPs was obtained immediately after treatment, which remained elevated for 5 days and thereafter returned to control values after a week. With chronic stress, a much higher increase in the frequency of mEPPs was obtained and it was maintained for 15 days. In summary, stress, both in its acute and chronic forms, increased spontaneous neurotransmission significantly. There is a possibility that chronic stress is related with the genesis or maintenance of myofascial pain.
Collapse
Affiliation(s)
- Marc Bosque
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St. Llorenc, No. 21, 43201 Reus, Spain
| | - Ramón Margalef
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St. Llorenc, No. 21, 43201 Reus, Spain
| | - Albert Llaveria
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St. Llorenc, No. 21, 43201 Reus, Spain
| | - Manel M Santafe
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St. Llorenc, No. 21, 43201 Reus, Spain.
| |
Collapse
|
3
|
Kuti D, Winkler Z, Horváth K, Juhász B, Szilvásy-Szabó A, Fekete C, Ferenczi S, Kovács KJ. The metabolic stress response: Adaptation to acute-, repeated- and chronic challenges in mice. iScience 2022; 25:104693. [PMID: 35880047 PMCID: PMC9307515 DOI: 10.1016/j.isci.2022.104693] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 01/08/2023] Open
Abstract
There is a strong relationship between stress and metabolism. Because acute traumatic- and chronic stress events are often accompanied with metabolic pathophysiology, it is important to understand the details of the metabolic stress response. In this study we directly compared metabolic effects of acute stress with chronic repeated- and chronic unpredictable stress in mouse models. All types of adversities increased energy expenditure, chronic stress exposure decreased body weight gain, locomotor activity and differentially affected fuel utilization. During chronic exposure to variable stressors, carbohydrates were the predominant fuels, whereas fatty acids were catabolized in acutely and repeatedly restrained animals. Chronic exposure to variable stressors in unpredictable manner provoked anxiety. Our data highlight differences in metabolic responses to acute- repeated- and chronic stressors, which might affect coping behavior and underlie stress-induced metabolic and psychopathologies. All forms of stress exposure increase energy expenditure and resting metabolic rate Increased energy expenditure is fueled in challenge-specific manner Acute restraint increases, chronic stress decreases locomotor activity Chronic variable stress, but not repeated restraint provokes anxiety/depression
Collapse
Affiliation(s)
- Dániel Kuti
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Szigony u 43, 1083 Budapest, Hungary
| | - Zsuzsanna Winkler
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Szigony u 43, 1083 Budapest, Hungary
| | - Krisztina Horváth
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Szigony u 43, 1083 Budapest, Hungary.,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Balázs Juhász
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Szigony u 43, 1083 Budapest, Hungary.,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Anett Szilvásy-Szabó
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, 1083 Budapest, Hungary
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, 1083 Budapest, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Szigony u 43, 1083 Budapest, Hungary
| | - Krisztina J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Szigony u 43, 1083 Budapest, Hungary
| |
Collapse
|
4
|
Wang H, He S, Xin J, Zhang T, Sun N, Li L, Ni X, Zeng D, Ma H, Bai Y. Psychoactive Effects of Lactobacillus johnsonii Against Restraint Stress-Induced Memory Dysfunction in Mice Through Modulating Intestinal Inflammation and permeability-a Study Based on the Gut-Brain Axis Hypothesis. Front Pharmacol 2021; 12:662148. [PMID: 34122081 PMCID: PMC8189558 DOI: 10.3389/fphar.2021.662148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Though the underlying mechanism remains elusive, a close relationship between psychological stress and intestinal inflammation has been widely accepted. Such a link is very important to set the basis for our understanding of the critical role of gut-brain axis (GBA) in homeostatic processes in health and disease. Probiotics that could confer benefits to mental health through GBA are referred to as "psychobiotics". This study aimed to further determine whether a potential psychobiotic strain, Lactobacillus johnsonii BS15 could prevent memory dysfunction in mice induced by psychological stress through modulating the gut environment, including intestinal inflammation and permeability. Memory dysfunction in mice was induced by restraint stress (RS), one of the most commonly utilized models to mimic psychological stress. The mice were randomly categorized into three groups including no stress (NS), restraint stress (RS), and probiotic (RS-P) and administered with either phosphate buffered saline (NS and RS groups) or L. johnsonii BS15 (RS-P group) every day from day 1-28. From days 22-28, the mice in RS and RS-P groups were subjected to RS each day. Results revealed that BS15-pretreatment enhanced the performance of RS-induced mice during three different behavioral tests for memory ability and positively modulated the hypothalamic-pituitary-adrenal axis by attenuating the serum corticosterone level. In the hippocampus, L. johnsonii BS15 positively modulated the memory-related functional proteins related to synaptic plasticity, increased neurotransmitter levels, and prevented RS-induced oxidative stress and mitochondria-mediated apoptosis. In the intestines, L. johnsonii BS15 protected the RS-induced mice from damaged gut barrier by enhancing the mRNA levels of tight junction proteins and exerted beneficial effects on the anti-inflammatory cytokine levels reduced by RS. These findings provided more evidence to reveal the psychoactive effect of L. johnsonii BS15 against memory dysfunction in RS-induced mice by modulating intestinal inflammation and permeability.
Collapse
Affiliation(s)
- Hesong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shunhui He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Jinge Xin
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhang
- School of Science, Xihua University, Chengdu, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lianxin Li
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hailin Ma
- Plateau Brain Science Research Center, South China Normal University/Tibet University, Guangzhou, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Harshaw C, Lanzkowsky J, Tran AQD, Bradley AR, Jaime M. Oxytocin and 'social hyperthermia': Interaction with β 3-adrenergic receptor-mediated thermogenesis and significance for the expression of social behavior in male and female mice. Horm Behav 2021; 131:104981. [PMID: 33878523 DOI: 10.1016/j.yhbeh.2021.104981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
Oxytocin (OT) is a critical regulator of multiple facets of energy homeostasis, including brown adipose tissue (BAT) thermogenesis. Nevertheless, it is unclear what, if any, consequence the thermoregulatory and metabolic effects of OT have for the display of social behavior in adult rodents. Here, we examine the contribution of the OT receptor (OTR) and β3 adrenergic receptor (β3AR) to the increase in body temperature that typically accompanies social interaction (i.e., social hyperthermia; SH) and whether SH relates to the expression of social behavior in adult mice. Specifically, we examined how OTR antagonism via peripheral injection of L-368,899 (10 mg/kg) affects the expression of social behavior in C57BL/6J mice, in the presence of active/agonized versus antagonized β3AR, the receptor known to mediate stress-induced BAT thermogenesis. After drug treatment and a 30 min delay, mice were provided a 10 min social interaction test with an unfamiliar, same-sex conspecific. We hypothesized that OTR and β3AR/BAT interact to influence behavior during social interaction, with at least some effects of OT on social behavior dependent upon OT's thermal effects via β3AR/BAT. We found that OTR-mediated temperature elevation is largely responsible for SH during social interaction in mice-albeit not substantially via β3AR-dependent BAT thermogenesis. Further, our results reveal a complex relationship between OTR, β3AR, social hyperthermia and the display of specific social behaviors, with SH most closely associated with anxiety and/or vigilance-related behaviors-that is, behaviors that antagonize or interfere with the initiation of close, non-agonistic social behavior.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America.
| | - Jessica Lanzkowsky
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America
| | | | - Alana Rose Bradley
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America
| | - Mark Jaime
- Division of Science, Indiana University-Purdue University, Columbus, Columbus, IN, United States of America
| |
Collapse
|
6
|
Kumar M, Singh N, Jaggi AS. Exploring the anti-stress effects of imatinib and tetrabenazine in cold-water immersion-induced acute stress in mice. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1625-1634. [PMID: 32291496 DOI: 10.1007/s00210-020-01862-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to explore the ameliorative role of imatinib and tetrabenazine in acute stress-induced behavioural and biochemical changes in mice. Cold-water immersion (5 min duration) was employed to induce acute stress and the resulting changes in the locomotor activity, exploratory behaviour, motor activity and social behaviour were assessed using the actophotometer, the hole board, the open field and the social interaction tests. The biochemical alterations were assessed by measuring the plasma corticosterone levels using ELISA kit. Cold-water immersion-induced acute stress diminished the locomotor activity, exploratory behaviour, motor activity and social behaviour along with increase in the plasma corticosterone levels. Administration of imatinib (50 and 100 mg/kg, i.p.), a tyrosine kinase inhibitor, significantly attenuated the cold-water immersion-induced behavioural alterations with normalization of the plasma corticosterone levels in a dose-dependent manner. Moreover, administration of tetrabenazine (1 and 2 mg/kg, i.p.), a vesicular monoamine transporter 2 (VMAT2) inhibitor, also abolished the acute stress-induced behavioural and biochemical changes in a dose-dependent manner. The beneficial effects of imatinib and tetrabenazine in normalizing acute stress-induced biochemical and behavioural changes make them promising therapeutic agents in the treatment of acute stress-related problems.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
7
|
Eskilsson A, Shionoya K, Enerbäck S, Engblom D, Blomqvist A. The generation of immune-induced fever and emotional stress-induced hyperthermia in mice does not involve brown adipose tissue thermogenesis. FASEB J 2020; 34:5863-5876. [PMID: 32144818 DOI: 10.1096/fj.201902945r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 11/11/2022]
Abstract
We examined the role of brown adipose tissue (BAT) for fever and emotional stress-induced hyperthermia. Wild-type and uncoupling protein-1 (UCP-1) knockout mice were injected with lipopolysaccharide intraperitoneally or intravenously, or subjected to cage exchange, and body temperature monitored by telemetry. Both genotypes showed similar febrile responses to immune challenge and both displayed hyperthermia to emotional stress. Neither procedure resulted in the activation of BAT, such as the induction of UCP-1 or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA, or reduced BAT weight and triglyceride content. In contrast, in mice injected with a β3 agonist, UCP-1 and PGC-1α were strongly induced, and BAT weight and triglyceride content reduced. Both lipopolysaccharide and the β3 agonist, and emotional stress, induced UCP-3 mRNA in skeletal muscle. A β3 antagonist did not attenuate lipopolysaccharide-induced fever, but augmented body temperature decrease and inhibited BAT activation when mice were exposed to cold. An α1 /α2b antagonist or a 5HT1A agonist, which inhibit vasoconstriction, abolished lipopolysaccharide-induced fever, but had no effect on emotional stress-induced hyperthermia. These findings demonstrate that in mice, UCP-1-mediated BAT thermogenesis does not take part in inflammation-induced fever, which is dependent on peripheral vasoconstriction, nor in stress-induced hyperthermia. However, both phenomena may involve UCP-3-mediated muscle thermogenesis.
Collapse
Affiliation(s)
- Anna Eskilsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kiseko Shionoya
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sven Enerbäck
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David Engblom
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anders Blomqvist
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Sharma P, Tulsawani R, Agrawal U. Pharmacological effects of Ganoderma lucidum extract against high-altitude stressors and its subchronic toxicity assessment. J Food Biochem 2019; 43:e13081. [PMID: 31609024 DOI: 10.1111/jfbc.13081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022]
Abstract
Acclimatization is a major pathophysiological concern during ascent to high altitude and may cause mortality in unacclimatized individuals. Absence of target drugs, especially prophylactics, emphasizes the need for development of herbal agents. Present study revealed that animals pre-administered with aqueous extract of Ganoderma lucidum (GLAQ) dose dependently (50, 100, 200 mg/kg) delayed onset of convulsion following severe hypoxia (SH) and restored rectal temperature post-cold restraint (CR) and hypobaric hypoxia (HBH). The compromised antioxidant status (MDA, GSH, SOD, GPx), biochemical (ALT, AST, glucose, triglycerides, cholesterol, urea), and hematological parameters (red blood cells, white blood cells) were ameliorated with GLAQ treatment. Further, extract modulated inflammatory and thermogenic response by attenuating pro-inflammatory cytokines (NFĸB, TNFα, IL6) and restoring UCP1, SIRT1, respectively. Notably, extract did not produce any noxious effects subchronically in rats of both sexes with GLAQ administered at 100, 500, and 1,000 mg/kg in a single dose/day for 90 days, deeming it fit for therapeutic purpose. PRACTICAL APPLICATIONS: GLAQ exhibited better efficacy compared to internal control (gallic acid) suggest that array of bioactive compounds in extract might contribute toward efficacy. Further, antistress properties of GLAQ against multiple stressors including SH, CR, and HBH demonstrate its therapeutic potential for inducing rapid acclimatization and preventing mountain sickness. Conclusively, the present study based on Ganoderma lucidum extract intents to fill the lacunae behind development of nontoxic therapeutic agent for controlling high altitude-related maladies.
Collapse
Affiliation(s)
- Purva Sharma
- Department of Biochemical Sciences, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Rajkumar Tulsawani
- Department of Biochemical Sciences, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Usha Agrawal
- Department of Histopathology, ICMR-National Institute of Pathology, New Delhi, India
| |
Collapse
|
9
|
A single administration of Neurotropin reduced the elongated immobility time in the forced swimming test of rats exposed to repeated cold stress. Behav Pharmacol 2019; 30:547-554. [DOI: 10.1097/fbp.0000000000000488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Abstract
Stress affects core body temperature (Tc). Many kinds of stress induce transient, monophasic hyperthermia, which diminishes gradually if the stressor is terminated. Stronger stressors produce a longer-lasting effect. Repeated/chronic stress induces anticipatory hyperthermia, reduces diurnal changes in Tc, or slightly increases Tc throughout the day. Animals that are exposed to chronic stress or a cold environment exhibit an enhanced hyperthermic response to a novel stress. These changes persist for several days after cessation of stress exposure. In contrast, long-lasting inescapable stress sometimes induces hypothermia. In healthy humans, psychologic stress induces slight increases in Tc, which are within the normal range of Tc or just above it. Some individuals, however, develop extremely high Tc (up to 41°C) when they are exposed to emotional events or show persistent low-grade high Tc (37-38°C) during or after chronic stress situations. In addition to the nature of the stressor itself, such stress-induced thermal responses are modulated by sex, age, ambient temperature, cage mates, past stressful experiences and cold exposure, and coping. Stress-induced hyperthermia is driven by mechanisms distinct from infectious fever, which requires inflammatory mediators. However, both stress and infection activate the dorsomedial hypothalamus-rostral medullary raphe region-sympathetic nerve axis to increase Tc.
Collapse
Affiliation(s)
- Takakazu Oka
- Department of Psychosomatic Medicine, International University of Health and Welfare Hospital, Tochigi-ken, Japan.
| |
Collapse
|
11
|
Csanova A, Hlavacova N, Hasiec M, Pokusa M, Prokopova B, Jezova D. β 3-Adrenergic receptors, adipokines and neuroendocrine activation during stress induced by repeated immune challenge in male and female rats. Stress 2017; 20:294-302. [PMID: 28412873 DOI: 10.1080/10253890.2017.1320387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The main hypothesis of the study is that stress associated with repeated immune challenge has an impact on β3-adrenergic receptor gene expression in the brain. Sprague-Dawley rats were intraperitoneally injected with increasing doses of lipopolysaccharide (LPS) for five consecutive days. LPS treatment was associated with body weight loss and increased anxiety-like behavior. In LPS-treated animals of both sexes, β3-receptor gene expression was increased in the prefrontal cortex but not the hippocampus. LPS treatment decreased β3-receptor gene expression in white adipose tissue with higher values in males compared to females. In the adipose tissue, LPS reduced peroxisome proliferator-activated receptor-gamma, leptin and adiponectin gene expression, but increased interleukin-6 expression, irrespective of sex. Repeated immune challenge resulted in increased concentrations of plasma aldosterone and corticosterone with higher values of corticosterone in females compared to males. Concentrations of dehydroepiandrosterone (DHEA) in plasma were unaffected by LPS, while DHEA levels in the frontal cortex were lower in the LPS-treated animals compared to the controls. Thus, changes of DHEA levels in the brain take place irrespective of the changes of this neurosteroid in plasma. We have provided the first evidence on stress-induced increase in β3-adrenergic receptor gene expression in the brain. Greater reduction of β3-adrenergic receptor expression in the adipose tissue and of the body weight gain by repeated immune challenge in male than in female rats suggests sex differences in the role of β3-adrenergic receptors in the metabolic functions. LPS-induced changes in adipose tissue regulatory factors and hormone concentrations might be important for coping with chronic infections.
Collapse
Affiliation(s)
- Agnesa Csanova
- a Laboratory of Pharmacological Neuroendocrinology , Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovak Republic
| | - Natasa Hlavacova
- a Laboratory of Pharmacological Neuroendocrinology , Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovak Republic
| | - Malgorzata Hasiec
- b The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences , Jablonna , Poland
| | - Michal Pokusa
- a Laboratory of Pharmacological Neuroendocrinology , Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovak Republic
| | - Barbora Prokopova
- a Laboratory of Pharmacological Neuroendocrinology , Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovak Republic
- c Faculty of Pharmacy , Comenius University in Bratislava , Slovak Republic
| | - Daniela Jezova
- a Laboratory of Pharmacological Neuroendocrinology , Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovak Republic
| |
Collapse
|
12
|
Tsubota M, Miyamoto T, Hiruma S, Saeki H, Miyazaki T, Sekiguchi F, Funakami Y, Kawabata A. Repeated Cold Stress Reduces Cyclophosphamide-Induced Cystitis/Bladder Pain and Macrophage Activity in Mice. Pharmacology 2017; 99:286-290. [PMID: 28253499 DOI: 10.1159/000461588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/10/2017] [Indexed: 11/19/2022]
Abstract
We examined the effect of repeated cold (RC) stress on cyclophosphamide (CPA)-induced cystitis/bladder pain in mice, in relation to macrophage activity. CPA, given i.p. at 400 mg/kg, caused bladder pain symptoms accompanying cystitis in both unstressed and RC-stressed mice, which were prevented by the macrophage inhibitor minocycline. A low dose, that is, 200 mg/kg, of CPA still produced bladder pain symptoms in unstressed but not RC-stressed mice. Lipopolysaccharide-induced cytokine production in peritoneal macrophages from RC-stressed mice was less than that from unstressed mice. Thus, RC stress appears to reduce CPA-induced bladder pain in mice, which may be associated with the decreased macrophage activity.
Collapse
Affiliation(s)
- Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University (Formerly Kinki University), Higashi-osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|