1
|
Salsabila S, Khairinisa MA, Wathoni N, Sufiawati I, Mohd Fuad WE, Khairul Ikram NK, Muchtaridi M. In vivo toxicity of chitosan-based nanoparticles: a systematic review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2025; 53:1-15. [PMID: 39924869 DOI: 10.1080/21691401.2025.2462328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Chitosan nanoparticles have been extensively utilised as polymeric drug carriers in nanoparticles formulations due to their potential to enhance drug delivery, efficacy, and safety. Numerous toxicity studies have been previously conducted to assess the safety profile of chitosan-based nanoparticles. These toxicity studies employed various methodologies, including test animals, interventions, and different routes of administration. This review aims to summarise research on the safety profile of chitosan-based nanoparticles in drug delivery, with a focus on general toxicity tests to determine LD50 and NOAEL values. It can serve as a repository and reference for chitosan-based nanoparticles, facilitating future research and further development of drugs delivery system using chitosan nanoparticles. Publications from 2014 to 2024 were obtained from PubMed, Scopus, Google Scholar, and ScienceDirect, in accordance with the inclusion and exclusion criteria.The ARRIVE 2.0 guidelines were employed to evaluate the quality and risk-of-bias in the in vivo toxicity studies. The results demonstrated favourable toxicity profiles, often exhibiting reduced toxicity compared to free drugs or substances. Acute toxicity studies consistently reported high LD50 values, frequently exceeding 5000 mg/kg body weight, while subacute studies typically revealed no significant adverse effects. Various routes of administration varied, including oral, intravenous, intraperitoneal, inhalation, and topical, each demonstrating promising safety profiles.
Collapse
Affiliation(s)
- Shela Salsabila
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| | - Miski Aghnia Khairinisa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Irna Sufiawati
- Department of Oral Medicine, Faculty of Dentistry, Universitas Padjadjaran, Sumedang, Indonesia
| | - Wan Ezumi Mohd Fuad
- Programme of Biomedicine, School of Health Sciences, USM Health Campus, Kubang Kerian, Kelantan, Malaysia
| | | | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| |
Collapse
|
2
|
Santos LS, Tonel MZ, Martins MO, dos Santos CL. Theoretical Exploration of Chitosan Nanoparticles Associated with Platinum Compounds for Cancer Treatment: Insights from DFT and Molecular Docking Analyses. BIONANOSCIENCE 2025; 15:79. [DOI: 10.1007/s12668-024-01728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 01/04/2025]
|
3
|
Gupta DS, Tomar DA, Manohar DL, Panwar DP. Nanobots: The current scenario. Crit Rev Oncol Hematol 2025; 208:104652. [PMID: 39929350 DOI: 10.1016/j.critrevonc.2025.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
The detection and treatment of cancer could be completely transformed by the application of nanotechnology. New nanoscale targeting methods have emerged as a result of advancements in materials science and protein engineering, giving cancer patients new hope. Only a small number of nanocarriers have been approved for clinical usage in targeting cancer cells, despite the fact that many have been licensed for human studies. We examine a few of the approved formulations in this study and talk about the difficulties in transferring laboratory results to clinical settings. This review emphasises the inherent challenges in cancer therapy as well as the different nanocarriers and chemicals that can be used for specific tumour targeting. Future advancements in cancer detection and therapy could be facilitated by nanotechnology, but still the area remains vast and more clinical as well as laboratory trails are the need of the hour to overcome the present barriers and align the discovery of the potential application of nanobots from a mere lab work to a full-fledged clinical and translational work.
Collapse
Affiliation(s)
- Dr Shalini Gupta
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India.
| | - Dr Arushi Tomar
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India
| | - Dr Lakshmi Manohar
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India
| | - Dr Payal Panwar
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India
| |
Collapse
|
4
|
Solanki R, Patel S. Evodiamine and its nano-based approaches for enhanced cancer therapy: recent advances and challenges. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8430-8444. [PMID: 38821861 DOI: 10.1002/jsfa.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Evodiamine is a bioactive alkaloid extracted from the Evodia rutaecarpa plant. It has various pharmacological effects including anti-cancer, anti-bacterial, anti-obesity, anti-neurodegenerative, anti-depressant, and cardiac protective properties. Evodiamine demonstrates potent anti-cancer activity by inhibiting the proliferation of cancer cells in vitro and in vivo. Despite the health-promoting properties of evodiamine, its clinical use is hindered by low water solubility, poor bioavailability, and toxicity. Thus, there is a need to develop alternative drug delivery systems for evodiamine to enhance its solubility, permeability, and stability, as well as to facilitate targeted, prolonged, and controlled drug release. Nanocarriers can increase the therapeutic potential of evodiamine in cancer therapy while reducing adverse side effects. To date, numerous attempts have been made through the development of smart nanocarriers to overcome the drawbacks of evodiamine. This review focuses on the pharmacological applications, anti-cancer mechanisms, and limitations of evodiamine. Various nanocarriers, including lipid-based nanoparticles, polymeric nanoparticles, cyclodextrins, and so forth, have been discussed extensively for evodiamine delivery. Nano-drug delivery systems could increase the solubility, bioavailability, stability, and therapeutic efficacy of evodiamine. This review aims to present a comprehensive and critical evaluation of several nano-formulations of evodiamine for cancer therapy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
5
|
Hadkar VM, Mohanty C, Selvaraj CI. Biopolymeric nanocarriers in cancer therapy: unleashing the potency of bioactive anticancer compounds for enhancing drug delivery. RSC Adv 2024; 14:25149-25173. [PMID: 39139249 PMCID: PMC11317881 DOI: 10.1039/d4ra03911d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Effective cancer treatment is becoming a global concern, and recent developments in nanomedicine are essential for its treatment. Cancer is a severe metabolic syndrome that affects the human population and is a significant contributing factor to deaths globally. In science, nanotechnology offers rapidly developing delivery methods for natural bioactive compounds that are becoming increasingly prominent and can be used to treat diseases in a site-specific way. Chemotherapy and radiotherapy are conventional approaches for preventing cancer progression and have adverse effects on the human body. Many chemically synthesized drugs are used as anticancer agents, but they have several side effects; hence, they are less preferred. Medicinal plants and marine microorganisms represent a vast, mostly untapped reservoir of bioactive compounds for cancer treatment. However, they have several limitations, including nonspecific targeting, weak water solubility and limited therapeutic potential. An alternative option is the use of biopolymeric nanocarriers, which can generate effective targeted treatment therapies when conjugated with natural anticancer compounds. The present review focuses on biopolymeric nanocarriers utilizing natural sources as anticancer drugs with improved tumor-targeting efficiency. This review also covers various natural anticancer compounds, the advantages and disadvantages of natural and synthetic anticancer compounds, the problems associated with natural anticancer drugs and the advantages of biopolymeric nanocarriers over synthetic nanocarriers as drug delivery agents. This review also discusses various biopolymeric nanocarriers for enhancing the controlled delivery of anticancer compounds and the future development of nanomedicines for treating cancer.
Collapse
Affiliation(s)
- Vrushali Manoj Hadkar
- School of Biosciences and Technology, Vellore Institute of Technology (VIT) Vellore 632014 Tamil Nadu India
| | - Chirasmita Mohanty
- School of Biosciences and Technology, Vellore Institute of Technology (VIT) Vellore 632014 Tamil Nadu India
| | - Chinnadurai Immanuel Selvaraj
- Department of Genetics and Plant Breeding, VIT School of Agricultural Sciences and Advanced Learning (VAIAL), VIT Vellore 632014 Tamil Nadu India
| |
Collapse
|
6
|
Matějková N, Korecká L, Šálek P, Kočková O, Pavlova E, Kašparová J, Obořilová R, Farka Z, Frolich K, Adam M, Carrillo A, Šinkorová Z, Bílková Z. Hyaluronic Acid Nanoparticles with Parameters Required for In Vivo Applications: From Synthesis to Parametrization. Biomacromolecules 2024; 25:4934-4945. [PMID: 38943654 PMCID: PMC11323013 DOI: 10.1021/acs.biomac.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Hyaluronic acid is an excellent biocompatible material for in vivo applications. Its ability to bind CD44, a cell receptor involved in numerous biological processes, predetermines HA-based nanomaterials as unique carrier for therapeutic and theranostic applications. Although numerous methods for the synthesis of hyaluronic acid nanoparticles (HANPs) are available today, their low reproducibility and wide size distribution hinder the precise assessment of the effect on the organism. A robust and reproducible approach for producing HANPs that meet strict criteria for in vivo applications (e.g., to lung parenchyma) remains challenging. We designed and evaluated four protocols for the preparation of HANPs with those required parameters. The HA molecule was cross-linked by novel combinations of carbodiimide, and four different amine-containing compounds resulted in monodisperse HANPs with a low polydispersity index. By a complex postsynthetic characterization, we confirmed that the prepared HANPs meet the criteria for inhaled therapeutic delivery and other in vivo applications.
Collapse
Affiliation(s)
- Nikola Matějková
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Lucie Korecká
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Petr Šálek
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 6 162 00, Czech Republic
| | - Olga Kočková
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 6 162 00, Czech Republic
| | - Ewa Pavlova
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 6 162 00, Czech Republic
| | - Jitka Kašparová
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Radka Obořilová
- Central
European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice
5, Brno 625 00, Czech Republic
| | - Zdeněk Farka
- Central
European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice
5, Brno 625 00, Czech Republic
| | - Karel Frolich
- Department
of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Martin Adam
- Department
of Analytical Chemistry, Faculty of Chemical
Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Anna Carrillo
- Department
of Radiobiology, Faculty of Military Health
Sciences, University of Defence, Třebešská 1575, Hradec Králové 500 01, Czech Republic
| | - Zuzana Šinkorová
- Department
of Radiobiology, Faculty of Military Health
Sciences, University of Defence, Třebešská 1575, Hradec Králové 500 01, Czech Republic
| | - Zuzana Bílková
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| |
Collapse
|
7
|
Yarahmadi A, Dousti B, Karami-Khorramabadi M, Afkhami H. Materials based on biodegradable polymers chitosan/gelatin: a review of potential applications. Front Bioeng Biotechnol 2024; 12:1397668. [PMID: 39157438 PMCID: PMC11327468 DOI: 10.3389/fbioe.2024.1397668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 08/20/2024] Open
Abstract
Increased mass manufacturing and the pervasive use of plastics in many facets of daily life have had detrimental effects on the environment. As a result, these worries heighten the possibility of climate change due to the carbon dioxide emissions from burning conventional, non-biodegradable polymers. Accordingly, biodegradable gelatin and chitosan polymers are being created as a sustainable substitute for non-biodegradable polymeric materials in various applications. Chitosan is the only naturally occurring cationic alkaline polysaccharide, a well-known edible polymer derived from chitin. The biological activities of chitosan, such as its antioxidant, anticancer, and antimicrobial qualities, have recently piqued the interest of researchers. Similarly, gelatin is a naturally occurring polymer derived from the hydrolytic breakdown of collagen protein and offers various medicinal advantages owing to its unique amino acid composition. In this review, we present an overview of recent studies focusing on applying chitosan and gelatin polymers in various fields. These include using gelatin and chitosan as food packaging, antioxidants and antimicrobial properties, properties encapsulating biologically active substances, tissue engineering, microencapsulation technology, water treatment, and drug delivery. This review emphasizes the significance of investigating sustainable options for non-biodegradable plastics. It showcases the diverse uses of gelatin and chitosan polymers in tackling environmental issues and driving progress across different industries.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Behrooz Dousti
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mahdi Karami-Khorramabadi
- Department of Mechanical Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Alborz, Iran
| |
Collapse
|
8
|
Mishra B, Yadav AS, Malhotra D, Mitra T, Sinsinwar S, Radharani NNV, Sahoo SR, Patnaik S, Kundu GC. Chitosan Nanoparticle-Mediated Delivery of Curcumin Suppresses Tumor Growth in Breast Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1294. [PMID: 39120399 PMCID: PMC11314098 DOI: 10.3390/nano14151294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Curcumin is a nutraceutical known to have numerous medicinal effects including anticancer activity. However, due to its poor water solubility and bioavailability, the therapeutic impact of curcumin against cancer, including breast cancer, has been constrained. Encapsulating curcumin into chitosan nanoparticles (CHNPs) is an effective method to increase its bioavailability as well as antitumorigenic activity. In the current study, the effects of curcumin-encapsulated CHNPs (Cur-CHNPs) on cell migration, targeted homing and tumor growth were examined using in vitro and in vivo breast cancer models. Cur-CHNPs possessed a monodispersed nature with long-term colloidal stability, and demonstrated significant inhibition of cell viability in vitro, which was potentiated by 5-Fluorouracil (5-FU). Outcomes of the in vivo imaging studies confirmed effective tumor targeting and retention ability of Cur-CHNPs, thereby suppressing breast tumor growth in mice models. Overall, the results demonstrated that Cur-CHNPs could be an effective candidate drug formulation for management of breast cancer.
Collapse
Affiliation(s)
- Barnalee Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - Amit Singh Yadav
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
- National Centre for Cell Science (NCCS), Pune 411007, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - Tandrima Mitra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - Simran Sinsinwar
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - N. N. V. Radharani
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - Saroj Ranjan Sahoo
- Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar 751024, India;
| | - Srinivas Patnaik
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (B.M.); (A.S.Y.); (D.M.); (T.M.); (S.S.); (N.N.V.R.); (S.P.)
- National Centre for Cell Science (NCCS), Pune 411007, India
- Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar 751024, India;
| |
Collapse
|
9
|
Iskandar A, Kim SK, Wong TW. “Drug-Free” chitosan nanoparticles as therapeutic for cancer treatment. POLYM REV 2024; 64:818-871. [DOI: 10.1080/15583724.2024.2323943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Athirah Iskandar
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Se-Kwon Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Seoul, Republic of Korea
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Walweel N, Aydin O. Enhancing Therapeutic Efficacy in Cancer Treatment: Integrating Nanomedicine with Autophagy Inhibition Strategies. ACS OMEGA 2024; 9:27832-27852. [PMID: 38973850 PMCID: PMC11223161 DOI: 10.1021/acsomega.4c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024]
Abstract
The complicated stepwise lysosomal degradation process known as autophagy is in charge of destroying and eliminating damaged organelles and defective cytoplasmic components. This mechanism promotes metabolic adaptability and nutrition recycling. Autophagy functions as a quality control mechanism in cells that support homeostasis and redox balance under normal circumstances. However, the role of autophagy in cancer is controversial because, mostly depending on the stage of the tumor, it may either suppress or support the disease. While autophagy delays the onset of tumors and slows the dissemination of cancer in the early stages of tumorigenesis, numerous studies demonstrate that autophagy promotes the development and spread of tumors as well as the evolution and development of resistance to several anticancer drugs in advanced cancer stages. In this Review, we primarily emphasize the therapeutic role of autophagy inhibition in improving the treatment of multiple cancers and give a broad overview of how its inhibition modulates cancer responses. There have been various attempts to inhibit autophagy, including the use of autophagy inhibitor drugs, gene silencing therapy (RNA interference), and nanoparticles. In this Review, all these topics are thoroughly covered and illustrated by recent studies and field investigations.
Collapse
Affiliation(s)
- Nada Walweel
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
| | - Omer Aydin
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
- ERNAM-Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- ERKAM-Clinical-Engineering
Research and Implementation Center, Erciyes
University, Kayseri 38030, Turkey
| |
Collapse
|
11
|
Biswas A, Kumar S, Choudhury AD, Bisen AC, Sanap SN, Agrawal S, Mishra A, Verma SK, Kumar M, Bhatta RS. Polymers and their engineered analogues for ocular drug delivery: Enhancing therapeutic precision. Biopolymers 2024; 115:e23578. [PMID: 38577865 DOI: 10.1002/bip.23578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Ocular drug delivery is constrained by anatomical and physiological barriers, necessitating innovative solutions for effective therapy. Natural polymers like hyaluronic acid, chitosan, and gelatin, alongside synthetic counterparts such as PLGA and PEG, have gained prominence for their biocompatibility and controlled release profiles. Recent strides in polymer conjugation strategies have enabled targeted delivery through ligand integration, facilitating tissue specificity and cellular uptake. This versatility accommodates combined drug delivery, addressing diverse anterior (e.g., glaucoma, dry eye) and posterior segment (e.g., macular degeneration, diabetic retinopathy) afflictions. The review encompasses an in-depth exploration of each natural and synthetic polymer, detailing their individual advantages and disadvantages for ocular drug delivery. By transcending ocular barriers and refining therapeutic precision, these innovations promise to reshape the management of anterior and posterior segment eye diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
12
|
Băbuțan M, Botiz I. Morphological Characteristics of Biopolymer Thin Films Swollen-Rich in Solvent Vapors. Biomimetics (Basel) 2024; 9:396. [PMID: 39056837 PMCID: PMC11274445 DOI: 10.3390/biomimetics9070396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Biopolymers exhibit a large variety of attractive properties including biocompatibility, flexibility, gelation ability, and low cost. Therefore, especially in more recent years, they have become highly suitable for a wider and wider range of applications stretching across several key sectors such as those related to food packaging, pharmaceutic, and medical industries, just to name a few. Moreover, biopolymers' properties are known to be strongly dependent on the molecular arrangements adopted by such chains at the nanoscale and microscale. Fortunately, these arrangements can be altered and eventually optimized through a plethora of more or less efficient polymer processing methods. Here, we used a space-confined solvent vapor annealing (C-SVA) method to subject various biopolymers to rich swelling in solvent vapors in order to favor their further crystallization or self-assembly, with the final aim of obtaining thin biopolymer films exhibiting more ordered chain conformations. The results obtained by atomic force microscopy revealed that while the gelatin biopolymer nucleated and then crystallized into granular compact structures, other biopolymers preferred to self-assemble into (curved) lamellar rows composed of spherical nanoparticles (glycogen and chitosan) or into more complex helix-resembling morphologies (phytagel). The capability of the C-SVA processing method to favor crystallization and to induce self-assembly in various biopolymeric species or even monomeric units further emphasizes its great potential in the future structuring of a variety of biological (macro)molecules.
Collapse
Affiliation(s)
- Mihai Băbuțan
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Ioan Botiz
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Zhang YB, Wang JF, Wang MX, Peng J, Kong XD, Tian J. Nano-based drug delivery systems for active ingredients from traditional Chinese medicine: Harnessing the power of nanotechnology. Front Pharmacol 2024; 15:1405252. [PMID: 38910887 PMCID: PMC11190311 DOI: 10.3389/fphar.2024.1405252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction: Traditional Chinese medicine (TCM) is gaining worldwide popularity as a complementary and alternative medicine. The isolation and characterization of active ingredients from TCM has become optional strategies for drug development. In order to overcome the inherent limitations of these natural products such as poor water solubility and low bioavailability, the combination of nanotechnology with TCM has been explored. Taking advantage of the benefits offered by the nanoscale, various drug delivery systems have been designed to enhance the efficacy of TCM in the treatment and prevention of diseases. Methods: The manuscript aims to present years of research dedicated to the application of nanotechnology in the field of TCM. Results: The manuscript discusses the formulation, characteristics and therapeutic effects of nano-TCM. Additionally, the formation of carrier-free nanomedicines through self-assembly between active ingredients of TCM is summarized. Finally, the paper discusses the safety behind the application of nano-TCM and proposes potential research directions. Discussion: Despite some achievements, the safety of nano-TCM still need special attention. Furthermore, exploring the substance basis of TCM formulas from the perspective of nanotechnology may provide direction for elucidating the scientific intension of TCM formulas.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Tian
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
14
|
Thakare A, Sedani S, Kriplani S, Patel A, Umre U. Chitosan: A Versatile Biomaterial Revolutionizing Endodontic Therapy. Cureus 2024; 16:e62506. [PMID: 39022517 PMCID: PMC11253581 DOI: 10.7759/cureus.62506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Owing to their nanoscale dimensions, nanomaterials have special chemical and physical properties that set them apart from their bulk counterparts. The exterior dimensions of a minimum of half of the particles span several nanometers in their size distribution. Silver nanoparticles (AgNPs) are one type of nanomaterial that has been widely used because of their strong antibacterial properties, which can kill bacteria that are resistant to many drugs. Due to its potential for regulated release, localized retention, and safeguarding the active ingredients against environmental or enzymatic deterioration, nanoparticle technology has also emerged as a promising medication delivery method. The techniques for creating nanoparticles can be easily scaled up and used for a wide variety of medications. Since polymeric nanoparticles are biodegradable, biocompatible, and have more readily available formulation techniques than other nanoparticle drug delivery approaches, their range of applications has been expanding. Chitosan, also known as deacetylated polysaccharide, is a straight-chain cationic polymer that is typically a cationic copolymer. It can be generated naturally or by deacetylating chitin. Consequently, it contains an extensive array of biomedical applications, such as efficient healing of wounds, regeneration of tissues, regeneration of bone, and anti-infection. Because of its functional diversity, accessibility, and being both biodegradable and biocompatible, it has a wide spectrum of uses in dentistry. Recent research on chitosan-based nanoparticles is founded on the field's growing comprehension of the characteristics of chitosan and techniques for chemical or physical modification that are used to optimize the drug loading and release characteristics of the nanoparticles.
Collapse
Affiliation(s)
- Akash Thakare
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Shweta Sedani
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Simran Kriplani
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Aditya Patel
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Utkarsh Umre
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
15
|
Huang Y, Wang J, Mancino V, Pham J, O’Grady C, Li H, Jiang K, Chin D, Poon C, Ho PY, Gyarmati G, Peti-Peterdi J, Hallows KR, Chung EJ. Oral delivery of nanomedicine for genetic kidney disease. PNAS NEXUS 2024; 3:pgae187. [PMID: 38807632 PMCID: PMC11131023 DOI: 10.1093/pnasnexus/pgae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Chronic and genetic kidney diseases such as autosomal dominant polycystic kidney disease (ADPKD) have few therapeutic options, and clinical trials testing small molecule drugs have been unfavorable due to low kidney bioavailability and adverse side effects. Although nanoparticles can be designed to deliver drugs directly to the diseased site, there are no kidney-targeted nanomedicines clinically available, and most FDA-approved nanoparticles are administered intravenously which is not ideal for chronic diseases. To meet these challenges of chronic diseases, we developed a biomaterials-based strategy using chitosan particles (CP) for oral delivery of therapeutic, kidney-targeting peptide amphiphile micelles (KMs). We hypothesized that encapsuling KMs into CP would enhance the bioavailability of KMs upon oral administration given the high stability of chitosan in acidic conditions and mucoadhesive properties enabling absorption within the intestines. To test this, we evaluated the mechanism of KM access to the kidneys via intravital imaging and investigated the KM biodistribution in a porcine model. Next, we loaded KMs carrying the ADPKD drug metformin into CP (KM-CP-met) and measured in vitro therapeutic effect. Upon oral administration in vivo, KM-CP-met showed significantly greater bioavailability and accumulation in the kidneys as compared to KM only or free drug. As such, KM-CP-met treatment in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre which develops the disease over 120 days and mimics the slow development of ADPKD) showed enhanced therapeutic efficacy without affecting safety despite repeated treatment. Herein, we demonstrate the potential of KM-CP as a nanomedicine strategy for oral delivery for the long-term treatment of chronic kidney diseases.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Valeria Mancino
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jessica Pham
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Colette O’Grady
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Hui Li
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kairui Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Deborah Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher Poon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Pei-Yin Ho
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Georgina Gyarmati
- Department of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - János Peti-Peterdi
- Department of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Kenneth R Hallows
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
16
|
Singh S, Wairkar S. Revolutionizing the Treatment of Idiopathic Pulmonary Fibrosis: From Conventional Therapies to Advanced Drug Delivery Systems. AAPS PharmSciTech 2024; 25:78. [PMID: 38589751 DOI: 10.1208/s12249-024-02793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/16/2024] [Indexed: 04/10/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease that has been well-reported in the medical literature. Its incidence has risen, particularly in light of the recent COVID-19 pandemic. Conventionally, IPF is treated with antifibrotic drugs-pirfenidone and nintedanib-along with other drugs for symptomatic treatments, including corticosteroids, immunosuppressants, and bronchodilators based on individual requirements. Several drugs and biologicals such as fluorofenidone, thymoquinone, amikacin, paclitaxel nifuroxazide, STAT3, and siRNA have recently been evaluated for IPF treatment that reduces collagen formation and cell proliferation in the lung. There has been a great deal of research into various treatment options for pulmonary fibrosis using advanced delivery systems such as liposomal-based nanocarriers, chitosan nanoparticles, PLGA nanoparticles, solid lipid nanocarriers, and other nanoformulations such as metal nanoparticles, nanocrystals, cubosomes, magnetic nanospheres, and polymeric micelles. Several clinical trials are also ongoing for advanced IPF treatments. This article elaborates on the pathophysiology of IPF, its risk factors, and different advanced drug delivery systems for treating IPF. Although extensive preclinical data is available for these delivery systems, the clinical performance and scale-up studies would decide their commercial translation.
Collapse
Affiliation(s)
- Sanskriti Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
17
|
Karthik S, Mohan S, Magesh I, Bharathy A, Kolipaka R, Ganesamoorthi S, Sathiya K, Shanmugavadivu A, Gurunathan R, Selvamurugan N. Chitosan nanocarriers for non-coding RNA therapeutics: A review. Int J Biol Macromol 2024; 263:130361. [PMID: 38395284 DOI: 10.1016/j.ijbiomac.2024.130361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Non-coding RNA (ncRNA)-based therapies entail delivering ncRNAs to cells to regulate gene expression and produce proteins that combat infections, cancer, neurological diseases, and bone abnormalities. Nevertheless, the therapeutic potential of these ncRNAs has been limited due to the difficulties in delivering them to specific cellular targets within the body. Chitosan (CS), a biocompatible cationic polymer, interacts with negatively charged RNA molecules to form stable complexes. It is a promising biomaterial to develop nanocarriers for ncRNA delivery, overcoming several disadvantages of traditional delivery systems. CS-based nanocarriers can protect ncRNAs from degradation and target-specific delivery by surface modifications and intracellular release profiles over an extended period. This review briefly summarizes the recent developments in CS nanocarriers' synthesis and design considerations and their applications in ncRNA therapeutics for treating various diseases. We also discuss the challenges and limitations of CS-based nanocarriers for ncRNA therapeutics and potential strategies for overcoming these challenges.
Collapse
Affiliation(s)
- S Karthik
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sahithya Mohan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Induja Magesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ashok Bharathy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Rushil Kolipaka
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Srinidhi Ganesamoorthi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - K Sathiya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Raghav Gurunathan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
18
|
Dubashynskaya NV, Bokatyi AN, Sall TS, Egorova TS, Demyanova EV, Dubrovskii YA, Murashko EA, Anufrikov YA, Shasherina AY, Vlasova EN, Skorik YA. Hyaluronan/B12-chitosan polyelectrolyte complex for oral colistin administration. Int J Biol Macromol 2024; 263:130177. [PMID: 38360229 DOI: 10.1016/j.ijbiomac.2024.130177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Polyelectrolyte complexes (PECs) based on polysaccharides, including hyaluronic acid (HA) and chitosan (CS), are promising delivery systems for antimicrobial agents, including oral administration of the peptide antibiotic colistin (CT). Modification of CS with different targeting ligands to improve intestinal permeability is a suitable way to improve the oral bioavailability of polyelectrolyte particles. This study describes the procedure for obtaining CT-containing PECs based on HA and CS modified with cyanocobalamin (vitamin B12). In this case, vitamin B12 is used as a targeting ligand because it is absorbed in the ileum via specific transporter proteins. The resulting PECs had a hydrodynamic size of about 284 nm and a positive ζ-potential of about 26 mV; the encapsulation efficiency was 88.2 % and the CT content was 42.2 μg/mg. The developed systems provided a two-phase drug release: about 50 % of the CT was released in 0.5-1 h, and about 60 % of the antibiotic was cumulatively released in 5 h. The antimicrobial activity of encapsulated CT was maintained at the same level as the pure drug for at least 24 h (minimum inhibitory concentration against Pseudomonas aeruginosa was 2 μg/mL for both). In addition, the apparent permeability coefficient of CT in the PEC formulation was 2.4 × 10-6 cm/s. Thus, the incorporation of CT into HA- and vitamin B12-modified CS-based PECs can be considered as a simple and convenient method to improve the oral delivery of CT.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Tatiana S Sall
- Institute of Experimental Medicine, Acad. Pavlov St. 12, Saint Petersburg 197376, Russia
| | - Tatiana S Egorova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russia
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russia
| | - Yaroslav A Dubrovskii
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation
| | - Ekaterina A Murashko
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation
| | - Yuri A Anufrikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia
| | - Anna Y Shasherina
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia
| | - Elena N Vlasova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia.
| |
Collapse
|
19
|
Lu A, Li S. Polysaccharides as a Hydrophilic Building Block of Amphiphilic Block Copolymers for the Conception of Nanocarriers. Pharmaceutics 2024; 16:467. [PMID: 38675130 PMCID: PMC11054713 DOI: 10.3390/pharmaceutics16040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Polysaccharides are gaining increasing attention for their relevance in the production of sustainable materials. In the domain of biomaterials, polysaccharides play an important role as hydrophilic components in the design of amphiphilic block copolymers for the development of drug delivery systems, in particular nanocarriers due to their outstanding biocompatibility, biodegradability, and structural versatility. The presence of a reducing end in polysaccharide chains allows for the synthesis of polysaccharide-based block copolymers. Compared with polysaccharide-based graft copolymers, the structure of block copolymers can be more precisely controlled. In this review, the synthesis methods of polysaccharide-based amphiphilic block copolymers are discussed in detail, taking into consideration the structural characteristics of polysaccharides. Various synthetic approaches, including reductive amination, oxime ligation, and other chain-end modification reactions, are explored. This review also focuses on the advantages of polysaccharides as hydrophilic blocks in polymeric nanocarriers. The structure and unique properties of different polysaccharides such as cellulose, hyaluronic acid, chitosan, alginate, and dextran are described along with examples of their applications as hydrophilic segments in the synthesis of amphiphilic copolymers to construct nanocarriers for sustained drug delivery.
Collapse
Affiliation(s)
- Aijing Lu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China;
| | - Suming Li
- Institut Européen des Membranes, UMR CNRS 5635, Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
20
|
Abdollahy A, Salehi M, Mahami S, Bernkop-Schnürch A, Vahedi H, Gharravi AM, Mehrabi M. Therapeutic effect of 5-ASA and hesperidin-loaded chitosan/Eudragit® S100 nanoparticles as a pH-sensitive carrier for local targeted drug delivery in a rat model of ulcerative colitis. Int J Pharm 2024; 652:123838. [PMID: 38266937 DOI: 10.1016/j.ijpharm.2024.123838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Ulcerative colitis (UC) is an idiopathic disease characterized by colonic mucosal tissue destruction secondary to an excessive immune response. We synthesized pH-sensitive cross-linked chitosan/Eudragit® S100 nanoparticles (EU S100/CS NPs) as carriers for 5-aminosalicylic acid (5-ASA) and hesperidin (HSP), then conducted in-vitro and in-vivo studies and evaluated the therapeutic effects. In-vitro analysis revealed that the 5-ASA-loaded EU S100/CS NPs and the HSP-loaded EU S100/CS NPs had smooth and curved surfaces and ranged in size between 250 and 300 nm, with a zeta potential of 32 to 34 mV. FTIR analysis demonstrated that the drugs were loaded on the nanoparticles without significant alterations. The loading capacity and encapsulation efficiency of loading 5-ASA onto EU S100/CS NPs were 25.13 % and 60.81 %, respectively. Regarding HSP, these values were 38.34 % and 77.84 %, respectively. Drug release did not occur in simulated gastric fluid (SGF), while a slow-release pattern was recorded for both drugs in simulated intestinal fluid (SIF). In-vivo macroscopic and histopathological examinations revealed that both NPs containing drugs significantly relieved the symptoms of acetic acid (AA)-induced UC in Wistar rats. We conclude that the synthesized pH-sensitive 5-ASA/EU S100/CS NPs and HSP/EU S100/CS NPs offer promise in treating UC.
Collapse
Affiliation(s)
- Armana Abdollahy
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Solmaz Mahami
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Hamid Vahedi
- Clinical Research Development Unit, Imam Hossein Hospital, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Anneh Mohammad Gharravi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
21
|
Chauhan S, Harwansh RK. Recent advances in nanocarrier systems for ulcerative colitis: A new era of targeted therapy and biomarker integration. J Drug Deliv Sci Technol 2024; 93:105466. [DOI: 10.1016/j.jddst.2024.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Palankalieva A, Belcheva-Krivorova A. Silver compounds used in pediatric dentistry for caries arrest: A review of current materials and new technologies. Folia Med (Plovdiv) 2024; 66:19-25. [PMID: 38426461 DOI: 10.3897/folmed.66.e115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 03/02/2024] Open
Abstract
Silver compounds have been used in medicine and dentistry for centuries. Their use in pediatric dentistry has long been restricted because of some drawbacks, chief among them being the discoloration of teeth with black stains. However, recent advances in technology have resulted in the development of new silver agents that do not have the limitations of previously used ones. This led to the reintroduction of silver compounds in pediatric dentistry. The aim of the present review was to examine the evidence supporting the therapeutic use of silver compounds in pediatric dentistry for caries arrest, as well as the mode of action and biocompatibility, characteristics, advantages, and disadvantages of different silver-containing agents.
Collapse
|
23
|
Nair R, Paul P, Maji I, Gupta U, Mahajan S, Aalhate M, Guru SK, Singh PK. Exploring the current landscape of chitosan-based hybrid nanoplatforms as cancer theragnostic. Carbohydr Polym 2024; 326:121644. [PMID: 38142105 DOI: 10.1016/j.carbpol.2023.121644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
In the last decade, investigators have put significant efforts to develop several diagnostic and therapeutic strategies against cancer. Many novel nanoplatforms, including lipidic, metallic, and inorganic nanocarriers, have shown massive potential at preclinical and clinical stages for cancer diagnosis and treatment. Each of these nano-systems is distinct with its own benefits and limitations. The need to overcome the limitations of single-component nano-systems, improve their morphological and biological features, and achieve multiple functionalities has resulted in the emergence of hybrid nanoparticles (HNPs). These HNPs integrate multicomponent nano-systems with diagnostic and therapeutic functions into a single nano-system serving as promising nanotools for cancer theragnostic applications. Chitosan (CS) being a mucoadhesive, biodegradable, and biocompatible biopolymer, has emerged as an essential element for the development of HNPs offering several advantages over conventional nanoparticles including pH-dependent drug delivery, sustained drug release, and enhanced nanoparticle stability. In addition, the free protonable amino groups in the CS backbone offer flexibility to its structure, making it easy for the modification and functionalization of CS, resulting in better drug targetability and cell uptake. This review discusses in detail the existing different oncology-directed CS-based HNPs including their morphological characteristics, in-vitro/in-vivo outcomes, toxicity concerns, hurdles in clinical translation, and future prospects.
Collapse
Affiliation(s)
- Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
24
|
Khedr SI, Gomaa MM, Mogahed NMFH, Gamea GA, Khodear GAM, Sheta E, Soliman NAH, El Saadany AA, Salama AM. Trichinella spiralis: A new parasitic target for curcumin nanoformulas in mice models. Parasitol Int 2024; 98:102810. [PMID: 37730195 DOI: 10.1016/j.parint.2023.102810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Trichinosis spiralis is a global disease with significant economic impact. Albendazole is the current-treatment. Yet, the world-widely emerging antimicrobial resistance necessitates search for therapeutic substitutes. Curcumin is a natural compound with abundant therapeutic benefits. This study aimed to evaluate the potential of crude-curcumin, chitosan and for the first time curcumin-nano-emulsion and curcumin-loaded-chitosan-nanoparticles against Trichinella spiralis adults and larvae in acute and chronic trichinosis models. Trichinosis spiralis was induced in 96 Swiss-albino mice. Infected mice were divided into 2 groups. Group I constituted the acute model, where treatment started 2 h after infection for 5 successive days. Group II constituted the chronic model, where treatment started at the 30th day-post-infection and continued for 10 successive days (Refer to graphical abstract). Each group contained 8 subgroups that were designated Ia-Ih and IIa-IIh and included; a; Untreated-control, b; Albendazole-treated (Alb-treated), c; Crude-curcumin-treated (Cur-treated), d; Curcumin-nanoemulsion-treated (Cur-NE-treated), e; Albendazole and crude-curcumin-treated (Alb-Cur-treated), f; Albendazole and curcumin-nanoemulsion-treated (Alb-Cur-NE-treated), g; Chitosan-nanoparticles-treated (CS-NPs-treated) and h; Curcumin-loaded-chitosan-nanoparticles-treated (Cur-CS-NPs-treated). Additionally, six mice constituted control-uninfected group III. The effects of the used compounds on the parasite tegument, in-vivo parasitic load-worm burden, local pathology and MDA concentration in small intestines of acutely-infected and skeletal muscle of chronically-infected mice were studied. Results showed that albendazole was effective, yet, its combination with Cur-NE showed significant potentiation against adult worms and muscle larvae and alleviated the pathology in both models. Cur-CS-NPs exhibited promising results in both models. Crude-curcumin showed encouraging results especially against muscle larvae on long-term use. Treatments effectively reduced parasite load, local MDA level and CD31 expression with anti-inflammatory effect in intestine and muscle sections.
Collapse
Affiliation(s)
- Safaa Ibrahim Khedr
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt.
| | - Maha Mohamed Gomaa
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| | | | - Ghada A Gamea
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| | - Gehan A M Khodear
- Medical technology center, Medical Research Institute, Alexandria University, Egypt
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Nada A H Soliman
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Egypt
| | | | - Amina M Salama
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
25
|
Quiroga D, Coy-Barrera C. Use of Chitosan as a Precursor for Multiple Applications in Medicinal Chemistry: Recent Significant Contributions. Mini Rev Med Chem 2024; 24:1651-1684. [PMID: 38500287 DOI: 10.2174/0113895575275799240306105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Chitosan (CS) is a polymer made up of mainly deacetylated β-1,4 D-glucosamine units, which is part of a large group of D-glucosamine oligomers known as chitooligosaccharides, which can be obtained from chitin, most abundant natural polymer after cellulose and central component of the shrimp exoskeleton. It is known that it can be used for the development of materials, among which its use stands out in wastewater treatment (removal of metal ions, dyes, and as a membrane in purification processes), food industry (anti-cholesterol and fat, packaging material, preservative, and food additive), agriculture (seed and fertilizer coating, controlled release agrochemicals), pulp and paper industry (surface treatment, adhesive paper), cosmetics (body creams, lotions, etc.), in the engineering of tissues, wound healing, as excipients for drug administration, gels, membranes, nanofibers, beads, microparticles, nanoparticles, scaffolds, sponges, and diverse biological ones, specifically antibacterial and antifungal activities. This article reviews the main contributions published in the last ten years regarding the use and application of CS in medical chemistry. The applications exposed here involve regenerative medicine in the design of bioprocesses and tissue engineering, Pharmaceutical sciences to obtain biomaterials, polymers, biomedicine, and the use of nanomaterials and nanotechnology, toxicology, and Clinical Pharmaceuticals, emphasizing the perspectives and the direction that can take research in this area.
Collapse
Affiliation(s)
- Diego Quiroga
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Carlos Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| |
Collapse
|
26
|
Piryaei M, Azimi S. Preparation and evaluation of smart food packaging films with anthocyanin Sardasht black grape based on Astragalus gummifer and chitosan nanoparticles. Int J Biol Macromol 2024; 254:127974. [PMID: 37949273 DOI: 10.1016/j.ijbiomac.2023.127974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
A new and green development in the field of food packaging is the use of colorimetric films containing anthocyanins, which not only can respond to food spoilage but also have no environmental risk and help the environment full of unacceptable and polluted substances created by humans. In this research, a completely natural film (GCNG) was made using natural materials including tragacanth gummifer (G), chitosan nanoparticles (C), and an extract containing anthocyanins of a type of wild grape called Sardasht black (G) with Alumina nanoparticles (N) for use in food packaging. This biodegradable film (GCNG) presented relatively wide color differences from red to blue in different buffer solutions (pH 2-12), which was clearly observed by the naked eye. Sardasht black grape extract contains large amounts of anthocyanins and antioxidants that can be extracted and used in the preparation of packaging films. The properties of prepared films, including mechanical properties, permeability to water vapor, solubility, swelling, as well as antimicrobial properties were checked by measuring the diameter of the diffusion area by agar disk test. GCNG films showed strong antioxidant activity and good antibacterial activity against E. coli and S. aureus. The results suggested this film has promising potential as an active and smart packaging material for applications in the food industry.
Collapse
Affiliation(s)
- Marzieh Piryaei
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh 55181-83111, Iran.
| | - Shabnam Azimi
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh 55181-83111, Iran
| |
Collapse
|
27
|
Albogami B. Evaluation of the Antiparasitic, Antihepatotoxicity, and Antioxidant Efficacy of Quercetin and Chitosan, Either Alone or in Combination, against Infection Induced by Giardia lamblia in Male Rats. Life (Basel) 2023; 13:2316. [PMID: 38137916 PMCID: PMC10744343 DOI: 10.3390/life13122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Giardia lamblia (G. lamblia) is one of the most common protozoal infections and a key cause of malabsorption, some cases of mental developmental issues in children, and reduced body weight. The known antiparasitic medications, which are the standard drugs used for parasitic treatment, have several side effects and sometimes exhibit low efficacy. Therefore, the current study aimed to evaluate the treatment with quercetin (QC) or chitosan (CH), either alone or in combination, as possible alternative therapeutic agents that may alleviate the side effects of G. lamblia infections and restore the normal architecture of the intestinal muscles. They are investigated as alternatives to other routinely administered drugs that may gradually lose their efficacy due to human resistance to therapeutic agents. This study was carried out on 50 male albino rats that were divided into five groups with 10 rats in each group: the control group (Group I), the infected non-treated group (Group II), the infected group treated with QC (Group III), the infected treated group with CH (Group IV), and the infected group treated with a combination of QC and CH (Group V). The effect was first evaluated by counting the G. lamblia fecal cysts in the stool, examining histopathological sections of the intestine with the appearance of trophozoites in the infected group, and conducting a transmission electron microscopic examination of the tissues of the small intestine. Alterations in the biochemical parameters of liver and kidney function and the antioxidant enzymes in the liver tissues of SOD, CAT, and GSH, and non-enzymatic markers of lipid peroxidation (MDA) were evaluated. The results showed a significant decline in the number of parasites in the stool samples, with a marked elevation in the number of trophozoites in the intestinal sections of the infected non-treated group as compared to the infected treated groups. The last group, which was treated with a combination of QC and CH, showed the best results in terms of a decline in the infection rate of G. lamblia in stool samples, with a marked and clear improvement in the intestinal mucosa, regular muscles with normal enteric ganglions, and reduced rates of intestinal injuries caused by G. lamblia trophozoites. Both QC and CH had non-toxic effects on the biochemical parameters of the liver and kidneys, as well as pronounced antioxidant activities due to the elevation of SOD, CAT, and GSH in conjunction with a decline in the levels of MDA. A combination of QC and CH can be considered a potent antiparasitic, anti-hepatotoxic, and antioxidant therapeutic agent; it could constitute a promising alternative treatment agent against G. lamblia infection.
Collapse
Affiliation(s)
- Bander Albogami
- Biology Department, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
28
|
Chen M, Lan H, Jin K, Chen Y. Responsive nanosystems for targeted therapy of ulcerative colitis: Current practices and future perspectives. Drug Deliv 2023; 30:2219427. [PMID: 37288799 PMCID: PMC10405869 DOI: 10.1080/10717544.2023.2219427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
The pharmacological approach to treating gastrointestinal diseases is suffering from various challenges. Among such gastrointestinal diseases, ulcerative colitis manifests inflammation at the colon site specifically. Patients suffering from ulcerative colitis notably exhibit thin mucus layers that offer increased permeability for the attacking pathogens. In the majority of ulcerative colitis patients, the conventional treatment options fail in controlling the symptoms of the disease leading to distressing effects on the quality of life. Such a scenario is due to the failure of conventional therapies to target the loaded moiety into specific diseased sites in the colon. Targeted carriers are needed to address this issue and enhance the drug effects. Conventional nanocarriers are mostly readily cleared and have nonspecific targeting. To accumulate the desired concentration of the therapeutic candidates at the inflamed area of the colon, smart nanomaterials with responsive nature have been explored recently that include pH responsive, reactive oxygen species responsive (ROS), enzyme responsive and thermo - responsive smart nanocarrier systems. The formulation of such responsive smart nanocarriers from nanotechnology scaffolds has resulted in the selective release of therapeutic drugs, avoiding systemic absorption and limiting the undesired delivery of targeting drugs into healthy tissues. Recent advancements in the field of responsive nanocarrier systems have resulted in the fabrication of multi-responsive systems i.e. dual responsive nanocarriers and derivitization that has increased the biological tissues and smart nanocarrier's interaction. In addition, it has also led to efficient targeting and significant cellular uptake of the therapeutic moieties. Herein, we have highlighted the latest status of the responsive nanocarrier drug delivery system, its applications for on-demand delivery of drug candidates for ulcerative colitis, and the prospects are underpinned.
Collapse
Affiliation(s)
- Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yun Chen
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
29
|
Alam P, Imran M, Ahmed S, Majid H, Akhtar A. Chitosan Nanoparticles for Enhanced Delivery of Sida cordifolia Extract: Formulation, Optimization and Bioactivity Assessment. Pharmaceuticals (Basel) 2023; 16:1561. [PMID: 38004427 PMCID: PMC10674916 DOI: 10.3390/ph16111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
In a continuous search for an essential antidiabetic agent, Sida cordifolia hydroalcoholic (SCHA) extract-loaded chitosan nanoparticles (SCHA-CS-NP) were optimized. The Box-Behnken design (BBD Design-Expert software, version 14) with three parameters was used to optimize the nanoparticles after creating them using the ion gelation method. The chitosan and Tween 20 contents and the stirring speed were chosen as the independent variables, and their separate and combined effects on particle size (Y1), polydispersity index (Y2) and entrapment efficiency (Y3) were observed. The optimized formulation showed a particle size of 51 nm, an entrapment efficiency of 84.54% and a polydispersity index of 0.391. Physicochemical characterization, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), a drug release study, an ex vivo permeation study, and an antioxidant study were performed. Confocal laser scanning microscopy (CLSM) images demonstrated that chitosan nanoparticles loaded with rhodamine B-laden SCHA extract had superior penetration compared to the control (rhodamine B solution). Furthermore, compared to conventional ascorbic acid (IC50 = 45 µg/mL), a superior antioxidant activity was discovered for SCHA-CS-NPs (IC50 = 86.45 ± 2.24 µg/mL), while SCHA-CS-NPs also exhibited strong antidiabetic potential (IC50 = 93.71 ± 1.79 µg/mL) compared to standard acarbose (IC50 = 97.25 ± 1.43 µg/mL). The overall results demonstrated that SCHA-CS-NPs are a promising and efficient formulation for oral delivery.
Collapse
Affiliation(s)
- Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Mohd Imran
- Department of Pharmacognosy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Shahnawaz Ahmed
- Department of Clinical Research, Max Super Speciality Hospital, Saket, New Delhi 110017, India;
| | - Haya Majid
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Ali Akhtar
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
30
|
Dubashynskaya NV, Bokatyi AN, Trulioff AS, Rubinstein AA, Kudryavtsev IV, Skorik YA. Development and Bioactivity of Zinc Sulfate Cross-Linked Polysaccharide Delivery System of Dexamethasone Phosphate. Pharmaceutics 2023; 15:2396. [PMID: 37896156 PMCID: PMC10610283 DOI: 10.3390/pharmaceutics15102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Improving the biopharmaceutical properties of glucocorticoids (increasing local bioavailability and reducing systemic toxicity) is an important challenge. The aim of this study was to develop a dexamethasone phosphate (DexP) delivery system based on hyaluronic acid (HA) and a water-soluble cationic chitosan derivative, diethylaminoethyl chitosan (DEAECS). The DexP delivery system was a polyelectrolyte complex (PEC) resulting from interpolymer interactions between the HA polyanion and the DEAECS polycation with simultaneous incorporation of zinc ions as a cross-linking agent into the complex. The developed PECs had a hydrodynamic diameter of 244 nm and a ζ-potential of +24.4 mV; the encapsulation efficiency and DexP content were 75.6% and 45.4 μg/mg, respectively. The designed DexP delivery systems were characterized by both excellent mucoadhesion and prolonged drug release (approximately 70% of DexP was released within 10 h). In vitro experiments showed that encapsulation of DexP in polysaccharide nanocarriers did not reduce its anti-inflammatory activity compared to free DexP.
Collapse
Affiliation(s)
- Natallia V. Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 Saint Petersburg, Russia; (A.N.B.); (Y.A.S.)
| | - Anton N. Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 Saint Petersburg, Russia; (A.N.B.); (Y.A.S.)
| | - Andrey S. Trulioff
- Institute of Experimental Medicine, Acad. Pavlov St. 12, 197376 Saint Petersburg, Russia; (A.S.T.); (A.A.R.); (I.V.K.)
| | - Artem A. Rubinstein
- Institute of Experimental Medicine, Acad. Pavlov St. 12, 197376 Saint Petersburg, Russia; (A.S.T.); (A.A.R.); (I.V.K.)
| | - Igor V. Kudryavtsev
- Institute of Experimental Medicine, Acad. Pavlov St. 12, 197376 Saint Petersburg, Russia; (A.S.T.); (A.A.R.); (I.V.K.)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 Saint Petersburg, Russia; (A.N.B.); (Y.A.S.)
| |
Collapse
|
31
|
Xie G, Lin S, Wu F, Liu J. Nanomaterial-based ophthalmic drug delivery. Adv Drug Deliv Rev 2023; 200:115004. [PMID: 37433372 DOI: 10.1016/j.addr.2023.115004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
The low bioavailability and side effects of conventional drugs for eye disease necessitate the development of efficient drug delivery systems. Accompanying the developments of nanofabrication techniques, nanomaterials have been recognized as promising tools to overcome these challenges due to their flexible and programmable properties. Given the advances achieved in material science, a broad spectrum of functional nanomaterials capable of overcoming various ocular anterior and posterior segment barriers have been explored to satisfy the demands for ocular drug delivery. In this review, we first highlight the unique functions of nanomaterials suitable for carrying and transporting ocular drugs. Then, various functionalization strategies are emphasized to endow nanomaterials with superior performance in enhanced ophthalmic drug delivery. The rational design of several affecting factors is essential for ideal nanomaterial candidates and is depicted as well. Lastly, we introduce the current applications of nanomaterial-based delivery systems in the therapy of different ocular anterior and posterior segment diseases. The limitations of these delivery systems as well as potential solutions are also discussed. This work will inspire innovative design thinking for the development of nanotechnology-mediated strategies for advanced drug delivery and treatment toward ocular diseases.
Collapse
Affiliation(s)
- Guocheng Xie
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
32
|
Herdiana Y. Chitosan Nanoparticles for Gastroesophageal Reflux Disease Treatment. Polymers (Basel) 2023; 15:3485. [PMID: 37631542 PMCID: PMC10460071 DOI: 10.3390/polym15163485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Gastroesophageal Reflux Disease (GERD) is a chronic ailment that results from the backward flow of stomach acid into the esophagus, causing heartburn and acid regurgitation. This review explores nanotechnology as a novel treatment approach for GERD. Chitosan nanoparticles (CSNPs) offer several advantages, including biocompatibility, biodegradability, and targeted drug delivery capabilities. CSNPs have been extensively studied due to their ability to encapsulate and release medications in a controlled manner. Different nanoparticle (NP) delivery systems, including gels, microspheres, and coatings, have been developed to enhance drug retention, drug targeting, and controlled release in the esophagus. These nanoparticles can target specific molecular pathways associated with acid regulation, esophageal tissue protection, and inflammation modulation. However, the optimization of nanoparticle formulations faces challenges, including ensuring stability, scalability, and regulatory compliance. The future may see CSNPs combined with other treatments like proton pump inhibitors (PPIs) or mucosal protectants for a synergistic therapeutic approach. Thus, CSNPs provide exciting opportunities for novel GERD treatment strategies.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
33
|
Abdel-Wahhab KG, Ashry M, Hassan LK, Gadelmawla MHA, Elqattan GM, El-Fakharany EM, Mannaaa FA. Nano-chitosan/bovine lactoperoxidase and lactoferrin formulation modulates the hepatic deterioration induced by 7,12-dimethylbenz[a]anthracene. COMPARATIVE CLINICAL PATHOLOGY 2023. [DOI: 10.1007/s00580-023-03510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 11/09/2023]
|
34
|
Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol Oncol 2023; 16:74. [PMID: 37452423 PMCID: PMC10347767 DOI: 10.1186/s13045-023-01463-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Early detection and diagnosis of many cancers is very challenging. Late stage detection of a cancer always leads to high mortality rates. It is imperative to develop novel and more sensitive and effective diagnosis and therapeutic methods for cancer treatments. The development of new cancer treatments has become a crucial aspect of medical advancements. Nanobots, as one of the most promising applications of nanomedicines, are at the forefront of multidisciplinary research. With the progress of nanotechnology, nanobots enable the assembly and deployment of functional molecular/nanosized machines and are increasingly being utilized in cancer diagnosis and therapeutic treatment. In recent years, various practical applications of nanobots for cancer treatments have transitioned from theory to practice, from in vitro experiments to in vivo applications. In this paper, we review and analyze the recent advancements of nanobots in cancer treatments, with a particular emphasis on their key fundamental features and their applications in drug delivery, tumor sensing and diagnosis, targeted therapy, minimally invasive surgery, and other comprehensive treatments. At the same time, we discuss the challenges and the potential research opportunities for nanobots in revolutionizing cancer treatments. In the future, medical nanobots are expected to become more sophisticated and capable of performing multiple medical functions and tasks, ultimately becoming true nanosubmarines in the bloodstream.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Peng Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC.
| |
Collapse
|
35
|
Altuntaş E, Özkan B, Güngör S, Özsoy Y. Biopolymer-Based Nanogel Approach in Drug Delivery: Basic Concept and Current Developments. Pharmaceutics 2023; 15:1644. [PMID: 37376092 DOI: 10.3390/pharmaceutics15061644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their increased surface area, extent of swelling and active substance-loading capacity and flexibility, nanogels made from natural and synthetic polymers have gained significant interest in scientific and industrial areas. In particular, the customized design and implementation of nontoxic, biocompatible, and biodegradable micro/nano carriers makes their usage very feasible for a range of biomedical applications, including drug delivery, tissue engineering, and bioimaging. The design and application methodologies of nanogels are outlined in this review. Additionally, the most recent advancements in nanogel biomedical applications are discussed, with particular emphasis on applications for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Sevgi Güngör
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| |
Collapse
|
36
|
Tran TH, Tran PTT, Truong DH. Lactoferrin and Nanotechnology: The Potential for Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15051362. [PMID: 37242604 DOI: 10.3390/pharmaceutics15051362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Lactoferrin (Lf)-a glycoprotein of the transferrin family-has been investigated as a promising molecule with diverse applications, including infection inhibition, anti-inflammation, antioxidant properties and immune modulation. Along with that, Lf was found to inhibit the growth of cancerous tumors. Owing to unique properties such as iron-binding and positive charge, Lf could interrupt the cancer cell membrane or influence the apoptosis pathway. In addition, being a common mammalian excretion, Lf offers is promising in terms of targeting delivery or the diagnosis of cancer. Recently, nanotechnology significantly enhanced the therapeutic index of natural glycoproteins such as Lf. Therefore, in the context of this review, the understanding of Lf is summarized and followed by different strategies of nano-preparation, including inorganic nanoparticles, lipid-based nanoparticles and polymer-based nanoparticles in cancer management. At the end of the study, the potential future applications are discussed to pave the way for translating Lf into actual usage.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
| | - Phuong Thi Thu Tran
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | | |
Collapse
|
37
|
Jha R, Mayanovic RA. A Review of the Preparation, Characterization, and Applications of Chitosan Nanoparticles in Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13081302. [PMID: 37110887 PMCID: PMC10140956 DOI: 10.3390/nano13081302] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 06/12/2023]
Abstract
Chitosan is a fibrous compound derived from chitin, which is the second most abundant natural polysaccharide and is produced by crustaceans, including crabs, shrimps, and lobsters. Chitosan has all of the important medicinal properties, including biocompatibility, biodegradability, and hydrophilicity, and it is relatively nontoxic and cationic in nature. Chitosan nanoparticles are particularly useful due to their small size, providing a large surface-to-volume ratio, and physicochemical properties that may differ from that of their bulk counterparts; thus, chitosan nanoparticles (CNPs) are widely used in biomedical applications and, particularly, as contrast agents for medical imaging and as vehicles for drug and gene delivery into tumors. Because CNPs are formed from a natural biopolymer, they can readily be functionalized with drugs, RNA, DNA, and other molecules to target a desired result in vivo. Furthermore, chitosan is approved by the United States Food and Drug Administration as being Generally Recognized as Safe (GRAS). This paper reviews the structural characteristics and various synthesis methods used to produce chitosan nanoparticles and nanostructures, such as ionic gelation, microemulsion, polyelectrolyte complexing, emulsification solvent diffusion, and the reverse micellar method. Various characterization techniques and analyses are also discussed. In addition, we review drug delivery applications of chitosan nanoparticles, including for ocular, oral, pulmonary, nasal, and vaginal methodologies, and applications in cancer therapy and tissue engineering.
Collapse
|
38
|
Abdelhamid AE, Ahmed EH, Awad HM, Ayoub MMH. Synthesis and cytotoxic activities of selenium nanoparticles incorporated nano-chitosan. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
AbstractNew system compromising of chitosan nanoparticles encapsulated pre-synthesized selenium nanoparticles in the presence of 5-fluorouracil was successfully prepared and used for cancer antiproliferation. Selenium nanoparticles were synthesized using ascorbic acid as reducing agent under mild condition. Chitosan nanoparticles were prepared via ionic gelation technique using sodium tri-polyphosphate. Characterization of the prepared nanoparticles was carried out using FTIR, TEM, XRD, TGA and dynamic light scattering (DLS). The results displayed the formation of selenium nanoparticles with an average size 20 nm and chitosan nanoparticles with an average size 207 and 250 nm for neat nano-chitosan and chitosan incorporated 5-fluorouracil/selenium nanoparticles, respectively. The encapsulated nanocomposites were tested for treatment of cancer cell of human colorectal carcinoma (HCT-116), human liver carcinoma (HepG-2), and human breast adenocarcinoma MCF-7. The results indicated the potent cytotoxic activities of all nanocomposite toward the tested cells with enhanced anticancer activity rather than the single drug or neat selenium nanoparticle. All composites were tested against non-tumor fibroblast-derived cell line (BJ) and demonstrated very low cytotoxicity.
Collapse
|
39
|
Shtykalova S, Deviatkin D, Freund S, Egorova A, Kiselev A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life (Basel) 2023; 13:903. [PMID: 37109432 PMCID: PMC10142071 DOI: 10.3390/life13040903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Over the past decades, non-viral DNA and RNA delivery systems have been intensively studied as an alternative to viral vectors. Despite the most significant advantage over viruses, such as the lack of immunogenicity and cytotoxicity, the widespread use of non-viral carriers in clinical practice is still limited due to the insufficient efficacy associated with the difficulties of overcoming extracellular and intracellular barriers. Overcoming barriers by non-viral carriers is facilitated by their chemical structure, surface charge, as well as developed modifications. Currently, there are many different forms of non-viral carriers for various applications. This review aimed to summarize recent developments based on the essential requirements for non-viral carriers for gene therapy.
Collapse
Affiliation(s)
- Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Dmitriy Deviatkin
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Svetlana Freund
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| |
Collapse
|
40
|
Sreena R, Nathanael AJ. Biodegradable Biopolymeric Nanoparticles for Biomedical Applications-Challenges and Future Outlook. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062364. [PMID: 36984244 PMCID: PMC10058375 DOI: 10.3390/ma16062364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
Biopolymers are polymers obtained from either renewable or non-renewable sources and are the most suitable candidate for tailor-made nanoparticles owing to their biocompatibility, biodegradability, low toxicity and immunogenicity. Biopolymeric nanoparticles (BPn) can be classified as natural (polysaccharide and protein based) and synthetic on the basis of their origin. They have been gaining wide interest in biomedical applications such as tissue engineering, drug delivery, imaging and cancer therapy. BPn can be synthesized by various fabrication strategies such as emulsification, ionic gelation, nanoprecipitation, electrospray drying and so on. The main aim of the review is to understand the use of nanoparticles obtained from biodegradable biopolymers for various biomedical applications. There are very few reviews highlighting biopolymeric nanoparticles employed for medical applications; this review is an attempt to explore the possibilities of using these materials for various biomedical applications. This review highlights protein based (albumin, gelatin, collagen, silk fibroin); polysaccharide based (chitosan, starch, alginate, dextran) and synthetic (Poly lactic acid, Poly vinyl alcohol, Poly caprolactone) BPn that has recently been used in many applications. The fabrication strategies of different BPn are also being highlighted. The future perspective and the challenges faced in employing biopolymeric nanoparticles are also reviewed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
41
|
Elmowafy M, Shalaby K, Elkomy MH, Alsaidan OA, Gomaa HAM, Abdelgawad MA, Mostafa EM. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers (Basel) 2023; 15:1123. [PMID: 36904364 PMCID: PMC10007077 DOI: 10.3390/polym15051123] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In the last few decades, several natural bioactive agents have been widely utilized in the treatment and prevention of many diseases owing to their unique and versatile therapeutic effects, including antioxidant, anti-inflammatory, anticancer, and neuroprotective action. However, their poor aqueous solubility, poor bioavailability, low GIT stability, extensive metabolism as well as short duration of action are the most shortfalls hampering their biomedical/pharmaceutical applications. Different drug delivery platforms have developed in this regard, and a captivating tool of this has been the fabrication of nanocarriers. In particular, polymeric nanoparticles were reported to offer proficient delivery of various natural bioactive agents with good entrapment potential and stability, an efficiently controlled release, improved bioavailability, and fascinating therapeutic efficacy. In addition, surface decoration and polymer functionalization have opened the door to improving the characteristics of polymeric nanoparticles and alleviating the reported toxicity. Herein, a review of the state of knowledge on polymeric nanoparticles loaded with natural bioactive agents is presented. The review focuses on frequently used polymeric materials and their corresponding methods of fabrication, the needs of such systems for natural bioactive agents, polymeric nanoparticles loaded with natural bioactive agents in the literature, and the potential role of polymer functionalization, hybrid systems, and stimuli-responsive systems in overcoming most of the system drawbacks. This exploration may offer a thorough idea of viewing the polymeric nanoparticles as a potential candidate for the delivery of natural bioactive agents as well as the challenges and the combating tools used to overcome any hurdles.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| |
Collapse
|
42
|
Guadarrama-Escobar OR, Serrano-Castañeda P, Anguiano-Almazán E, Vázquez-Durán A, Peña-Juárez MC, Vera-Graziano R, Morales-Florido MI, Rodriguez-Perez B, Rodriguez-Cruz IM, Miranda-Calderón JE, Escobar-Chávez JJ. Chitosan Nanoparticles as Oral Drug Carriers. Int J Mol Sci 2023; 24:4289. [PMID: 36901719 PMCID: PMC10001540 DOI: 10.3390/ijms24054289] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The use of nanoparticles as drug delivery systems has increased in importance in the last decades. Despite the disadvantages of difficulty swallowing, gastric irritation, low solubility, and poor bioavailability, oral administration stands out as the most widely used route for therapeutic treatments, though it may not always be the most effective route. The effect of the first hepatic pass is one of the primary challenges that drugs must overcome to carry out their therapeutic effect. For these reasons, controlled-release systems based on nanoparticles synthesized from biodegradable natural polymers have been reported to be very efficient in enhancing oral delivery in multiple studies. Chitosan has been shown to have an extensive variability of properties and roles in the pharmaceutical and health fields; of its most important properties are the ability to encapsulate and transport drugs within the body and enhance the drug interaction with the target cells, which improves the efficacy of the encapsulated drugs. The physicochemical properties of chitosan give it the ability to form nanoparticles through multiple mechanisms, which will be addressed in this article. The present review article focuses on highlighting the applications of chitosan nanoparticles for oral drug delivery.
Collapse
Affiliation(s)
- Omar Rodrigo Guadarrama-Escobar
- Unidad de Investigación Multidisciplinaria-Lab 12, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Pablo Serrano-Castañeda
- Unidad de Investigación Multidisciplinaria-Lab 12, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Ericka Anguiano-Almazán
- Unidad de Investigación Multidisciplinaria-Lab 12, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria L14 (Ciencia y Tecnología de los Materiales), Facultad de Estudios superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México 54714, Mexico
| | - Ma. Concepción Peña-Juárez
- Unidad de Investigación Multidisciplinaria-Lab 12, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Ricardo Vera-Graziano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, CU, Coyoacán, Ciudad de México 04510, Mexico
| | - Miriam Isabel Morales-Florido
- Unidad de Investigación Multidisciplinaria-Lab 12, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
- Laboratorio de Farmacia Molecular y Liberación Controlada, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Xochimilco 04960, Mexico
| | - Betsabe Rodriguez-Perez
- Laboratorio de Servicio de Análisis de Propóleos (LASAP), Unidad de Investigación Multidisciplinaria (UIM), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico
| | - Isabel Marlen Rodriguez-Cruz
- Unidad de Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Zumpango, Carretera Zumpango-Jilotzingo #400, Barrio de Santiago, 2ª Sección, Zumpango 55600, Mexico
| | - Jorge Esteban Miranda-Calderón
- Laboratorio de Farmacia Molecular y Liberación Controlada, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Xochimilco 04960, Mexico
| | - José Juan Escobar-Chávez
- Unidad de Investigación Multidisciplinaria-Lab 12, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| |
Collapse
|
43
|
Chitosan-Based Nanoparticles as Effective Drug Delivery Systems-A review. Molecules 2023; 28:molecules28041963. [PMID: 36838951 PMCID: PMC9959713 DOI: 10.3390/molecules28041963] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Chitosan-based nanoparticles (chitosan-based nanocomposites; chitosan nanoparticles; ChNPs) are promising materials that are receiving a lot of attention in the last decades. ChNPs have great potential as nanocarriers. They are able to encapsulate drugs as well as active compounds and deliver them to a specific place in the body providing a controlled release. In the article, an overview has been made of the most frequently used preparation methods, and the developed applications in medicine. The presentation of the most important information concerning ChNPs, especially chitosan's properties in drug delivery systems (DDS), as well as the method of NPs production was quoted. Additionally, the specification and classification of the NPs' morphological features determined their application together with the methods of attaching drugs to NPs. The latest scientific reports of the DDS using ChNPs administered orally, through the eye, on the skin and transdermally were taken into account.
Collapse
|
44
|
Abdelsattar AS, Yakoup AY, Khaled Y, Safwat A, El-Shibiny A. The synergistic effect of using bacteriophages and chitosan nanoparticles against pathogenic bacteria as a novel therapeutic approach. Int J Biol Macromol 2023; 228:374-384. [PMID: 36581028 DOI: 10.1016/j.ijbiomac.2022.12.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Public health and environmental security are seriously at risk due to the growing contamination of pathogenic microorganisms. Therefore, effective antimicrobials are urgently needed. In our study, the antimicrobial effects of three types of nanoparticles were investigated with phage. The biosynthesis of nanoparticles was confirmed based on the color change and shapes, which tended to be mono-dispersed with a spherical shape with a size range of 20-35 nm for Ag-CS-NPs; 15-30 nm for Phage-CS-NPs (Ph-CS-NPs); and 5-35 nm for Propolis-CS-NPs (Pro-CS-NPs). Nanoparticles displayed peaks between 380-420 nm, 335-380 nm, and below 335 nm for Ag-CS-NPs, Pro-CS-NPs, and Ph-CS NPs, respectively. Throughout the three synthesized nanoparticles, AgCs NPs represented a higher antibacterial effect in combination with phages. It showed MIC against S. sciuri, S. Typhimurium, and P. aeruginosa between 31.2 and 62.2 μg/mL and MBC at 500, 62.5, and 31.2 μg/mL, respectively, while in combination with phages showed MIC at 62.2, 31.2, and 15.6 μg/mL, respectively and MBC at 125, 62.2, and 15.6 μg/mL, respectively. Furthermore, a significant killing efficiency was observed with 16.5-30.1 μg/mL of Ag-CS NPs combined with phages. In conclusion, Ag-CS-NPs with phages present potential bactericidal and inhibitory effects against Gram-positive and Gram-negative bacteria, as well as against the production of biofilms.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Aghapy Yermans Yakoup
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Yousef Khaled
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt.
| |
Collapse
|
45
|
Naeimi A, Ghadi FE, Parizi ZP, Rezakhani MS. 68Ga radiolabeled chitosan/curcumin/biotin nanocomposite as a drug carrier and early-stage cancer detection. Int J Biol Macromol 2023; 235:123619. [PMID: 36773877 DOI: 10.1016/j.ijbiomac.2023.123619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Nano chitosan was extracted from shrimp wastes. Biotin, as a tumor-targeting agent, and curcumin, as potential carriers of 68Ga, were immobilized on the nano chitosan, and a novel bio-nanocomposite was designed. It was characterized by FT-IR, SEM, TEM, XRD, TGA, and elemental analysis. It seems that the chitosan has a fibril shape with an average size of 70 nm, and the biotin and curcumin are evenly distributed as obtained SEM images. While, the size of Chit/Cur@Biot bio-nanocomposite was between 10 and 20 nm according to the TEM images. Cell cytotoxicity assay, cellular uptake, and fluorescence spectroscopy on A549 lung cancer cells were performed to show the potential applications of this bio-nanocomposite. The obtained results were demonstrated that Chit/Cur and Chit/Cur@Biot bio-nanocomposite exhibit antitumor activity, while, the Chit/Cur@Biot bio-nanocomposite is more effective than Chit/Cur against cancer cell lines at high concentrations. The results of fluoresce microscopy show that fluoresce of Chit/Cur@Biot was much stronger than Chit/Cur in the A549 cell lines. Moreover, the cellular uptake of Chit/Cur@Biot was enhanced when compared with the control group. The potentials of this bio-nanocomposite as anticancer and cancer-detecting agent in nuclear medicine were confirmed.
Collapse
Affiliation(s)
- Atena Naeimi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft 7867161167, Iran.
| | | | | | - Mohamad Saleh Rezakhani
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft 7867161167, Iran; Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
46
|
Kongala SI, Mamidala P. Harpin-loaded chitosan nanoparticles induced defense responses in tobacco. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
47
|
Hannan A, Akhtar B, Sharif A, Anjum F, Pasha I, Khan A, Akhtar MF, Saleem A. Quercetin-loaded chitosan nanoparticles ameliorate adjuvant-induced arthritis in rats by regulating anti-oxidant enzymes and downregulating pro- and inflammatory cytokines. Inflammopharmacology 2023; 31:287-300. [PMID: 36542211 DOI: 10.1007/s10787-022-01118-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory condition and associated with the symmetrical synovitis of the joints and cause joint pain. The use of anti-rheumatic drugs is associated with many adverse effects. Quercetin, an important polyphenolic flavonoid, possess anti-inflammatory and anti-rheumatic effects. Quercetin use is limited due to poor absorption and bioavailability. Nanomedicines are used for the targeted drug delivery, hence it reduces the adverse effects of the drug. Based upon these factors, quercetin-loaded chitosan nanoparticles (Q-NPs) were prepared by solvent evaporation method, characterized and their better anti-rheumatic effect with mechanistic insights was validated in Freund's complete adjuvant (FCA)-induced arthritic rats along with safety studies. The animals were divided into five groups, each containing 5 animals. Group I was normal control, group II was arthritic control, while groups III, IV and V were administered with quercetin (15 mg/Kg) and Q-NPs (10 and 20 mg/Kg), respectively. The reduction in ankle diameter, serum oxidative stress markers as well as pro- and inflammatory cytokines, e.g., tumor necrosis factor (TNFα), interleukin (IL-6) were determined. The prepared Q-NPs showed hydrodynamic size of 83.9 nm, polydispersity index of 0.687, entrapment efficiency 90.5% as well as no interaction between quercetin and chitosan in Fourier transform infrared spectroscopy (FTIR). A significant reduction (p < 0.001) in ankle diameter was observed after administration of high-dose Q-NPs (4.32 ± 0.14 cm to 5.13 ± 0.62 cm). There was also reduction (p < 0.001) in levels of TNFα and IL-6 following high-dose Q-NPs (72.56 ± 2.30 and 308.19 ± 11.5 pg). The effect on biochemical tests, hematological parameters and oxidative stress parameters was also found to be significant. Histopathological changes of kidney, liver and ankle also confirmed the anti-rheumatic effect of high-dose Q-NPs. The study concludes that administration of Q-NPs (20 mg/Kg) may be used for the treatment of FCA-induced RA in rats.
Collapse
Affiliation(s)
- Abdul Hannan
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Fozia Anjum
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Imran Pasha
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Ahrar Khan
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
48
|
Oral docetaxel delivery with cationic polymeric core-shell nanocapsules: In vitro and in vivo evaluation. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Regu VR, Swain RP, Subudhi BB. Drug Delivery for Ocular Allergy: Current Formulation Design Strategies and Future Perspectives. Curr Pharm Des 2023; 29:2626-2639. [PMID: 37936454 DOI: 10.2174/0113816128275375231030115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 11/09/2023]
Abstract
The incidences of ocular allergy have been growing with the increase in pollution. Because of challenges in new drug development, there have been efforts to maximize the efficacy of existing drugs through drug delivery approaches. The effectiveness of drugs in ophthalmic conditions is primarily determined by permeability across the barrier, corneal retention, and sustained release. Thus, there have been widespread efforts to optimize these parameters to enhance efficacy through novel formulations. This review aims to analyze the approaches to drug delivery systems to encourage further research to optimize effectiveness. With this objective, research on drug delivery aspects of anti-allergy therapeutics was included and analyzed based on formulation/drug delivery technique, Food and Drug Administration approval limits, residence time, compatibility, pre-clinical efficacy, and potential for translational application. Conventional eye drops have concerns such as poor residence time and ocular bioavailability. The novel formulations have the potential to improve residence and bioavailability. However, the use of preservatives and the lack of regulatory approval for polymers limit the translational application. The review may assist readers in identifying novel drug delivery strategies and their limitations for the development of effective ophthalmic formulations for the treatment of ocular allergy.
Collapse
Affiliation(s)
- Varaprasada Rao Regu
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Ranjit Prasad Swain
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| |
Collapse
|
50
|
Khatri DK, Preeti K, Tonape S, Bhattacharjee S, Patel M, Shah S, Singh PK, Srivastava S, Gugulothu D, Vora L, Singh SB. Nanotechnological Advances for Nose to Brain Delivery of Therapeutics to Improve the Parkinson Therapy. Curr Neuropharmacol 2023; 21:493-516. [PMID: 35524671 PMCID: PMC10207920 DOI: 10.2174/1570159x20666220507022701] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
Blood-Brain Barrier (BBB) acts as a highly impermeable barrier, presenting an impediment to the crossing of most classical drugs targeted for neurodegenerative diseases including Parkinson's disease (PD). About the nature of drugs and other potential molecules, they impose unavoidable doserestricted limitations eventually leading to the failure of therapy. However, many advancements in formulation technology and modification of delivery approaches have been successful in delivering the drug to the brain in the therapeutic window. The nose to the brain (N2B) drug delivery employing the nanoformulation, is one such emerging delivery approach, overcoming both classical drug formulation and delivery-associated limitations. This latter approach offers increased bioavailability, greater patient acceptance, lesser metabolic degradation of drugs, circumvention of BBB, ample drug loading along with the controlled release of the drugs. In N2B delivery, the intranasal (IN) route carries therapeutics firstly into the nasal cavity followed by the brain through olfactory and trigeminal nerve connections linked with nasal mucosa. The N2B delivery approach is being explored for delivering other biologicals like neuropeptides and mitochondria. Meanwhile, this N2B delivery system is associated with critical challenges consisting of mucociliary clearance, degradation by enzymes, and drug translocations by efflux mechanisms. These challenges finally culminated in the development of suitable surfacemodified nano-carriers and Focused- Ultrasound-Assisted IN as FUS-IN technique which has expanded the horizons of N2B drug delivery. Hence, nanotechnology, in collaboration with advances in the IN route of drug administration, has a diversified approach for treating PD. The present review discusses the physiology and limitation of IN delivery along with current advances in nanocarrier and technical development assisting N2B drug delivery.
Collapse
Affiliation(s)
- Dharmendra K. Khatri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Kumari Preeti
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Shivraj Tonape
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Sheoshree Bhattacharjee
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Monica Patel
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Pankaj K. Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Dalapathi Gugulothu
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi-110017, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast-BT9 7BL, UK
| | - Shashi B. Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| |
Collapse
|