1
|
Yin A, Veerman GDM, van Hasselt JGC, Steendam CMJ, Dubbink HJ, Guchelaar H, Friberg LE, Dingemans AC, Mathijssen RHJ, Moes DJAR. Quantitative modeling of tumor dynamics and development of drug resistance in non-small cell lung cancer patients treated with erlotinib. CPT Pharmacometrics Syst Pharmacol 2024; 13:612-623. [PMID: 38375997 PMCID: PMC11015077 DOI: 10.1002/psp4.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
Insight into the development of treatment resistance can support the optimization of anticancer treatments. This study aims to characterize the tumor dynamics and development of drug resistance in patients with non-small cell lung cancer treated with erlotinib, and investigate the relationship between baseline circulating tumor DNA (ctDNA) data and tumor dynamics. Data obtained for the analysis included (1) intensively sampled erlotinib concentrations from 29 patients from two previous pharmacokinetic (PK) studies, and (2) tumor sizes, ctDNA measurements, and sparsely sampled erlotinib concentrations from 18 patients from the START-TKI study. A two-compartment population PK model was first developed which well-described the PK data. The PK model was subsequently applied to investigate the exposure-tumor dynamics relationship. To characterize the tumor dynamics, models accounting for intra-tumor heterogeneity and acquired resistance with or without primary resistance were investigated. Eventually, the model assumed acquired resistance only resulted in an adequate fit. Additionally, models with or without exposure-dependent treatment effect were explored, and no significant exposure-response relationship for erlotinib was identified within the observed exposure range. Subsequently, the correlation of baseline ctDNA data on EGFR and TP53 variants with tumor dynamics' parameters was explored. The analysis indicated that higher baseline plasma EGFR mutation levels correlated with increased tumor growth rates, and the inclusion of ctDNA measurements improved model fit. This result suggests that quantitative ctDNA measurements at baseline have the potential to be a predictor of anticancer treatment response. The developed model can potentially be applied to design optimal treatment regimens that better overcome resistance.
Collapse
Affiliation(s)
- Anyue Yin
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - G. D. Marijn Veerman
- Department of Medical OncologyErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Johan G. C. van Hasselt
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research (LACDR)Leiden UniversityLeidenThe Netherlands
| | - Christi M. J. Steendam
- Department of Pulmonary DiseasesErasmus MC Cancer InstituteRotterdamThe Netherlands
- Department of Pulmonary DiseasesCatharina HospitalEindhovenThe Netherlands
| | | | - Henk‐Jan Guchelaar
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | | | | | - Ron H. J. Mathijssen
- Department of Medical OncologyErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Dirk Jan A. R. Moes
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
2
|
Rysz MA, Kinzi J, Schäfer AM, In-Albon K, Zürcher S, Schmidlin S, Seibert I, Schwardt O, Ricklin D, Meyer Zu Schwabedissen HE. Simultaneous quantification of atorvastatin, erlotinib and OSI-420 in rat serum and liver microsomes using a novel liquid chromatography-mass spectrometry method. J Pharm Biomed Anal 2023; 236:115716. [PMID: 37722165 DOI: 10.1016/j.jpba.2023.115716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Erlotinib is an epidermal growth factor receptor tyrosine kinase inhibitor used in the treatment of cancer. Atorvastatin is a statin commonly applied to treat hypercholesterolemia. In humans, both compounds are metabolized by CYP3A4 and are transported by OATP2B1, ABCB1 and ABCG2. We aimed to generate and validate a bioanalytical method for simultaneous determination of atorvastatin, erlotinib and its major metabolite OSI-420 applicable to biological samples. Quantification of erlotinib, OSI-420, and atorvastatin was achieved with an Agilent high-performance liquid chromatography system 1100/1200 coupled to a triple quadrupole G6410B. The method involved separation over the column Kinetex C8 (100 × 3 mm, 2.6 µm) using 2 mM ammonium acetate (pH 4.0) and acetonitrile as eluent. The method was assessed for selectivity, accuracy, recovery, matrix effect, and stability over a range from 1 to 4,000 ng/mL according to the respective guidelines. We applied the bioanalytical method to quantify the formation of OSI-420 in liver microsomes isolated from male and female Wistar rats. The optimized experiment revealed slower formation in microsomes of female compared to male rats, in which we observed lower amounts of CYP3A1 by Western blot analysis. Moreover, the presence of atorvastatin inhibited the CYP3A-mediated metabolism of erlotinib. Serum obtained from a drug-drug interaction study performed in male rats was also analyzed using the validated method. Non-compartmental pharmacokinetic analysis revealed a lower clearance of erlotinib when atorvastatin was co-administered. However, for atorvastatin we observed a lower systemic exposure in presence of erlotinib. In summary, we report a method to detect OSI-420, erlotinib and atorvastatin applicable to samples from ex vivo and in vivo studies.
Collapse
Affiliation(s)
- Marta A Rysz
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Anima M Schäfer
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Katja In-Albon
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Simone Zürcher
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Seraina Schmidlin
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Oliver Schwardt
- Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Daniel Ricklin
- Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | |
Collapse
|
3
|
Ishikawa E, Yokoyama Y, Chishima H, Kasai H, Kuniyoshi O, Kimura M, Hakamata J, Nakada H, Suehiro N, Nakaya N, Nakajima H, Ikemura S, Kawada I, Yasuda H, Terai H, Jibiki A, Kawazoe H, Soejima K, Muramatsu H, Suzuki S, Nakamura T. Population Pharmacokinetics, Pharmacogenomics, and Adverse Events of Osimertinib and its Two Active Metabolites, AZ5104 and AZ7550, in Japanese Patients with Advanced Non-small Cell Lung Cancer: a Prospective Observational Study. Invest New Drugs 2023; 41:122-133. [PMID: 36637703 PMCID: PMC10030409 DOI: 10.1007/s10637-023-01328-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023]
Abstract
BACKGROUND Potential novel strategies for adverse event (AE) management of osimertinib therapy, including therapeutic drug monitoring and the use of biomarkers, have not yet been fully investigated. This study aimed to evaluate (1) the relationship between exposure to osimertinib, especially its active metabolites (AZ5104 and AZ7550), and AEs, and (2) the relationship between germline polymorphisms and AEs. METHODS We conducted a prospective, longitudinal observational study of 53 patients with advanced non-small cell lung cancer receiving osimertinib therapy from February 2019 to April 2022. A population pharmacokinetic model was developed to estimate the area under the serum concentration-time curve from 0 to 24 h (AUC0-24) of osimertinib and its metabolites. Germline polymorphisms were analyzed using TaqMan® SNP genotyping and CycleavePCR® assays. RESULTS There was a significant association between the AUC0-24 of AZ7550 and grade ≥ 2 paronychia (p = 0.043) or anorexia (p = 0.011) and between that of osimertinib or AZ5104 and grade ≥ 2 diarrhea (p = 0.026 and p = 0.049, respectively). Furthermore, the AUC0-24 of AZ5104 was significantly associated with any grade ≥ 2 AEs (p = 0.046). EGFR rs2293348 and rs4947492 were associated with severe AEs (p = 0.019 and p = 0.050, respectively), and ABCG2 rs2231137 and ABCB1 rs1128503 were associated with grade ≥ 2 AEs (p = 0.008 and p = 0.038, respectively). CONCLUSION Higher exposures to osimertinib, AZ5104, and AZ7550 and polymorphisms in EGFR, ABCG2, and ABCB1 were related to higher severity of AEs; therefore, monitoring these may be beneficial for osimertinib AE management.
Collapse
Affiliation(s)
- Emi Ishikawa
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Yuta Yokoyama
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan.
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, 105-8512, Tokyo, Japan.
| | - Haruna Chishima
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, 105-8512, Tokyo, Japan
| | - Hidefumi Kasai
- Laboratory of Pharmacometrics and Systems Pharmacology, Keio Frontier Research and Education Collaboration Square (K-FRECS) at Tonomachi, Keio University, Kawasaki, Kanagawa, Japan
| | - Ouki Kuniyoshi
- Department of Pharmacy, Ageo Central General Hospital, Ageo, Japan
| | - Motonori Kimura
- Department of Pharmacy, Keio University Hospital, Tokyo, Japan
| | - Jun Hakamata
- Department of Pharmacy, Keio University Hospital, Tokyo, Japan
| | - Hideo Nakada
- Department of Pharmacy, Keio University Hospital, Tokyo, Japan
| | - Naoya Suehiro
- Department of Pharmacy, Keio University Hospital, Tokyo, Japan
| | - Naoki Nakaya
- Department of Oncology, Ageo Central General Hospital, Ageo, Japan
| | - Hideo Nakajima
- Department of Oncology, Ageo Central General Hospital, Ageo, Japan
| | - Shinnosuke Ikemura
- Department of Respiratory Medicine, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Health Center, Keio University, Yokohama, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Keio Cancer Center, School of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Aya Jibiki
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, 105-8512, Tokyo, Japan
| | - Hitoshi Kawazoe
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, 105-8512, Tokyo, Japan
| | - Kenzo Soejima
- Department of Respiratory Medicine, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | | | - Sayo Suzuki
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, 105-8512, Tokyo, Japan
| | - Tomonori Nakamura
- Division of Pharmaceutical Care Sciences, Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
- Division of Pharmaceutical Care Sciences, Center for Social Pharmacy and Pharmaceutical Care Sciences, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, 105-8512, Tokyo, Japan
| |
Collapse
|
4
|
Tan T, Han G, Cheng Z, Jiang J, Zhang L, Xia Z, Wang X, Xia Q. Genetic Polymorphisms in CYP2C19 Cause Changes in Plasma Levels and Adverse Reactions to Anlotinib in Chinese Patients With Lung Cancer. Front Pharmacol 2022; 13:918219. [PMID: 35814206 PMCID: PMC9257029 DOI: 10.3389/fphar.2022.918219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Anlotinib is a small molecular multi-targeting tyrosine kinase inhibitor. Growing evidence indicates that treatment efficacy, and toxicity varies considerably between individuals. Therefore, this study aimed to investigate the relationship between cytochrome P450 (CYP450) gene polymorphisms, drug concentrations, and their adverse reactions in anlotinib-treated patients with lung cancer.Methods: We enrolled 139 patients with lung cancer, treated with anlotinib. Twenty loci in the following five genes of the CYP450 family were genotyped: CYP450 family 3 subfamily A member 5 (CYP3A5), 3 subfamily A member 4 (CYP3A4), 2 subfamily C member 9 (CYP2C9), 2 subfamily C member 19 (CYP2C19), and 1 subfamily A member 2 (CYP1A2). Data on adverse reactions were collected from patients, and plasma anlotinib concentrations were measured.Results: There were significant variances in plasma trough concentration (3.95–52.88 ng/ml) and peak plasma concentration (11.53–42.8 ng/ml) following administration of 8 mg anlotinib. Additionally, there were significant differences in the plasma trough concentration (5.65–81.89 ng/ml) and peak plasma concentration (18.01–107.18 ng/ml) following administration of 12 mg anlotinib. Furthermore, for CYP2C19-rs3814637, the peak plasma concentrations of mutant allele T carriers (TT+CT) were significantly higher than those of wildtypes (CC). For CYP2C19-rs11568732, the peak plasma concentrations of the mutant allele G carriers (GT+GG) were significantly higher than those of the wild-type (TT). More importantly, the incidence rates of hypertension and hemoptysis (peripheral lung cancer) with TT+CT in rs3814637 and GT+GG in rs11568732 were significantly higher than those with CC and TT.Conclusions: The plasma trough and peak concentrations varied significantly for both 8 and 12 mg of anlotinib. Single-nucleotide polymorphisms in CYP2C19 are significantly associated with hypertension, hemoptysis, and anlotinib peak concentrations. Polymorphisms in CYP450 may explain inter-individual differences in anlotinib-related adverse reactions.
Collapse
Affiliation(s)
- Tingfei Tan
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gongwei Han
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ziwei Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jiemei Jiang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zitong Xia
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xinmeng Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Quan Xia,
| |
Collapse
|
5
|
Clinical implications of germline variations for treatment outcome and drug resistance for small molecule kinase inhibitors in patients with non-small cell lung cancer. Drug Resist Updat 2022; 62:100832. [DOI: 10.1016/j.drup.2022.100832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
|
6
|
Kolesar J, Peh S, Thomas L, Baburaj G, Mukherjee N, Kantamneni R, Lewis S, Pai A, Udupa KS, Kumar An N, Rangnekar VM, Rao M. Integration of liquid biopsy and pharmacogenomics for precision therapy of EGFR mutant and resistant lung cancers. Mol Cancer 2022; 21:61. [PMID: 35209919 PMCID: PMC8867675 DOI: 10.1186/s12943-022-01534-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Abstract
The advent of molecular profiling has revolutionized the treatment of lung cancer by comprehensively delineating the genomic landscape of the epidermal growth factor receptor (EGFR) gene. Drug resistance caused by EGFR mutations and genetic polymorphisms of drug metabolizing enzymes and transporters impedes effective treatment of EGFR mutant and resistant lung cancer. This review appraises current literature, opportunities, and challenges associated with liquid biopsy and pharmacogenomic (PGx) testing as precision therapy tools in the management of EGFR mutant and resistant lung cancers. Liquid biopsy could play a potential role in selection of precise tyrosine kinase inhibitor (TKI) therapies during different phases of lung cancer treatment. This selection will be based on the driver EGFR mutational status, as well as monitoring the development of potential EGFR mutations arising during or after TKIs treatment, since some of these new mutations may be druggable targets for alternative TKIs. Several studies have identified the utility of liquid biopsy in the identification of EGFR driver and acquired resistance with good sensitivities for various blood-based biomarkers. With a plethora of sequencing technologies and platforms available currently, further evaluations using randomized controlled trials (RCTs) in multicentric, multiethnic and larger patient cohorts could enable optimization of liquid-based assays for the detection of EGFR mutations, and support testing of CYP450 enzymes and drug transporter polymorphisms to guide precise dosing of EGFR TKIs.
Collapse
Affiliation(s)
- Jill Kolesar
- Department of Pharmacy Practice & Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Spencer Peh
- Department of Pharmacy Practice & Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gayathri Baburaj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nayonika Mukherjee
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raveena Kantamneni
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shirley Lewis
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ananth Pai
- Department of Medical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Karthik S Udupa
- Department of Medical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Naveena Kumar An
- Department of Surgical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vivek M Rangnekar
- Markey Cancer Centre and Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Mueller-Schoell A, Groenland SL, Scherf-Clavel O, van Dyk M, Huisinga W, Michelet R, Jaehde U, Steeghs N, Huitema ADR, Kloft C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur J Clin Pharmacol 2021; 77:441-464. [PMID: 33165648 PMCID: PMC7935845 DOI: 10.1007/s00228-020-03014-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE This review provides an overview of the current challenges in oral targeted antineoplastic drug (OAD) dosing and outlines the unexploited value of therapeutic drug monitoring (TDM). Factors influencing the pharmacokinetic exposure in OAD therapy are depicted together with an overview of different TDM approaches. Finally, current evidence for TDM for all approved OADs is reviewed. METHODS A comprehensive literature search (covering literature published until April 2020), including primary and secondary scientific literature on pharmacokinetics and dose individualisation strategies for OADs, together with US FDA Clinical Pharmacology and Biopharmaceutics Reviews and the Committee for Medicinal Products for Human Use European Public Assessment Reports was conducted. RESULTS OADs are highly potent drugs, which have substantially changed treatment options for cancer patients. Nevertheless, high pharmacokinetic variability and low treatment adherence are risk factors for treatment failure. TDM is a powerful tool to individualise drug dosing, ensure drug concentrations within the therapeutic window and increase treatment success rates. After reviewing the literature for 71 approved OADs, we show that exposure-response and/or exposure-toxicity relationships have been established for the majority. Moreover, TDM has been proven to be feasible for individualised dosing of abiraterone, everolimus, imatinib, pazopanib, sunitinib and tamoxifen in prospective studies. There is a lack of experience in how to best implement TDM as part of clinical routine in OAD cancer therapy. CONCLUSION Sub-therapeutic concentrations and severe adverse events are current challenges in OAD treatment, which can both be addressed by the application of TDM-guided dosing, ensuring concentrations within the therapeutic window.
Collapse
Affiliation(s)
- Anna Mueller-Schoell
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program, PharMetrX, Berlin/Potsdam, Germany
| | - Stefanie L Groenland
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Oliver Scherf-Clavel
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Madelé van Dyk
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Robin Michelet
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Charlotte Kloft
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Clinical utility of ABCB1 and ABCG2 genotyping for assessing the clinical and pathological response to FAC therapy in Mexican breast cancer patients. Cancer Chemother Pharmacol 2021; 87:843-853. [PMID: 33740100 DOI: 10.1007/s00280-021-04244-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/05/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Resistance to neoadjuvant chemotherapy with 5-fluorouracil, doxorubicin, and cyclophosphamide (FAC) in some patients with locally advanced breast cancer remains one of the main obstacles to first-line treatment. We investigated clinical and pathological responses to FAC neoadjuvant chemotherapy in Mexican women with breast cancer and their possible association with SNPs present in ABC transporters as predictors of chemoresistance. MATERIALS A total of 102 patients undergoing FAC neoadjuvant chemotherapy were included in the study. SNP analysis was performed by RT-PCR from genomic DNA. Two SNPs were analyzed: ABCB1 rs1045642 (3435 C > T) and ABCG2 rs2231142 (421 G > T). RESULTS In clinical response evaluation, significant associations were found between the ABCB1 C3435T genotype and breast cancer chemoresistant and chemosensitive patients (p < 0.05). In the early clinical response, patients with genotype C/C or C/T were more likely to be chemosensitive to neoadjuvant therapy than patients with genotype T/T (OR = 4.055; p = 0.0064). Association analysis between the ABCB1 gene polymorphism and the pathologic response to FAC chemotherapy showed that the C/C + C/T genotype was a protective factor against chemoresistance (OR = 3.714; p = 0.0104). Polymorphisms in ABCG2 indicated a lack of association with resistance to chemotherapy (p = 0.2586) evaluating the clinical or pathological response rate to FAC neoadjuvant chemotherapy. CONCLUSION The early clinical response and its association with SNPs in the ABCB1 transporter are preserved until the pathological response to neoadjuvant chemotherapy; therefore, it could be used as a predictor of chemoresistance in locally advanced breast cancer patients of the Mexican population.
Collapse
|
9
|
Shi H, Xu J, Feng Q, Sun J, Yang Y, Zhao J, Zhou X, Niu H, He P, Liu J, Li Q, Ding Y. The effect of CYP3A4 genetic variants on the susceptibility to chronic obstructive pulmonary disease in the Hainan Han population. Genomics 2020; 112:4399-4405. [DOI: 10.1016/j.ygeno.2020.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/14/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
|
10
|
Evelina Cardoso, Guidi M, Khoudour N, Pascaline Boudou-Rouquette, Fabre E, Tlemsani C, Arrondeau J, François Goldwasser, Vidal M, Schneider MP, Wagner AD, Widmer N, Blanchet B, Csajka C. Population Pharmacokinetics of Erlotinib in Patients With Non-small Cell Lung Cancer: Its Application for Individualized Dosing Regimens in Older Patients. Clin Ther 2020; 42:1302-1316. [PMID: 32631634 DOI: 10.1016/j.clinthera.2020.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Erlotinib is an oral first-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor approved for non-small cell lung cancers (NSCLC) with EGFR-activating mutations. Older patients experience more toxicities compared with younger patients at the standard recommended dose of 150 mg once daily. The aims of this study were to describe the pharmacokinetic profile of erlotinib in unselected patients with NSCLC, to quantify and explain its variability, to challenge the standard recommended dose in older patients, and to propose clinical recommendations for the therapeutic management of patients taking erlotinib. METHODS A population pharmacokinetic model was developed using erlotinib plasma concentrations collected from patients with NSCLC participating in a routine therapeutic drug monitoring program (with the nonlinear mixed effect modeling program NONMEM). Relevant demographic characteristics, clinical factors, and co-medications were tested as potential covariates. An independent dataset was used for model validation. Simulations based on the final model allowed comparison of expected erlotinib concentrations under standard and alternative dosing regimens for smokers and for several age groups. FINDINGS A total of 481 erlotinib plasma concentrations from 91 patients with NSCLC were used for model building and 239 plasma drug concentrations from 107 patients for model validation. A one-compartment model with first-order absorption and elimination provided the best fit. Average erlotinib CL/F with interindividual variability (%CV) was 3.8 L/h (41.5%), and V/F was 166 L (53.8%). The absorption rate constant was 1.48 h-1. The external validation showed a negligible bias of -4% (95% CI, -7 to -1) in the individual predictions, with a precision of 23%. Current smoking and use of proton pump inhibitors were associated with higher CL/F, whereas age was associated with lower CL/F. Simulations suggest that a lower dose in older patients would decrease the risk of overexposure. IMPLICATIONS This large cohort study confirms the substantial interindividual variability in erlotinib plasma exposure and the impact of smoking and proton pump inhibitor intake. This large variability in erlotinib pharmacokinetics indicates that the standard recommended dose of 150 mg once daily is likely not appropriate to reach the expected concentrations in each patient. Concentration monitoring should be performed to individually adjust the erlotinib dosing regimen. The observed decrease in erlotinib CL/F with age suggests that a lower starting daily dose of 100 mg with concentration-guided dose adjustment would prevent overexposure and potential toxicity in older frail patients with co-morbidities.
Collapse
Affiliation(s)
- Evelina Cardoso
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Monia Guidi
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland; Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nihel Khoudour
- Department of Pharmacokinetics and Pharmacochemistry, Cochin Hospital, Paris, France
| | | | - Elizabeth Fabre
- Department of Pneumology, Européen Georges Pompidou Hospital, Paris, France
| | - Camille Tlemsani
- Department of Medical Oncology, Cochin Hospital, CARPEM, Paris, France
| | | | | | - Michel Vidal
- Department of Pharmacokinetics and Pharmacochemistry, Cochin Hospital, Paris, France; UMR8638 CNRS, UFR Pharmacie, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Marie Paule Schneider
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Anna Dorothea Wagner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Widmer
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Pharmacy of Eastern Vaud Hospitals, Rennaz, Switzerland
| | - Benoit Blanchet
- Department of Pharmacokinetics and Pharmacochemistry, Cochin Hospital, Paris, France; UMR8638 CNRS, UFR Pharmacie, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Chantal Csajka
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
11
|
Liao D, Liu Z, Zhang Y, Liu N, Yao D, Cao L, Chen Y, Fu Y, Yang N, Xiang D. Polymorphisms of Drug-Metabolizing Enzymes and Transporters Contribute to the Individual Variations of Erlotinib Steady State Trough Concentration, Treatment Outcomes, and Adverse Reactions in Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Cancer Patients. Front Pharmacol 2020; 11:664. [PMID: 32457635 PMCID: PMC7225310 DOI: 10.3389/fphar.2020.00664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/23/2020] [Indexed: 01/03/2023] Open
Abstract
Background Erlotinib is presently the first line treatment for non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) active mutation. An increasing number of evidences show that the treatment efficacy and toxicities are considerably heterogeneous among individuals. Hence, it is necessary to find biological predictors for further individualized treatment of erlotinib in NSCLC patients. Methods Our present study enrolled 87 cases of NSCLC patients who had been administrated erlotinib with a fixed dose (150 mg/d). Eleven polymorphisms in seven genes of drug-metabolizing enzymes and transporters were genotyped and the steady state trough concentrations were also determined. Results There were significant variances in the steady-state erlotinib trough plasma concentrations, ranging from 315.6 ng/ml to 4479.83 ng/ml. Erlotinib steady state trough concentration was remarkably lower in current smoking patients. The steady state trough concentration of GG in rs1048943 of CYP1A1 was significantly higher than that of AA allele carriers. The polymorphism of CYP1A2 was significantly associated with the severity of skin rash, and the development of diarrhea was associated with SNPs in ABCB1 and CYP3A5. We also observed that GG allele in CYP1A1 was accompanied with a longer PFS in our study. Conclusion A large variability of erlotinib steady state trough concentration was found among Chinese Han population. SNPs in CYP1A1 appeared to influence the steady state trough concentration of erlotinib. Correlation between CYP1A2 polymorphisms and severity of skin rash was observed, together with the correlation between the development of diarrhea and SNPs in ABCB1 and CYP3A5.
Collapse
Affiliation(s)
- Dehua Liao
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Hunan Cancer Hospital, Changsha, China
| | - Zhigang Liu
- The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Phase I Clinical Trial Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yongchang Zhang
- Lung Cancer and Gastrointestinal Unit, Department of Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Ni Liu
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, China
| | - Dunwu Yao
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, China
| | - Lizhi Cao
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, China
| | - Yun Chen
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, China
| | - Yilan Fu
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, China
| | - Nong Yang
- Lung Cancer and Gastrointestinal Unit, Department of Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Daxiong Xiang
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Kato R, Ijiri Y, Hayashi T, Uetrecht J. Reactive metabolite of gefitinib activates inflammasomes: implications for gefitinib-induced idiosyncratic reaction. J Toxicol Sci 2020; 45:673-680. [DOI: 10.2131/jts.45.673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ryuji Kato
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Yoshio Ijiri
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Tetsuya Hayashi
- Department of Cardiovascular Pharmacotherapy and Toxicology, Osaka University of Pharmaceutical Sciences
| | - Jack Uetrecht
- Department of Pharmaceutical Scinces, Faculty of Pharmacy, University of Toronto, Canada
| |
Collapse
|
13
|
Tan Y, Cao K, Ren G, Qin Z, Zhao D, Li N, Chen X, Xia Y, Lu Y. Effects of the ABCB1 and ABCG2 polymorphisms on the pharmacokinetics of afatinib in healthy Chinese volunteers. Xenobiotica 2019; 50:237-243. [DOI: 10.1080/00498254.2019.1610585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yanan Tan
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kangna Cao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guanghui Ren
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiying Qin
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ning Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Luo H, Qin G, Yao C. Correlation between adverse events after drug treatment and the MDR1 C3435T polymorphism in advanced non-small cell lung cancer patients in an Asian population: a meta-analysis. J Int Med Res 2019; 47:3522-3533. [PMID: 31315482 PMCID: PMC6726823 DOI: 10.1177/0300060519858012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To determine the association between the multidrug resistance 1 gene ( MDR1) C3435T polymorphism and adverse drug reactions in advanced non-small cell lung cancer (NSCLC) patients in Asia. Methods Literature about the relationship between the MDR1 C3435T polymorphism and adverse drug reactions in advanced NSCLC patients were collected from three English language databases (PubMed, Cochrane, and Embase) as well as three Chinese databases (Wanfang, China Knowledge Network, and the Chinese Biomedical Literature Database), and summarized by a meta-analysis. Results NSCLC patients with the T allele or TT genotype were significantly more likely to experience diarrhea than those with other genotypes under the allele model (odds ratio [OR] = 1.64, 95% confidence interval [CI]: 1.04–2.61), homozygous model (OR = 3.87, 95% CI: 1.49–10.07), and recessive model (OR = 4.48, 95% CI: 1.88–10.68). Similarly, these patients were significantly more likely to experience skin rash under the allele model (OR = 2.41, 95% CI: 1.24–4.66), homozygous model (OR = 4.77, 95% CI: 1.13–20.15), and dominant model (OR = 1.77, 95% CI: 1.03–3.05). Conclusions Asian NSCLC patients with the MDR1 C3435T T allele or TT genotype are significantly more likely to develop diarrhea and rash after drug treatment.
Collapse
Affiliation(s)
- Hua Luo
- Department of Respiratory Medicine, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Guangmei Qin
- Department of Respiratory Medicine, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Caoyuan Yao
- Department of Respiratory Medicine, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|