1
|
Tricyclic Pyrazole-Based Compounds as Useful Scaffolds for Cannabinoid CB 1/CB 2 Receptor Interaction. Molecules 2021; 26:molecules26082126. [PMID: 33917187 PMCID: PMC8068016 DOI: 10.3390/molecules26082126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Cannabinoids comprise different classes of compounds, which aroused interest in recent years because of their several pharmacological properties. Such properties include analgesic activity, bodyweight reduction, the antiemetic effect, the reduction of intraocular pressure and many others, which appear correlated to the affinity of cannabinoids towards CB1 and/or CB2 receptors. Within the search aiming to identify novel chemical scaffolds for cannabinoid receptor interaction, the CB1 antagonist/inverse agonist pyrazole-based derivative rimonabant has been modified, giving rise to several tricyclic pyrazole-based compounds, most of which endowed of high affinity and selectivity for CB1 or CB2 receptors. The aim of this review is to present the synthesis and summarize the SAR study of such tricyclic pyrazole-based compounds, evidencing, for some derivatives, their potential in the treatment of neuropathic pain, obesity or in the management of glaucoma.
Collapse
|
2
|
Althagafi I, Farghaly TA, Abbas EMH, Harras MF. Benzosuberone as Precursor for Synthesis of Antimicrobial Agents: Synthesis, Antimicrobial Activity, and Molecular Docking. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1692877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ismail Althagafi
- Chemistry Department, College of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| | - Eman M. H. Abbas
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Center, Giza, Egypt
| | - Marwa F. Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Kasaboina S, Bollu R, Gomedhika PM, Ramineni V, Nagarapu L, Dumala N, Grover P, Nanubolu JB. A green protocol for one pot synthesis of benzosuberone tethered thiadiazolopyrimidine-6-carboxylates using PEG-400 as potent anti-proliferative agents. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Affiliation(s)
- Haider Behbehani
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Kamal M. Dawood
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| |
Collapse
|
5
|
Jiang Y, Liu Z, Holenz J, Yang H. Competitive Intelligence–based Lead Generation and Fast Follower Approaches. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/9783527677047.ch08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Lazzari P, Distinto R, Manca I, Baillie G, Murineddu G, Pira M, Falzoi M, Sani M, Morales P, Ross R, Zanda M, Jagerovic N, Pinna GA. A critical review of both the synthesis approach and the receptor profile of the 8-chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide and analogue derivatives. Eur J Med Chem 2016; 121:194-208. [PMID: 27240274 DOI: 10.1016/j.ejmech.2016.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 04/17/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022]
Abstract
8-Chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide 9a was discovered as potent and selective CB1 antagonist by part of our group few years ago. In particular it was reported to have an affinity towards the CB1 cannabinoid receptor (CB1R), expressed as Ki, of 0.00035 nM. Nevertheless significantly divergent data were reported for the same compound from other laboratories. To unequivocally define the receptor profile of 9a, we have critically reviewed both its synthesis approach and binding data. Here we report that, in contrast to our previously reported data, 9a showed a Ki value for CB1R in the order of nanomolar rather than of fentomolar range. The new determined receptor profile of 9a was also ascertained for analogue derivatives 9b-i, as well as for 12. Moreover, the structural features of the synthesized compounds necessary for CB1R were investigated. Amongst the novel series, effects on CB1R intrinsic activity was highlighted due to the substituents at the position 3 of the pyrazole ring of the 1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole scaffold. Although the cannabinoid receptor profile of 9a was reviewed in this work, the relevance of this compound in CB1R antagonist based drug discovery is confirmed.
Collapse
Affiliation(s)
- Paolo Lazzari
- Neuroscienze PharmaNess S.c.a r.l., Edificio 5, Loc. Piscinamanna, 09010, Pula, CA, Italy; Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK; KemoTech Srl, Edificio 3, Loc. Piscinamanna, 09010 Pula, CA, Italy.
| | - Rita Distinto
- Neuroscienze PharmaNess S.c.a r.l., Edificio 5, Loc. Piscinamanna, 09010, Pula, CA, Italy; Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK
| | - Ilaria Manca
- Neuroscienze PharmaNess S.c.a r.l., Edificio 5, Loc. Piscinamanna, 09010, Pula, CA, Italy; Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK
| | - Gemma Baillie
- Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, M5S 1A8, Ontario, Canada
| | - Gabriele Murineddu
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via F. Muroni 23/A, 07100, Sassari, Italy
| | - Marilena Pira
- Neuroscienze PharmaNess S.c.a r.l., Edificio 5, Loc. Piscinamanna, 09010, Pula, CA, Italy; Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK
| | - Matteo Falzoi
- Dipartimento di Scienze della Vita e dell'Ambiente, Lab. Genetica, Università di Cagliari, Via T.Fiorelli 1, 09126 Cagliari, CA, Italy
| | - Monica Sani
- KemoTech Srl, Edificio 3, Loc. Piscinamanna, 09010 Pula, CA, Italy; C.N.R. Istituto di Chimica del Riconoscimento Molecolare, Via Mancinelli 7, 20131 Milano, Italy
| | - Paula Morales
- Instituto de Química Médica, CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ruth Ross
- Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, M5S 1A8, Ontario, Canada
| | - Matteo Zanda
- Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK; C.N.R. Istituto di Chimica del Riconoscimento Molecolare, Via Mancinelli 7, 20131 Milano, Italy
| | - Nadine Jagerovic
- Instituto de Química Médica, CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Gérard Aimè Pinna
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via F. Muroni 23/A, 07100, Sassari, Italy
| |
Collapse
|
7
|
Farghaly TA, Gomha SM, Dawood KM, Shaaban MR. Synthetic routes to benzosuberone-based fused- and spiro-heterocyclic ring systems. RSC Adv 2016. [DOI: 10.1039/c5ra26474j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Benzosuberones are an important class of medicinal and pharmaceutical compounds and have recently attracted considerable attention. The present review highlights the progress in the synthesis of benzosuberones and their fused and spiro ring systems up to 2015.
Collapse
Affiliation(s)
| | - Sobhi M. Gomha
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza
- Egypt
| | - Kamal M. Dawood
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza
- Egypt
| | | |
Collapse
|
8
|
Sajja Y, Vulupala HR, Bantu R, Nagarapu L, Vasamsetti SB, Kotamraju S, Nanubolu JB. Three-component, one-pot synthesis of benzo[6,7]cyclohepta[1,2-b]pyridine derivatives under catalyst free conditions and evaluation of their anti-inflammatory activity. Bioorg Med Chem Lett 2015; 26:858-863. [PMID: 26748696 DOI: 10.1016/j.bmcl.2015.12.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 01/04/2023]
Abstract
An efficient three-component protocol is described for the synthesis of benzo[6,7]cyclohepta[1,2-b]pyridine derivatives using β-chloroacroleins, 1,3-dicarbonyls and ammonium acetate under catalyst free conditions by using ethanol as reaction media. The mild reaction conditions, operational simplicity and high yields are the advantages of this protocol and the broad scope of this one-pot reaction makes this procedure promising for practical usages. All the final compounds were screened for anti-inflammatory activity. Among the compounds tested, the compounds 5a, 5b, 5c, 5d, 5f, and 5k exhibited significant inhibition of IL-1β and MCP-1 secretion as a measure of anti-inflammatory activity.
Collapse
Affiliation(s)
- Yasodakrishna Sajja
- Organic Chemistry Division-II (CPC), CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Hanmanth Reddy Vulupala
- Organic Chemistry Division-II (CPC), CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Rajashaker Bantu
- Organic Chemistry Division-II (CPC), CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Lingaiah Nagarapu
- Organic Chemistry Division-II (CPC), CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India.
| | - Sathish Babu Vasamsetti
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Srigiridhar Kotamraju
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Jagadeesh Babu Nanubolu
- Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| |
Collapse
|
9
|
Yu J, Lee S, Moon HR, Kim JN. Facile Synthesis of Benzocyclohepta[1,2-c]pyrazoles Starting from Morita–Baylis–Hillman AdductsViaan Intramolecular Friedel-Crafts Alkenylation. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jin Yu
- Department of Chemistry and Institute of Basic Science; Chonnam National University; Gwangju 500-757 Korea
| | - Sangku Lee
- Targeted Medicine Research Center; Korea Research Institute of Bioscience and Biotechnology; Cheongwon Chungbuk 363-883 Korea
| | - Hye Ran Moon
- Department of Chemistry and Institute of Basic Science; Chonnam National University; Gwangju 500-757 Korea
| | - Jae Nyoung Kim
- Department of Chemistry and Institute of Basic Science; Chonnam National University; Gwangju 500-757 Korea
| |
Collapse
|
10
|
Rahmatzadeh SS, Karami B, Khodabakhshi S. A Modified and Practical Synthetic Route to Indazoles and Pyrazoles Using Tungstate Sulfuric Acid. J CHIN CHEM SOC-TAIP 2014. [DOI: 10.1002/jccs.201400251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Pinna G, Curzu MM, Dore A, Lazzari P, Ruiu S, Pau A, Murineddu G, Pinna GA. Tricyclic pyrazoles part 7. Discovery of potent and selective dihydrothienocyclopentapyrazole derived CB2 ligands. Eur J Med Chem 2014; 85:747-57. [DOI: 10.1016/j.ejmech.2014.08.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/29/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
|
12
|
Gangurde SA, Kanawade SB, Nikam PS, Bhavsar DC, Toche RB. New Synthesis and Reactions of Ethyl 5-amino-4-cyano-1-phenyl-1H-pyrazole-3-carboxylate. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sachin A. Gangurde
- Organic Chemistry Research Center, Department of Chemistry, K.R.T. Arts, B.H. Commerce and A. M. Science College; University of Pune; Gangapur Road Nashik 422002 Maharashtra India
| | - Shrikant B. Kanawade
- Organic Chemistry Research Center, Department of Chemistry, K.R.T. Arts, B.H. Commerce and A. M. Science College; University of Pune; Gangapur Road Nashik 422002 Maharashtra India
| | - Prashant S. Nikam
- Organic Chemistry Research Center, Department of Chemistry, K.R.T. Arts, B.H. Commerce and A. M. Science College; University of Pune; Gangapur Road Nashik 422002 Maharashtra India
| | - Dinesh C. Bhavsar
- Organic Chemistry Research Center, Department of Chemistry, K.R.T. Arts, B.H. Commerce and A. M. Science College; University of Pune; Gangapur Road Nashik 422002 Maharashtra India
| | - Raghunath B. Toche
- Organic Chemistry Research Center, Department of Chemistry, K.R.T. Arts, B.H. Commerce and A. M. Science College; University of Pune; Gangapur Road Nashik 422002 Maharashtra India
| |
Collapse
|
13
|
Frau S, Dall’Angelo S, Baillie GL, Ross RA, Pira M, Tseng CC, Lazzari P, Zanda M. Pyrazole-type cannabinoid ligands conjugated with fluoro-deoxy-carbohydrates as potential PET-imaging agents: Synthesis and CB1/CB2 receptor affinity evaluation. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
NESS06SM reduces body weight with an improved profile relative to SR141716A. Pharmacol Res 2013; 74:94-108. [PMID: 23756200 DOI: 10.1016/j.phrs.2013.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/01/2013] [Accepted: 06/02/2013] [Indexed: 01/21/2023]
Abstract
We have recently synthesized a new series of 4,5-dihydrobenzo-oxa-cycloheptapyrazole derivatives with the aim to discover novel CB1 antagonist agents characterized by anti-obesity activity comparable to that of SR141716A but with reduced adverse effects such as anxiety and depression. Within the novel class, the CB1 antagonist 8-chloro-1-(2,4-dichlorophenyl)-N-piperidin-1-yl-4,5-dihydrobenzo-1H-6-oxa-cyclohepta(1,2-c)pyrazole-3-carboxamide (NESS06SM) has been selected as lead compound. We found that NESS06SM is a CB1 neutral antagonist, characterized by poor blood-brain barrier permeability. Moreover, NESS06SM chronic treatment determined both anti-obesity effect and cardiovascular risk factor improvement in C57BL/6N Diet Induced Obesity (DIO) mice fed with fat diet (FD mice). In fact, the mRNA gene expression in Central Nervous System (CNS) and peripheral tissues by real time PCR, showed a significant increase of orexigenic peptides and a decrease of anorexigenic peptides elicited by NESS06SM treatment, compared to control mice fed with the same diet. Moreover, in contrast to SR141716A treatment, the chronic administration of NESS06SM did not change mRNA expression of both monoaminergic transporters and neurotrophins highly related with anxiety and mood disorders. Our results suggest that NESS06SM reduces body weight and it can restore the disrupted expression profile of genes linked to the hunger-satiety circuit without altering monoaminergic transmission probably avoiding SR141716A side effects. Therefore the novel CB1 neutral antagonist could represent a useful candidate agent for the treatment of obesity and its metabolic complications.
Collapse
|
15
|
Hernández-Vázquez E, Méndez-Lucio O, Hernández-Luis F. Activity landscape analysis, CoMFA and CoMSIA studies of pyrazole CB1 antagonists. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0418-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Ammann J, McLaren JM, Gerostamoulos D, Beyer J. Detection and Quantification of New Designer Drugs in Human Blood: Part 1 - Synthetic Cannabinoids. J Anal Toxicol 2012; 36:372-80. [DOI: 10.1093/jat/bks048] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
|
18
|
Chiba T, Ueno S, Obara Y, Nakahata N. A synthetic cannabinoid, CP55940, inhibits lipopolysaccharide-induced cytokine mRNA expression in a cannabinoid receptor-independent mechanism in rat cerebellar granule cells. ACTA ACUST UNITED AC 2011; 63:636-47. [PMID: 21492165 DOI: 10.1111/j.2042-7158.2011.01250.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The inflammatory response plays an important role in the pathogenesis of many diseases in the central nervous system. Cannabinoids exhibit diverse pharmacological actions including anti-inflammatory activity. In this study, we tried to elucidate possible effects of cannabinoids on lipopolysaccharide (LPS)-induced expression of inflammatory cytokine mRNAs in rat cerebellar granule cells. METHODS Inhibitory effects of cannabinoids on cytokine induction in cerebellar granule cells were determined by RT-PCR method. KEY FINDINGS In these cells, both mRNA and protein of cannabinoid receptor 1 (CB(1) ), but not CB(2) , were expressed. LPS (1 µg/ml) produced a marked increase in the induction of inflammatory cytokines, including interleukin-1β, interleukin-6 and tumour necrosis factor-α. CP55940, a synthetic cannabinoid analogue, concentration-dependently inhibited inflammatory cytokine expression induced by LPS. On the other hand, the endocannabinoids 2-arachidonoylglycerol and anandamide were not able to inhibit this inflammatory response. Notably, a CB(1) /CB(2) antagonist NESS0327 (3 µm) did not reverse the inhibition of cytokine mRNA expression induced by CP55940. GPR55, a putative novel cannabinoid receptor, mRNA was also expressed in cerebellar granule cells. Although it has been suggested that G(q) associates with GPR55, cannabinoids including CP55940 did not promote phosphoinositide hydrolysis and consequent elevation of intracellular Ca([2+]) concentration. Furthermore, a putative GPR55 antagonist, cannabidiol, also showed a similar inhibitory effect to that of CP55940. CONCLUSIONS These results suggest that the synthetic cannabinoid CP55940 negatively modulates cytokine mRNA expression in cerebellar granule cells by a CB and GPR55 receptor-independent mechanism.
Collapse
Affiliation(s)
- Toshiki Chiba
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | |
Collapse
|
19
|
Kidwai M, Poddar R, Diwaniyan S, Kuhad RC. Laccase from Basidiomycetous Fungus–Catalyzed Synthesis of Substituted Benzopyranocoumarins via Domino Reaction. SYNTHETIC COMMUN 2011. [DOI: 10.1080/00397911003637484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mazaahir Kidwai
- a Green Research Laboratory, Department of Chemistry , University of Delhi , Delhi , India
| | - Roona Poddar
- a Green Research Laboratory, Department of Chemistry , University of Delhi , Delhi , India
| | - Sarika Diwaniyan
- b Lignocellulose Biotechnology Laboratory, Department of Microbiology , University of Delhi South Campus , Delhi , India
| | - Ramesh Chander Kuhad
- b Lignocellulose Biotechnology Laboratory, Department of Microbiology , University of Delhi South Campus , Delhi , India
| |
Collapse
|
20
|
Detection of JWH-018 metabolites in smoking mixture post-administration urine. Forensic Sci Int 2010; 200:141-7. [DOI: 10.1016/j.forsciint.2010.04.003] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/30/2010] [Accepted: 04/02/2010] [Indexed: 11/21/2022]
|
21
|
A Method for Parallel Solid-Phase Synthesis of Iodinated Analogs of the Cannabinoid Receptor Type I (CB1) Inverse Agonist Rimonabant. Methods Enzymol 2010; 485:499-525. [DOI: 10.1016/b978-0-12-381296-4.00027-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Reggio PH. Toward the design of cannabinoid CB1 receptor inverse agonists and neutral antagonists. Drug Dev Res 2009. [DOI: 10.1002/ddr.20337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
|
24
|
Hanus LO. Pharmacological and therapeutic secrets of plant and brain (endo)cannabinoids. Med Res Rev 2009; 29:213-71. [PMID: 18777572 DOI: 10.1002/med.20135] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Research on the chemistry and pharmacology of cannabinoids and endocannabinoids has reached enormous proportions, with approximately 15,000 articles on Cannabis sativa L. and cannabinoids and over 2,000 articles on endocannabinoids. The present review deals with the history of the Cannabis sativa L. plant, its uses, constituent compounds and their biogeneses, and similarity to compounds from Radula spp. In addition, details of the pharmacology of natural cannabinoids, as well as synthetic agonists and antagonists are presented. Finally, details regarding the pioneering isolation of the endocannabinoid anandamide, as well as the pharmacology and potential therapeutic uses of endocannabinoid congeners are presented.
Collapse
Affiliation(s)
- Lumír Ondrej Hanus
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
25
|
Kidwai M, Poddar R, Diwaniyan S, Kuhad RC. Laccase from Basidiomycetous Fungus Catalyzes the Synthesis of Substituted 5-Deaza-10-oxaflavinsviaa Domino Reaction. Adv Synth Catal 2009. [DOI: 10.1002/adsc.200800611] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Griffith DA, Hadcock JR, Black SC, Iredale PA, Carpino PA, DaSilva-Jardine P, Day R, DiBrino J, Dow RL, Landis MS, O'Connor RE, Scott DO. Discovery of 1-[9-(4-chlorophenyl)-8-(2-chlorophenyl)-9H-purin-6-yl]-4-ethylaminopiperidine-4-carboxylic acid amide hydrochloride (CP-945,598), a novel, potent, and selective cannabinoid type 1 receptor antagonist. J Med Chem 2009; 52:234-7. [PMID: 19102698 DOI: 10.1021/jm8012932] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the structure-activity relationships, design, and synthesis of the novel cannabinoid type 1 (CB1) receptor antagonist 3a (CP-945,598). Compound 3a showed subnanomolar potency at human CB1 receptors in binding (Ki = 0.7 nM) and functional assays (Ki = 0.12 nM). In vivo, compound 3a reversed cannabinoid agonist-mediated responses, reduced food intake, and increased energy expenditure and fat oxidation in rodents.
Collapse
Affiliation(s)
- David A Griffith
- Department of Cardiovascular, Metabolic, and Endocrine Diseases, Pfizer Global Research and Development, Groton, Connecticut 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang Y, Burgess JP, Brackeen M, Gilliam A, Mascarella SW, Page K, Seltzman HH, Thomas BF. Conformationally constrained analogues of N-(piperidinyl)-5-(4-chlorophenyl)-1-(2,4- dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716): design, synthesis, computational analysis, and biological evaluations. J Med Chem 2008; 51:3526-39. [PMID: 18512901 DOI: 10.1021/jm8000778] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure-activity relationships (SARs) of 1 (SR141716) have been extensively documented, however, the conformational properties of this class have received less attention. In an attempt to better understand ligand conformations optimal for receptor recognition, we have designed and synthesized a number of derivatives of 1, including a four-carbon-bridged molecule (11), to constrain rotation of the diaryl rings. Computational analysis of 11 indicates approximately 20 kcal/mol energy barrier for rotation of the two aryl rings. NMR studies have determined the energy barrier to be approximately 18 kcal/mol and suggested atropisomers could exist. Receptor binding and functional studies with these compounds displayed reduced affinity and potency when compared to 1. This indicates that our structural modifications either constrain the ring systems in a suboptimal orientation for receptor interaction or the introduction of steric bulk leads to disfavored steric interactions with the receptor, and/or the relatively modest alterations in the molecular electrostatic potentials results in disfavored Coulombic interactions.
Collapse
Affiliation(s)
- Yanan Zhang
- Chemistry and Life Sciences, Research Triangle Institute, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lange JHM, Kruse CG. Cannabinoid CB1 receptor antagonists in therapeutic and structural perspectives. CHEM REC 2008; 8:156-68. [PMID: 18563799 DOI: 10.1002/tcr.20147] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The observed antiobesity effect of rimonabant (1) in a pharmacological rodent model 10 years ago has led to a surge in the search for novel cannabinoid CB1 antagonists as a new therapeutic target for the treatment of obesity. Rimonabant showed clinical efficacy in the treatment of obesity and also improved cardiovascular and metabolic risk factors. Cannabinoid CB1 receptor antagonists have also good prospects in other therapeutic areas, including smoking and alcohol addiction as well as cognitive impairment. Solvay's research achievements in this fast-moving field are reported in relation with the current state of the art. Several medicinal chemistry strategies have been pursued. The application of the concept of conformational constraint led to the discovery of more rigid analogs of the prototypic CB1 receptor antagonist rimonabant. Replacement of the central heterocyclic pyrazole ring in rimonabant yielded imidazoles, triazoles, and thiazoles as selective CB1 receptor antagonists. Dedicated medium-throughput screening efforts delivered one 3,4-diarylpyrazoline hit. Its poor pharmacokinetic properties were successfully optimized which led to the discovery of orally active and highly CB1/CB2 receptor selective analogs in this series. Regioisomeric 1,5-diarylpyrazolines, 1,2-diarylimidazolines, and water-soluble imidazoles have been designed as novel CB1 receptor antagonist structure classes.
Collapse
Affiliation(s)
- Jos H M Lange
- Solvay Pharmaceuticals, Research Laboratories, C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands.
| | | |
Collapse
|
29
|
Blaszykowski C, Aktoudianakis E, Alberico D, Bressy C, Hulcoop DG, Jafarpour F, Joushaghani A, Laleu B, Lautens M. A palladium-catalyzed alkylation/direct arylation synthesis of nitrogen-containing heterocycles. J Org Chem 2008; 73:1888-97. [PMID: 18260672 DOI: 10.1021/jo702052b] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A norbornene-mediated palladium-catalyzed sequence is described in which an alkyl-aryl bond and an aryl-heteroaryl bond are formed in one reaction vessel. The aryl-heteroaryl bond-forming step occurs via a direct arylation reaction. A number of six-, seven-, and eight-membered ring-annulated indoles, pyrroles, pyrazoles, and azaindoles were synthesized from the corresponding bromoalkyl azole and an aryl iodide.
Collapse
Affiliation(s)
- Christophe Blaszykowski
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6 Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brijesh Kumar Srivastava,*, Joharapurkar A, Raval S, Patel JZ, Soni R, Raval P, Gite A, Goswami A, Sadhwani N, Gandhi N, Patel H, Mishra B, Solanki M, Pandey B, Jain MR, Patel PR. Diaryl Dihydropyrazole-3-carboxamides with Significant In Vivo Antiobesity Activity Related to CB1 Receptor Antagonism: Synthesis, Biological Evaluation, and Molecular Modeling in the Homology Model. J Med Chem 2007; 50:5951-66. [DOI: 10.1021/jm061490u] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Amit Joharapurkar
- Zydus Research Centre, Sarkhej-Bavla N. H. 8A, Moraiya, Ahmedabad 382210, India
| | - Saurin Raval
- Zydus Research Centre, Sarkhej-Bavla N. H. 8A, Moraiya, Ahmedabad 382210, India
| | - Jayendra Z. Patel
- Zydus Research Centre, Sarkhej-Bavla N. H. 8A, Moraiya, Ahmedabad 382210, India
| | - Rina Soni
- Zydus Research Centre, Sarkhej-Bavla N. H. 8A, Moraiya, Ahmedabad 382210, India
| | - Preeti Raval
- Zydus Research Centre, Sarkhej-Bavla N. H. 8A, Moraiya, Ahmedabad 382210, India
| | - Archana Gite
- Zydus Research Centre, Sarkhej-Bavla N. H. 8A, Moraiya, Ahmedabad 382210, India
| | - Amitgiri Goswami
- Zydus Research Centre, Sarkhej-Bavla N. H. 8A, Moraiya, Ahmedabad 382210, India
| | - Nisha Sadhwani
- Zydus Research Centre, Sarkhej-Bavla N. H. 8A, Moraiya, Ahmedabad 382210, India
| | - Neha Gandhi
- Zydus Research Centre, Sarkhej-Bavla N. H. 8A, Moraiya, Ahmedabad 382210, India
| | - Harilal Patel
- Zydus Research Centre, Sarkhej-Bavla N. H. 8A, Moraiya, Ahmedabad 382210, India
| | - Bhupendra Mishra
- Zydus Research Centre, Sarkhej-Bavla N. H. 8A, Moraiya, Ahmedabad 382210, India
| | - Manish Solanki
- Zydus Research Centre, Sarkhej-Bavla N. H. 8A, Moraiya, Ahmedabad 382210, India
| | - Bipin Pandey
- Zydus Research Centre, Sarkhej-Bavla N. H. 8A, Moraiya, Ahmedabad 382210, India
| | - Mukul R. Jain
- Zydus Research Centre, Sarkhej-Bavla N. H. 8A, Moraiya, Ahmedabad 382210, India
| | - Pankaj R. Patel
- Zydus Research Centre, Sarkhej-Bavla N. H. 8A, Moraiya, Ahmedabad 382210, India
| |
Collapse
|
31
|
Abstract
The CB1 and CB2 cannabinoid receptors have been described as two prime sites of action for endocannabinoids. Both the localization and pharmacology of these two G-protein-coupled receptors are well-described, and numerous selective ligands have been characterized. The physiological effects of Cannabis sativa (cannabis) and a throughout study of the endocannabinoid system allowed for the identification of several pathophysiological conditions--including obesity, dyslipidemia, addictions, inflammation, and allergies--in which blocking the cannabinoid receptors might be beneficial. Many CB1 receptor antagonists are now in clinical trials, and the results of several studies involving the CB1 antagonist lead compound rimonabant (SR141716A) are now available. This review describes the pharmacological tools that are currently available and the animal studies supporting the therapeutic use of cannabinoid receptor antagonists and inverse agonists. The data available from the clinical trials are also discussed.
Collapse
Affiliation(s)
- Giulio G Muccioli
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
32
|
Smith RA, Fathi Z, Brown SE, Choi S, Fan J, Jenkins S, Kluender HCE, Konkar A, Lavoie R, Mays R, Natoli J, O'Connor SJ, Ortiz AA, Podlogar B, Taing C, Tomlinson S, Tritto T, Zhang Z. Constrained analogs of CB-1 antagonists: 1,5,6,7-Tetrahydro-4H-pyrrolo[3,2-c]pyridine-4-one derivatives. Bioorg Med Chem Lett 2006; 17:673-8. [PMID: 17107792 DOI: 10.1016/j.bmcl.2006.10.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 10/27/2006] [Accepted: 10/30/2006] [Indexed: 10/24/2022]
Abstract
A series of pyrrolopyridinones was designed and synthesized as constrained analogs of the pyrazole CB-1 antagonist rimonabant. Certain examples exhibited very potent hCB-1 receptor binding affinity and functional antagonism with Ki and Kb values below 10 nM, and with high selectivity for CB-1 over CB-2 (>100-fold). A representative analog was established to cause significant appetite suppression and reduction in body weight gain in industry-standard rat models used to develop new therapeutics for obesity.
Collapse
Affiliation(s)
- Roger A Smith
- Department of Chemistry Research, Bayer HealthCare, Pharmaceuticals Division, West Haven, CT 06516, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Thomas BF, Zhang Y, Brackeen M, Page KM, Mascarella SW, Seltzman HH. Conformational characteristics of the interaction of SR141716A with the CB1 cannabinoid receptor as determined through the use of conformationally constrained analogs. AAPS JOURNAL 2006; 8:E665-71. [PMID: 17233530 PMCID: PMC2751363 DOI: 10.1208/aapsj080476] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interest in cannabinoid pharmacology increased dramatically upon the identification of the first cannabinoid receptor (CB1) in 1998 and continues to expand as additional endocannabinoids and cannabinoid receptors are discovered. Using CB1 receptor (CB1R) systems, medicinal chemistry programs began screening libraries searching for cannabinoid ligands, ultimately leading to the discovery of the first potent cannabinoid receptor antagonist, SR141716A (Rimonabant). Its demonstrated efficacy in treating obesity and facilitating smoking cessation, among other impressive pharmacological activities, has furthered the interest in cannabinoid receptor antagonists as therapeutics, such that the number of patents and publications covering this class of compounds continues to grow at an impressive rate. At this time, medicinal chemistry approaches including combinatorial chemistry, conformational constraint, and scaffold hopping are continuing to generate a large number of cannabinoid antagonists. These molecules provide an opportunity to gain insight into the 3-dimensional structure-activity relationships that appear crucial for CB1R-ligand interaction. In particular, studies in which conformational constraints have been imposed on the various pyrazole ring substituents of SR141716A provide a direct opportunity to characterize changes in conformation/conformational freedom within a single class of compounds. While relatively few conformationally constrained molecules have been synthesized to date, the structure-activity information is often more readily interpreted than in studies where entire substituents are replaced. Thus, it is the focus of this mini-review to examine the structural properties of SR141716A, and to use conformationally constrained molecules to illustrate the importance of conformation and conformational freedom to CB1R affinity, selectivity, and efficacy.
Collapse
Affiliation(s)
- Brian F Thomas
- Research Triangle Institute, Research Triangle Park, NC 27709-2194, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Muccioli GG, Lambert DM. Latest advances in cannabinoid receptor antagonists and inverse agonists. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.10.1405] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Carpino PA, Griffith DA, Sakya S, Dow RL, Black SC, Hadcock JR, Iredale PA, Scott DO, Fichtner MW, Rose CR, Day R, Dibrino J, Butler M, Debartolo DB, Dutcher D, Gautreau D, Lizano JS, O'connor RE, Sands MA, Kelly-Sullivan D, Ward KM. New bicyclic cannabinoid receptor-1 (CB1-R) antagonists. Bioorg Med Chem Lett 2006; 16:731-6. [PMID: 16263283 DOI: 10.1016/j.bmcl.2005.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 10/05/2005] [Accepted: 10/06/2005] [Indexed: 11/29/2022]
Abstract
A series of conformationally constrained bicyclic derivatives derived from SR141716 was prepared and evaluated as hCB(1)-R antagonists and inverse agonists. Optimization of the structure-activity relationships around the 2,6-dihydro-pyrazolo[4,3-d]pyrimidin-7-one derivative 2a led to the identification of two compounds with oral activity in rodent feeding models (2h and 4a). Replacement of the PP group in 2h with other bicyclic groups resulted in a loss of binding affinity.
Collapse
Affiliation(s)
- Philip A Carpino
- Pfizer Global Research and Development-Groton Laboratories, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Murineddu G, Ruiu S, Loriga G, Manca I, Lazzari P, Reali R, Pani L, Toma L, Pinna GA. Tricyclic pyrazoles. 3. Synthesis, biological evaluation, and molecular modeling of analogues of the cannabinoid antagonist 8-chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide. J Med Chem 2006; 48:7351-62. [PMID: 16279795 DOI: 10.1021/jm050317f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of analogues of 8-chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide 4a (NESS 0327) (Ruiu, S.; Pinna, G. A.; Marchese, G.; Mussinu, J. M.; Saba, P.; Tambaro, S.; Casti, P.; Vargiu, R.; Pani, L. Synthesis and Characterization of NESS 0327: A Novel Putative Antagonist of CB1 Cannabinoid Receptor. J. Pharmacol. Exp. Ther. 2003, 306, 363-370) was synthesized and evaluated for their affinity to cannabinoid receptors. Depending on the chemical modification of the lead structure that was chosen, compounds 4b, 4c, 4i, 4l, and 4m still proved to be potent binders of the CB1 receptor. Moreover, several analogues (4c, 4d, 4e, and 4m) demonstrated superior CB2 receptor binding affinities compared to the parent ligand. Compounds 4b, 4c, 4i, and 4l displayed the most promising pharmacological profiles, having the highest selectivity for CB1 receptors with Ki(CB2) to Ki(CB1) ratios of 11,250, 2000, 3330 and 4625, respectively. Compound 4c increased the intestinal propulsion in mice and antagonized the effect induced by the CB1 receptor agonist WIN 55,212-2. Finally, molecular modeling studies were carried out on a set of tricyclic pyrazoles (2a-4a) and on rimonabant 1 (SR141716A), indicating that high CB1 receptors affinities were consistent for the tricyclic derivatives, both with a nonplanar geometry of the tricyclic cores and with a precise orientation of the substituent (chlorine) on this ring system.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Brain/metabolism
- Gastrointestinal Transit/drug effects
- Heterocyclic Compounds, 3-Ring/chemical synthesis
- Heterocyclic Compounds, 3-Ring/chemistry
- Heterocyclic Compounds, 3-Ring/pharmacology
- In Vitro Techniques
- Mice
- Models, Molecular
- Piperidines/chemical synthesis
- Piperidines/chemistry
- Piperidines/pharmacology
- Pyrazoles/chemical synthesis
- Pyrazoles/chemistry
- Pyrazoles/pharmacology
- Radioligand Assay
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/chemistry
- Stereoisomerism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Gabriele Murineddu
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via F. Muroni 23/A, 07100 Sassari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Adam J, Cowley PM, Kiyoi T, Morrison AJ, Mort CJW. Recent progress in cannabinoid research. PROGRESS IN MEDICINAL CHEMISTRY 2006; 44:207-329. [PMID: 16697899 DOI: 10.1016/s0079-6468(05)44406-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Julia Adam
- Organon Research, Newhouse, Lanarkshire, Scotland, UK
| | | | | | | | | |
Collapse
|
38
|
Lange JHM, van Stuivenberg HH, Veerman W, Wals HC, Stork B, Coolen HKAC, McCreary AC, Adolfs TJP, Kruse CG. Novel 3,4-diarylpyrazolines as potent cannabinoid CB1 receptor antagonists with lower lipophilicity. Bioorg Med Chem Lett 2005; 15:4794-8. [PMID: 16140010 DOI: 10.1016/j.bmcl.2005.07.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 06/18/2005] [Accepted: 07/19/2005] [Indexed: 11/29/2022]
Abstract
Novel 3,4-diarylpyrazolines 1 as potent CB1 receptor antagonists with lipophilicity lower than that of SLV319 are described. The key change is the replacement of the arylsulfonyl group in the original series by a dialkylaminosulfonyl moiety. The absolute configuration (4S) of eutomer 24 was established by X-ray diffraction analysis and 24 showed a close molecular fit with rimonabant in a CB1 receptor-based model. Compound 17 exhibited the highest CB1 receptor affinity (Ki = 24 nM) in this series, as well as very potent CB1 antagonistic activity (pA2 = 8.8) and a high CB1/CB2 subtype selectivity (approximately 147-fold).
Collapse
Affiliation(s)
- Jos H M Lange
- Solvay Pharmaceuticals, Research Laboratories, C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Mood and anxiety disorders, the most prevalent of the psychiatric disorders, cause immeasurable suffering worldwide. Despite impressive advances in pharmacological therapies, improvements in efficacy and side-effect profiles are needed. The present literature review examines the role that the endocannabinoid system may play in these disorders and the potential value of targeting this system in the search for novel and improved medications. Cannabis and its major psychoactive component (-)-trans-delta9-tetrahydrocannabinol, have profound effects on mood and can modulate anxiety and mood states. Cannabinoid receptors and other protein targets in the central nervous system (CNS) that modulate endocannabinoid function have been described. The discovery of selective modulators of some of these sites that increase or decrease endocannabinoid neurotransmission, primarily through the most prominent of the cannabinoid receptors in the CNS, the CB1 receptors, combined with transgenic mouse technology, has enabled detailed investigations into the role of these CNS sites in the regulation of mood and anxiety states. Although data point to the involvement of the endocannabinoid system in anxiety states, the pharmacological evidence seems contradictory: both anxiolytic- and anxiogenic-like effects have been reported with both endocannabinoid neurotransmission enhancers and blockers. Due to advances in the development of selective compounds directed at the CB1 receptors, significant progress has been made on this target. Recent biochemical and behavioural findings have demonstrated that blockade of CB1 receptors engenders antidepressant-like neurochemical changes (increases in extracellular levels of monoamines in cortical but not subcortical brain regions) and behavioural effects consistent with antidepressant/antistress activity in rodents.
Collapse
Affiliation(s)
- J M Witkin
- Psychiatric Drug Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285-0510, USA.
| | | | | |
Collapse
|
40
|
Govaerts SJ, Muccioli GG, Hermans E, Lambert DM. Characterization of the pharmacology of imidazolidinedione derivatives at cannabinoid CB1 and CB2 receptors. Eur J Pharmacol 2005; 495:43-53. [PMID: 15219819 DOI: 10.1016/j.ejphar.2004.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
The pharmacology of 3-(2-ethylmorpholino)-5,5'-di(p-bromophenyl)-imidazolidinedione (DML20), 3-(1-hydroxypropyl)-5,5'-di(p-bromophenyl)-imidazolidinedione (DML21) and 3-heptyl-5,5'-di(p-bromophenyl)-imidazolidinedione (DML23) was extended by studying affinity and GTP binding modulation on cannabinoid receptor subtypes (CB1 and CB2) from rat tissues and human cannabinoid receptors expressed in Chinese Hamster Ovary cells. Competitive binding studies indicated that DML20, DML21 and DML23 are selective ligands for cannabinoid CB1 receptors. In rat cerebellum homogenates, DML20, DML21 and DML23 were unable to influence [35S]GTPgammaS binding but competitively inhibit HU 210-induced [35S]GTPgammaS binding (pKB of 6.11 +/- 0.14, 6.25 +/- 0.06 and 5.74 +/- 0.09, respectively), indicating that they act as cannabinoid CB1 receptor neutral antagonists. However, in CHO cells homogenates expressing selectively either human cannabinoid CB1 or CB2 receptors, they behaved as inverse agonists decreasing the [35S]GTPgammaS binding, with similar efficacy. In conclusion, these derivatives exhibit different activities (neutral antagonism and inverse agonism) in the different models of cannabinoid receptors studied.
Collapse
MESH Headings
- Animals
- CHO Cells
- Cerebellum/drug effects
- Cerebellum/metabolism
- Cerebellum/pathology
- Cricetinae
- Cricetulus
- Drug Evaluation, Preclinical/methods
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Humans
- Imidazolidines/pharmacology
- Male
- Molecular Structure
- Morpholines/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Species Specificity
- Spleen/drug effects
- Spleen/metabolism
- Spleen/pathology
- Structure-Activity Relationship
- Sulfur Radioisotopes
- Transfection/methods
Collapse
Affiliation(s)
- Sophie J Govaerts
- Unité de Chimie pharmaceutique et de Radiopharmacie (73.40) Ecole de Pharmacie, Université Catholique de Louvain, 73, Avenue E. Mounier, UCL-CMFA 7340, B-1200 Bruxelles, Belgium
| | | | | | | |
Collapse
|
41
|
Lange JHM, Kruse CG. Keynote review: Medicinal chemistry strategies to CB1 cannabinoid receptor antagonists. Drug Discov Today 2005; 10:693-702. [PMID: 15896682 DOI: 10.1016/s1359-6446(05)03427-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The proven clinical efficacy of the CB(1) cannabinoid receptor antagonist rimonabant in both obesity and smoking cessation and its therapeutic potential in other disorders has given a tremendous impetus to the discovery of novel CB(1) antagonists. The number of disclosed patents wherein novel chemical entities having CB(1) antagonistic or inverse agonistic properties have been claimed has exploded. Besides novel compound classes that were identified in screening, rational medicinal chemistry approaches such as conformational constraint and scaffold hopping have been successfully applied. CB(1) receptor modelling has provided insight into crucial receptor-ligand interaction points thereby leading to a general CB(1) inverse agonist pharmacophore model.
Collapse
Affiliation(s)
- Jos H M Lange
- Solvay Pharmaceuticals, Research Laboratories, C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands.
| | | |
Collapse
|
42
|
Thakur GA, Nikas SP, Li C, Makriyannis A. Structural requirements for cannabinoid receptor probes. Handb Exp Pharmacol 2005:209-46. [PMID: 16596776 DOI: 10.1007/3-540-26573-2_7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The discovery and cloning of CB1 and CB2, the two known G(i/o) protein-coupled cannabinoid receptors, as well as the isolation and characterization of two families of endogenous cannabinergic ligands represented by arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol (2-AG), have opened new horizons in this newly discovered field of biology. Furthermore, a considerable number of cannabinoid analogs belonging to structurally diverse classes of compounds have been synthesized and tested, thus providing substantial information on the structural requirements for cannabinoid receptor recognition and activation. Experiments with site-directed mutated receptors and computer modeling studies have suggested that these diverse classes of ligands may interact with the receptors through different binding motifs. The information about the exact binding site may be obtained with the help of suitably designed molecular probes. These ligands either interact with the receptors in a reversible fashion (reversible probes) or alternatively attach at or near the receptor active site with the formation of covalent bonds (irreversible probes). This review focuses on structural requirements of cannabinoid receptor ligands and highlights their pharmacological and therapeutic potential.
Collapse
Affiliation(s)
- G A Thakur
- Center for Drug Discovery, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | |
Collapse
|