1
|
Hahn V. Potential of the enzyme laccase for the synthesis and derivatization of antimicrobial compounds. World J Microbiol Biotechnol 2023; 39:107. [PMID: 36854853 PMCID: PMC9974771 DOI: 10.1007/s11274-023-03539-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
Laccases [E.C. 1.10.3.2, benzenediol:dioxygen oxidoreductase] can oxidize phenolic substances, e.g. di- and polyphenols, hydroxylated biaryls, aminophenols or aryldiamines. This large substrate spectrum is the basis for various reaction possibilities, which include depolymerization and polymerization reactions, but also the coupling of different substance classes. To catalyze these reactions, laccases demand only atmospheric oxygen and no depletive cofactors. The utilization of mild and environmentally friendly reaction conditions such as room temperature, atmospheric pressure, and the avoidance of organic solvents makes the laccase-mediated reaction a valuable tool in green chemistry for the synthesis of biologically active compounds such as antimicrobial substances. In particular, the production of novel antibiotics becomes vital due to the evolution of antibiotic resistances amongst bacteria and fungi. Therefore, laccase-mediated homo- and heteromolecular coupling reactions result in derivatized or newly synthesized antibiotics. The coupling or derivatization of biologically active compounds or its basic structures may allow the development of novel pharmaceuticals, as well as the improvement of efficacy or tolerability of an already applied drug. Furthermore, by the laccase-mediated coupling of two different active substances a synergistic effect may be possible. However, the coupling of compounds that have no described efficacy can lead to biologically active substances by means of laccase. The review summarizes laccase-mediated reactions for the synthesis of antimicrobial compounds valuable for medical purposes. In particular, reactions with two different reaction partners were shown in detail. In addition, studies with in vitro and in vivo experimental data for the confirmation of the antibacterial and/or antifungal efficacy of the products, synthesized with laccase, were of special interest. Analyses of the structure-activity relationship confirm the great potential of the novel compounds. These substances may represent not only a value for pharmaceutical and chemical industry, but also for other industries due to a possible functionalization of surfaces such as wood or textiles.
Collapse
Affiliation(s)
- Veronika Hahn
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
- Institute for Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany.
| |
Collapse
|
2
|
Laccase-Catalyzed Derivatization of Aminoglycoside Antibiotics and Glucosamine. Microorganisms 2022; 10:microorganisms10030626. [PMID: 35336201 PMCID: PMC8955303 DOI: 10.3390/microorganisms10030626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
The increasing demand for new and effective antibiotics requires intelligent strategies to obtain a wide range of potential candidates. Laccase-catalyzed reactions have been successfully applied to synthesize new β-lactam antibiotics and other antibiotics. In this work, laccases from three different origins were used to produce new aminoglycoside antibiotics. Kanamycin, tobramycin and gentamicin were coupled with the laccase substrate 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide. The products were isolated, structurally characterized and tested in vitro for antibacterial activity against various strains of Staphylococci, including multidrug-resistant strains. The cytotoxicity of these products was tested using FL cells. The coupling products showed comparable and, in some cases, better antibacterial activity than the parent antibiotics in the agar diffusion assay, and they were not cytotoxic. The products protected mice against infection with Staphylococcus aureus, which was lethal to the control animals. The results underline the great potential of laccases in obtaining new biologically active compounds, in this case new antibiotic candidates from the class of aminoglycosides.
Collapse
|
3
|
Mikolasch A, Hahn V. Laccase-Catalyzed Derivatization of Antibiotics with Sulfonamide or Sulfone Structures. Microorganisms 2021; 9:microorganisms9112199. [PMID: 34835324 PMCID: PMC8620746 DOI: 10.3390/microorganisms9112199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Trametes spec. laccase (EC 1.10.3.2.) mediates the oxidative coupling of antibiotics with sulfonamide or sulfone structures with 2,5-dihydroxybenzene derivatives to form new heterodimers and heterotrimers. These heteromolecular hybrid products are formed by nuclear amination of the p-hydroquinones with the primary amino group of the sulfonamide or sulfone antibiotics, and they inhibited in vitro the growth of Staphylococcus species, including multidrug-resistant strains.
Collapse
Affiliation(s)
- Annett Mikolasch
- Institute for Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany;
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Veronika Hahn
- Institute for Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany;
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-5543872
| |
Collapse
|
4
|
Li B, Lu S. The Importance of Amine-degrading Enzymes on the Biogenic Amine Degradation in Fermented Foods: A review. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Laccase-catalyzed derivatization of 6-aminopenicillanic, 7-aminocephalosporanic and 7-aminodesacetoxycephalosporanic acid. AMB Express 2020; 10:177. [PMID: 33006678 PMCID: PMC7532246 DOI: 10.1186/s13568-020-01117-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023] Open
Abstract
Trametes spec. laccase (EC 1.10.3.2.) mediates the oxidative coupling of 6-aminopenicillanic, 7-aminocephalosporanic, and 7-aminodesacetoxycephalosporanic acid with 2,5-dihydroxybenzoic acid derivatives to form new penicillin and cephalosporin structures, respectively. The heteromolecular hybrid dimers are formed by nuclear amination of the p-hydroquinones with the primary amines and inhibited in vitro the growth of Staphylococcus species, including some multidrug-resistant strains.
Collapse
|
6
|
Hahn V, Mikolasch A, Weitemeyer J, Petters S, Davids T, Lalk M, Lackmann JW, Schauer F. Ring-Closure Mechanisms Mediated by Laccase to Synthesize Phenothiazines, Phenoxazines, and Phenazines. ACS OMEGA 2020; 5:14324-14339. [PMID: 32596570 PMCID: PMC7315418 DOI: 10.1021/acsomega.0c00719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/24/2020] [Indexed: 05/31/2023]
Abstract
The green and environmentally friendly synthesis of highly valuable organic substances is one possibility for the utilization of laccases (EC 1.10.3.2). As reactants for the herein described syntheses, different o-substituted arylamines or arylthiols and 2,5-dihydroxybenzoic acid and its derivatives were used. In this way, the formation of phenothiazines, phenoxazines, and phenazines was achieved in aqueous solution mediated by the laccase of Pycnoporus cinnabarinus in the presence of oxygen. Two types of phenothiazines (3-hydroxy- and 3-oxo-phenothiazines) formed in one reaction assay were described for the first time. The cyclization reactions yielded C-N, C-S, or C-O bonds. The syntheses were investigated with regard to the substitution pattern of the reaction partners. Differences in C-S and C-N bond formations without cyclization are discussed.
Collapse
Affiliation(s)
- Veronika Hahn
- Institut
für Mikrobiologie, Universität
Greifswald, Friedrich-Ludwig-Jahn Str. 15, 17487 Greifswald, Germany
- Leibniz-Institut
für Plasmaforschung und Technologie e.V. (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Annett Mikolasch
- Institut
für Mikrobiologie, Universität
Greifswald, Friedrich-Ludwig-Jahn Str. 15, 17487 Greifswald, Germany
| | - Josephine Weitemeyer
- Institut
für Mikrobiologie, Universität
Greifswald, Friedrich-Ludwig-Jahn Str. 15, 17487 Greifswald, Germany
| | - Sebastian Petters
- Institut
für Mikrobiologie, Universität
Greifswald, Friedrich-Ludwig-Jahn Str. 15, 17487 Greifswald, Germany
| | - Timo Davids
- Institut
für Mikrobiologie, Universität
Greifswald, Friedrich-Ludwig-Jahn Str. 15, 17487 Greifswald, Germany
| | - Michael Lalk
- Institut
für Biochemie, Universität
Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Jan-Wilm Lackmann
- Leibniz-Institut
für Plasmaforschung und Technologie e.V. (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Frieder Schauer
- Institut
für Mikrobiologie, Universität
Greifswald, Friedrich-Ludwig-Jahn Str. 15, 17487 Greifswald, Germany
| |
Collapse
|
7
|
Abedi F, Razavi BM, Hosseinzadeh H. A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: Comprehensive pharmacology, toxicology, and some pharmaceutical aspects. Phytother Res 2019; 34:729-741. [PMID: 31825145 DOI: 10.1002/ptr.6573] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 12/29/2022]
Abstract
Beneficial therapeutic effects of phenolic acids have been proven in various research projects including in vivo and in vitro studies. Gentisic acid (GA) is a phenolic acid that has been associated with useful effects on human health, such as antiinflammatory, antigenotoxic, hepatoprotective, neuroprotective, antimicrobial, and especially antioxidant activities. It is an important metabolite of aspirin and also widely distributed in plants as a secondary plant product such as Gentiana spp., Citrus spp., Vitis vinifera, Pterocarpus santalinus, Helianthus tuberosus, Hibiscus rosa-sinensis, Olea europaea, and Sesamum indicum and in fruits such as avocados, batoko plum, kiwi fruits, apple, bitter melon, black berries, pears, and some mushrooms. This study was undertaken to review the pharmacological effects, pharmacokinetic properties as well as toxicity and pharmaceutical applications of GA.
Collapse
Affiliation(s)
- Farshad Abedi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Castro P, Mendoza L, Vásquez C, Pereira PC, Navarro F, Lizama K, Santander R, Cotoras M. Antifungal Activity against Botrytis cinerea of 2,6-Dimethoxy-4-(phenylimino)cyclohexa-2,5-dienone Derivatives. Molecules 2019; 24:E706. [PMID: 30781370 PMCID: PMC6412631 DOI: 10.3390/molecules24040706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 01/04/2023] Open
Abstract
In this work the enzyme laccase from Trametes versicolor was used to synthetize 2,6-dimethoxy-4-(phenylimino)cyclohexa-2,5-dienone derivatives. Ten products with different substitutions in the aromatic ring were synthetized and characterized using ¹H- and 13C-NMR and mass spectrometry. The 3,5-dichlorinated compound showed highest antifungal activity against the phytopathogen Botrytis cinerea, while the p-methoxylated compound had the lowest activity; however, the antifungal activity of the products was higher than the activity of the substrates of the reactions. Finally, the results suggested that these compounds produced damage in the fungal cell wall.
Collapse
Affiliation(s)
- Paulo Castro
- Laboratorio de Micología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago 518000, Chile.
| | - Leonora Mendoza
- Laboratorio de Micología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago 518000, Chile.
| | - Claudio Vásquez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 518000, Chile.
| | - Paz Cornejo Pereira
- Laboratorio de Micología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago 518000, Chile.
| | - Freddy Navarro
- Laboratorio de Micología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago 518000, Chile.
| | - Karin Lizama
- Laboratorio de Micología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago 518000, Chile.
| | - Rocío Santander
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago 518000, Chile.
| | - Milena Cotoras
- Laboratorio de Micología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago 518000, Chile.
| |
Collapse
|
9
|
Safary A, Moniri R, Hamzeh-Mivehroud M, Dastmalchi S. Identification and Molecular Characterization of Genes Coding Pharmaceutically Important Enzymes from Halo-Thermo Tolerant Bacillus. Adv Pharm Bull 2016; 6:551-561. [PMID: 28101462 DOI: 10.15171/apb.2016.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/05/2016] [Accepted: 10/08/2016] [Indexed: 11/09/2022] Open
Abstract
Purpose: Robust pharmaceutical and industrial enzymes from extremophile microorganisms are main source of enzymes with tremendous stability under harsh conditions which make them potential tools for commercial and biotechnological applications. Methods: The genome of a Gram-positive halo-thermotolerant Bacillus sp. SL1, new isolate from Saline Lake, was investigated for the presence of genes coding for potentially pharmaceutical enzymes. We determined gene sequences for the enzymes laccase (CotA), l-asparaginase (ansA3, ansA1), glutamate-specific endopeptidase (blaSE), l-arabinose isomerase (araA2), endo-1,4-β mannosidase (gmuG), glutaminase (glsA), pectate lyase (pelA), cellulase (bglC1), aldehyde dehydrogenase (ycbD) and allantoinases (pucH) in the genome of Bacillus sp. SL1. Results: Based on the DNA sequence alignment results, six of the studied enzymes of Bacillus sp. SL-1 showed 100% similarity at the nucleotide level to the same genes of B. licheniformis 14580 demonstrating extensive organizational relationship between these two strains. Despite high similarities between the B. licheniformis and Bacillus sp. SL-1 genomes, there are minor differences in the sequences of some enzyme. Approximately 30% of the enzyme sequences revealed more than 99% identity with some variations in nucleotides leading to amino acid substitution in protein sequences. Conclusion: Molecular characterization of this new isolate provides useful information regarding evolutionary relationship between B. subtilis and B. licheniformis species. Since, the most industrial processes are often performed in harsh conditions, enzymes from such halo-thermotolerant bacteria may provide economically and industrially appealing biocatalysts to be used under specific physicochemical situations in medical, pharmaceutical, chemical and other industries.
Collapse
Affiliation(s)
- Azam Safary
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.; Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Laccase catalysis for the synthesis of bioactive compounds. Appl Microbiol Biotechnol 2016; 101:13-33. [PMID: 27872999 DOI: 10.1007/s00253-016-7987-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
The demand for compounds of therapeutic value is increasing mainly because of new applications of bioactive compounds in medicine, pharmaceutical, agricultural, and food industries. This has necessitated the search for cost-effective methods for producing bioactive compounds and therefore the intensification of the search for enzymatic approaches in organic synthesis. Laccase is one of the enzymes that have shown encouraging potential as biocatalysts in the synthesis of bioactive compounds. Laccases are multicopper oxidases with a diverse range of catalytic activities revolving around synthesis and degradative reactions. They have attracted much attention as potential industrial catalysts in organic synthesis mainly because they are essentially green catalysts with a diverse substrate range. Their reaction only requires molecular oxygen and releases water as the only by-product. Laccase catalysis involves the abstraction of a single electron from their substrates to produce reactive radicals. The free radicals subsequently undergo homo- and hetero-coupling to form dimeric, oligomeric, polymeric, or cross-coupling products which have practical implications in organic synthesis. Consequently, there is a growing body of research focused on the synthetic applications of laccases such as organic synthesis, hair and textile dyeing, polymer synthesis, and grafting processes. This paper reviews the major advances in laccase-mediated synthesis of bioactive compounds, the mechanisms of enzymatic coupling, structure-activity relationships of synthesized compounds, and the challenges that might guide future research directions.
Collapse
|
11
|
Sharma M, Chaurasia PK, Yadav A, Yadav RSS, Yadava S, Yadav KDS. Purification and characterization of a thermally stable yellow laccase from Daedalea flavida MTCC-145 with higher catalytic performance towards selective synthesis of substituted benzaldehydes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016010143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Targeted synthesis of novel β-lactam antibiotics by laccase-catalyzed reaction of aromatic substrates selected by pre-testing for their antimicrobial and cytotoxic activity. Appl Microbiol Biotechnol 2016; 100:4885-99. [PMID: 26780358 DOI: 10.1007/s00253-016-7288-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
Abstract
The rapidly increasing problem of antimicrobial-drug resistance requires the development of new antimicrobial agents. The laccase-catalyzed amination of dihydroxy aromatics is a new and promising method to enlarge the range of currently available antibiotics. Thirty-eight potential 1,2- and 1,4-hydroquinoid laccase substrates were screened for their antibacterial and cytotoxic activity to select the best substrates for laccase-catalyzed coupling reaction resulting in potent antibacterial derivatives. As a result, methyl-1,4-hydroquinone and 2,3-dimethyl-1,4-hydroquinone were used as parent compounds and 14 novel cephalosporins, penicillins, and carbacephems were synthesized by amination with amino-β-lactam structures. All purified products were stable in aqueous buffer and resistant to the action of β-lactamases, and in agar diffusion and broth micro-dilution assays, they inhibited the growth of several Gram-positive bacterial strains including multidrug-resistant Staphylococcus aureus and Enterococci. Their in vivo activity and cytotoxicity in a Staphylococcus-infected, immune-suppressed mouse model are discussed.
Collapse
|
13
|
Chaurasia PK, Singh SK, Bharati SL. Role of laccase from Coriolus versicolor MTCC-138 in selective oxidation of aromatic methyl group. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 40:315-9. [PMID: 25898738 DOI: 10.1134/s1068162014020034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Now a day, laccases are the most promising enzymes in the area of biotechnology and synthesis. One of the best applications of laccases is the selective oxidation of aromatic methyl group to aldehyde group. Such transformations are valuable because it is difficult to stop the reaction at aldehyde stage. Chemical methods used for such biotransformations areexpensive and give poor yields. But, the laccase-catalyzed biotransformations of such type are non-expensive and yield is excellent. Authors have used crude laccase obtained from the liquid culture growth medium of fungal strain Coriolus versicolor MTCC-138 for the biotransformations of toluene, 3-nitrotoluene, and 4-chlorotoluene to benzaldehyde, 3-nitrobenzaldehyde, and 4-chlorobenzaldehyde, respectively, instead of purified laccase because purification process requires much time and cost. This communication reports that crude laccase can also be used in the place of purified laccase as effective biocatalyst.
Collapse
|
14
|
Chaurasia PK, Yadava S, Bharati SL, Singh SK. Selective oxidation and N-coupling by purified laccase of xylaria polymorpha MTCC-1100. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 40:491-6. [PMID: 25898759 DOI: 10.1134/s1068162014040025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The chemical route of oxidation of methyl group to its aldehyde is inconvenient because once a methyl group is attacked, it is likely to be oxidized to the carboxylic acid and it is very difficult to stop the reaction at the aldehyde stage. Fungal laccases can be used for such oxidation reaction and the reaction can be completed sharply within 1-2 hrs. Coupling of amines are another important reactions known forfungal laccases; coupling reactions generally take 3-7 hrs. We have used the purified laccase of molecular weight 63 kDa obtained from the fungal strainXylaria polymorpha MTCC-100 with activity of 1.95 IU/mL for selective oxidation of 2-fluorotoluene, 4-fluorotoluene, and 2-chlorotoluene to 2-fluorobenzaldehyde, 4-fluorobenzaldehyde, and 2-chlorobenzaldehyde, respectively, and syntheses of 3-(3,4-dihydroxyphenyl)-propionic acid derivatives by N-coupling of amines. In each oxidation reactions, ABTS was used as mediator molecule. All the syntheses are ecofriendly and were performed at room temperature.
Collapse
|
15
|
Chaurasia PK, Bharati SL, Singh SK, Yadava S. Amination of p-hydroquinone by laccase of Xylaria polymorpha MTCC-1100. RUSS J GEN CHEM+ 2015. [DOI: 10.1134/s1070363215030263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Pezzella C, Guarino L, Piscitelli A. How to enjoy laccases. Cell Mol Life Sci 2015; 72:923-40. [PMID: 25577278 PMCID: PMC11113763 DOI: 10.1007/s00018-014-1823-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 01/08/2023]
Abstract
An analysis of the scientific literature published in the last 10 years reveals a constant growth of laccase applicative research in several industrial fields followed by the publication of a great number of patents. The Green Chemistry journal devoted the cover of its September 2014 issue to a laccase as greener alternative for chemical oxidation. This indicates that laccase "never-ending story" has found a new promising trend within the constant search for efficient (bio)catalysts able to meet the 12 green chemistry principles. A survey of ancient and cutting-edge uses of laccase in different industrial sectors is offered in this review with the aim both to underline their potential and to provide inspiration for new ones. Applications in textile and food fields have been deeply described, as well as examples concerning polymer synthesis and laccase-catalysed grafting. Recent applications in pharmaceutical and cosmetic industry have also been reviewed.
Collapse
Affiliation(s)
- Cinzia Pezzella
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte S. Angelo, via Cintia 4, 80126, Naples, Italy,
| | | | | |
Collapse
|
17
|
Chaurasia PK, Yadav A, Yadav SS, Yadava S. Purification and characterization of laccase secreted by Phellinus linteus MTCC-1175 and its role in the selective oxidation of aromatic methyl group. APPL BIOCHEM MICRO+ 2015; 49:592-9. [PMID: 25434183 DOI: 10.1134/s000368381306006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A laccase from the culture filtrate of Phellinus linteus MTCC-1175 has been purified to homogeneity. The method involved concentration of the culture filtrate by ammonium sulphate precipitation and an anion exchange chro- matography on DEAE-cellulose. The SDS-PAGE and native-PAGE gave single protein band indicating that the enzyme preparation was pure. The molecular mass of the enzyme determined from SDS-PAGE analysis was 70 kDa. Using 2,6-dimethoxyphenol, 2,2'[azino-bis-(3-ethylbonzthiazoline-6-sulphonic acid) diammonium salt] (ABTS) and 4-hydroxy-3,5-dimethoxybenzaldehyde azine as the substrates, the Kin, kcat and kt/Km values of the laccase were found to be 160 microM, 6.85 s(-1), 4.28 x 10(4) M(-1) s(-1), 42 microM, 6.85 s(-1), 16.3 x 10(4) M(-1) s(-1) and 92 microM, 6.85 s(-1), 7.44 x 10(4) M(-1) s(-1), respectively. The pH and the temperature optima of the P. linteus MTCC-1175 laccase were 5.0 and 45 degrees C, respectively. The activation energy for thermal denaturation of the enzyme was 38.20 kJ/mole/K. The enzyme was the most stable at pH 5.0 after 1 h reaction. In the presence ofABTS as the mediator, the enzyme transformed toluene, 3-nitrotoluene and 4-chlorotoluene to benzaldehyde, 3-nitroben-zaldehyde and 4-chlorobenzaldehyde, respectively.
Collapse
|
18
|
Ligninolytic Enzymes for Water Depollution, Coal Breakdown, and Paper Industry. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2015. [DOI: 10.1007/978-3-319-11906-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Chaurasia PK, Yadav RS, Yadava S. Purification and characterization of yellow laccase from Trametes hirsuta MTCC-1171 and its application in synthesis of aromatic aldehydes. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Chaurasia PK, Yadava S, Bharati SL, Singh SK. Syntheses of Aromatic Aldehydes by Laccase of Pleurotus ostreatus MTCC-1801. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2014.904879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Pankaj Kumar Chaurasia
- a Department of Chemistry , D.D.U. Gorakhpur University , Gorakhpur , Uttar Pradesh , India
| | - Sudha Yadava
- a Department of Chemistry , D.D.U. Gorakhpur University , Gorakhpur , Uttar Pradesh , India
| | - Shashi Lata Bharati
- a Department of Chemistry , D.D.U. Gorakhpur University , Gorakhpur , Uttar Pradesh , India
| | - Sunil Kumar Singh
- a Department of Chemistry , D.D.U. Gorakhpur University , Gorakhpur , Uttar Pradesh , India
| |
Collapse
|
21
|
Mogharabi M, Faramarzi MA. Laccase and Laccase-Mediated Systems in the Synthesis of Organic Compounds. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201300960] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
22
|
CHAURASIA PK, YADAV A, YADAV RSS, YADAVA S. Purification and characterization of laccase from Coriolopsis floccosa MTCC-1177 and its use in the selective oxidation of aromatic methyl group to aldehyde without mediators. J CHEM SCI 2013. [DOI: 10.1007/s12039-013-0525-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Chi BK, Roberts AA, Huyen TTT, Bäsell K, Becher D, Albrecht D, Hamilton CJ, Antelmann H. S-bacillithiolation protects conserved and essential proteins against hypochlorite stress in firmicutes bacteria. Antioxid Redox Signal 2013; 18:1273-95. [PMID: 22938038 PMCID: PMC3584511 DOI: 10.1089/ars.2012.4686] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AIMS Protein S-bacillithiolations are mixed disulfides between protein thiols and the bacillithiol (BSH) redox buffer that occur in response to NaOCl in Bacillus subtilis. We used BSH-specific immunoblots, shotgun liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis and redox proteomics to characterize the S-bacillithiolomes of B. subtilis, B. megaterium, B. pumilus, B. amyloliquefaciens, and Staphylococcus carnosus and also measured the BSH/oxidized bacillithiol disulfide (BSSB) redox ratio after NaOCl stress. RESULTS In total, 54 proteins with characteristic S-bacillithiolation (SSB) sites were identified, including 29 unique proteins and eight proteins conserved in two or more of these bacteria. The methionine synthase MetE is the most abundant S-bacillithiolated protein in Bacillus species after NaOCl exposure. Further, S-bacillithiolated proteins include the translation elongation factor EF-Tu and aminoacyl-tRNA synthetases (ThrS), the DnaK and GrpE chaperones, the two-Cys peroxiredoxin YkuU, the ferredoxin-NADP(+) oxidoreductase YumC, the inorganic pyrophosphatase PpaC, the inosine-5'-monophosphate dehydrogenase GuaB, proteins involved in thiamine biosynthesis (ThiG and ThiM), queuosine biosynthesis (QueF), biosynthesis of aromatic amino acids (AroA and AroE), serine (SerA), branched-chain amino acids (YwaA), and homocysteine (LuxS and MetI). The thioredoxin-like proteins, YphP and YtxJ, are S-bacillithiolated at their active sites, suggesting a function in the de-bacillithiolation process. S-bacillithiolation is accompanied by a two-fold increase in the BSSB level and a decrease in the BSH/BSSB redox ratio in B. subtilis. INNOVATION Many essential and conserved proteins, including the dominant MetE, were identified in the S-bacillithiolome of different Bacillus species and S. carnosus using shotgun-LC-MS/MS analyses. CONCLUSION S-bacillithiolation is a widespread redox control mechanism among Firmicutes bacteria that protects conserved metabolic enzymes and essential proteins against overoxidation.
Collapse
Affiliation(s)
- Bui Khanh Chi
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mikolasch A, Manda K, Schlüter R, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Jülich WD, Lindequist U. Comparative analyses of laccase-catalyzed amination reactions for production of novel β-lactam antibiotics. Biotechnol Appl Biochem 2012; 59:295-306. [DOI: 10.1002/bab.1026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/01/2012] [Indexed: 11/06/2022]
|
25
|
A Laccase of Fomes durissimus MTCC-1173 and Its Role in the Conversion of Methylbenzene to Benzaldehyde. Appl Biochem Biotechnol 2011; 166:563-75. [DOI: 10.1007/s12010-011-9448-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
|
26
|
Potential applications of laccase-mediated coupling and grafting reactions: A review. Enzyme Microb Technol 2011; 48:195-208. [DOI: 10.1016/j.enzmictec.2010.11.007] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/02/2010] [Accepted: 11/23/2010] [Indexed: 11/21/2022]
|
27
|
Dwivedi UN, Singh P, Pandey VP, Kumar A. Structure–function relationship among bacterial, fungal and plant laccases. JOURNAL OF MOLECULAR CATALYSIS B: ENZYMATIC 2011; 68:117-128. [DOI: 10.1016/j.molcatb.2010.11.002] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
A new laccase-catalyzed domino process and its application to the efficient synthesis of 2-aryl-1H-benzimidazoles. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.11.145] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Derivatization of the azole 1-aminobenzotriazole using laccase ofPycnoporus cinnabarinusandMyceliophthora thermophila: influence of methanol on the reaction and biological evaluation of the derivatives. Biotechnol Appl Biochem 2010; 56:43-8. [DOI: 10.1042/ba20100078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Laccase-catalyzed cross-linking of amino acids and peptides with dihydroxylated aromatic compounds. Amino Acids 2010; 39:671-83. [DOI: 10.1007/s00726-010-0488-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/16/2010] [Indexed: 10/19/2022]
|
31
|
The laccase-catalyzed domino reaction between catechols and heterocyclic 1,3-dicarbonyls and the unambiguous structure elucidation of the products by NMR spectroscopy and X-ray crystal structure analysis. J Org Chem 2009; 74:7230-7. [PMID: 19739645 DOI: 10.1021/jo9011915] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The laccase-catalyzed reaction between catechols and heterocyclic 1,3-dicarbonyls (pyridinones, quinolinones, thiocoumarins) using aerial oxygen as the oxidant delivers benzofuropyridinones, benzofuroquinolinones, and thiocoumestans in a simple fashion, highly regioselectively with yields ranging from 55 to 98%. With barbituric acid derivatives the exclusive formation of dispiropyrimidinone derivatives takes place. The unambiguous and complete structure elucidation of all reaction products has been achieved by means of NMR spectroscopic methods (HSQMBC and band-selective HMBC) as well as by X-ray crystal structure analysis.
Collapse
|
32
|
Synthesis of model morpholine derivatives with biological activities by laccase-catalysed reactions. Biotechnol Appl Biochem 2009; 54:187-95. [DOI: 10.1042/ba20090219] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Hahn V, Mikolasch A, Manda K, Gördes D, Thurow K, Schauer F. Derivatization of amino acids by fungal laccases: Comparison of enzymatic and chemical methods. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Díaz Blanco C, González MD, Monmany JMD, Tzanov T. Dyeing properties, synthesis, isolation and characterization of an in situ generated phenolic pigment, covalently bound to cotton. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
|
36
|
Mikolasch A, Schauer F. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 2009; 82:605-24. [DOI: 10.1007/s00253-009-1869-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 01/09/2009] [Accepted: 01/10/2009] [Indexed: 10/21/2022]
|
37
|
Laccase-catalyzed coupling of catharanthine and vindoline: an efficient approach to the bisindole alkaloid anhydrovinblastine. Tetrahedron 2009. [DOI: 10.1016/j.tet.2008.10.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Mikolasch A, Wurster M, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Jülich WD, Lindequist U. Novel beta-lactam antibiotics synthesized by amination of catechols using fungal laccase. Chem Pharm Bull (Tokyo) 2008; 56:902-7. [PMID: 18591799 DOI: 10.1248/cpb.56.902] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Novel cephalosporins, penicillins, and carbacephems were synthesized by amination of catechols with amino-beta-lactams like cefadroxil, amoxicillin, ampicillin and the structurally related carbacephem loracarbef using laccase from Trametes sp. All isolated monoaminated products inhibited the growth of several Gram positive bacterial strains in the agar diffusion assay, among them methicillin-resistant Staphylococcus aureus strains and vancomycin-resistant Enterococci. Observed differences in the cytotoxicity and in vivo activity in a "Staphylococcus-infected, immune suppressed mouse" model are discussed.
Collapse
Affiliation(s)
- Annett Mikolasch
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mikolasch A, Matthies A, Lalk M, Schauer F. Laccase-induced C-N coupling of substituted p-hydroquinones with p-aminobenzoic acid in comparison with known chemical routes. Appl Microbiol Biotechnol 2008; 80:389-97. [PMID: 18668239 DOI: 10.1007/s00253-008-1595-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 06/26/2008] [Accepted: 06/26/2008] [Indexed: 11/28/2022]
Abstract
Fungal laccases (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) from Pycnoporus cinnabarinus and Myceliophthora thermophila were used as biocatalysts for enzymatic reaction of halogen-, alkyl-, alkoxy-, and carbonyl-substituted p-hydroquinones (laccase substrates) with p-aminobenzoic acid (no laccase substrate). During this reaction, the laccase substrate was oxidized to the corresponding quinones, which react with p-aminobenzoic acid by amination of the laccase substrate. The different substitutions at the hydroquinone substrates were used to prove whether the substituents influence the position of amination and product yields. The cross-coupling of methoxy-p-hydroquinone (alkoxylated) and 2,5-dihydroxybenzaldehyd (carbonyl-substituted) with p-aminobenzoic acid resulted in the formation of one monoaminated product (yield alkoxylated 52%). If monohalogen- or monoalkyl-substituted p-hydroquinones were used as laccase substrates, two monoaminated products (constitution isomers) were formed. The simultaneous formation of two different monoaminated products from the same hydroquinone substrate is the first report for laccase-mediated synthesis of aminated constitution isomers. Depending from the type of substituent of the hydroquinone, the positions of the two monoaminations are different. While the amination at the monoalkylated hydroquinone occurs at the 5- and 6-positions (yield 38%), the amination at monohalogenated hydroquinones was detectable at the 3- and 5-positions (yield 53%). The same product pattern could be achieved if instead of the biocatalyst laccase the chemical catalyst sodium iodate was used as the oxidant. However, the yields were partially much lower (0-45% of the yields with laccase).
Collapse
Affiliation(s)
- Annett Mikolasch
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany.
| | | | | | | |
Collapse
|
40
|
Mikolasch A, Hessel S, Salazar MG, Neumann H, Manda K, Gōrdes D, Schmidt E, Thurow K, Hammer E, Lindequist U, Beller M, Schauer F. Synthesis of New N-Analogous Corollosporine Derivatives with Antibacterial Activity by Laccase-Catalyzed Amination. Chem Pharm Bull (Tokyo) 2008; 56:781-6. [DOI: 10.1248/cpb.56.781] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Annett Mikolasch
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald
| | - Susanne Hessel
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald
| | - Manuela Gesell Salazar
- Interfacultary Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald
| | | | - Katrin Manda
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald
| | | | | | | | - Elke Hammer
- Interfacultary Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald
| | | | | | - Frieder Schauer
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald
| |
Collapse
|