1
|
Oe Y, Kobayashi M, Yoshida T, Kojima H, Terukina T, Kondo H. Injectable testosterone PLGA microsphere with different characteristics: effect of preparation method (paddle mixing versus microfluidic device). Pharm Dev Technol 2024; 29:482-491. [PMID: 38682665 DOI: 10.1080/10837450.2024.2348580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
The purpose of this study was to compare the characteristics of testosterone polylactic-co-glycolic (PLGA) microspheres prepared by a paddle mixer or microfluidics device. The comparison was conducted by not only in vitro evaluation but also in vivo evaluation which has not been reported up to date. We discovered that, among the steps in microsphere preparation, the solvent removal process strongly impacted drug content, particle size and surface morphology. Spectroscopic measurements suggested that molecular interactions and crystallinity of the drug incorporated in the microspheres differed. For the drug release profile, although both mixer- and microfluidics-prepared samples showed similar sustained release of the incorporated drug for approximately one month in vitro, they exhibited different plasma concentration profiles in vivo. Together, our findings show that the preparation process, especially the solvent removal process, may affect the physicochemical characteristics of testosterone PLGA microspheres, leading to different in vivo performance.
Collapse
Affiliation(s)
- Yusuke Oe
- Pharmaceutical Research & Technology Labs, Astellas Pharma Inc., Yaizu, Japan
- School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Japan
| | - Masanori Kobayashi
- Pharmaceutical Research & Technology Labs, Astellas Pharma Inc., Yaizu, Japan
| | - Takayuki Yoshida
- Pharmaceutical Research & Technology Labs, Astellas Pharma Inc., Yaizu, Japan
| | - Hiroyuki Kojima
- Pharmaceutical Research & Technology Labs, Astellas Pharma Inc., Yaizu, Japan
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka-shi, Japan
| | - Takayuki Terukina
- School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Japan
| | - Hiromu Kondo
- School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Japan
| |
Collapse
|
2
|
Zeng H, Song J, Li Y, Guo C, Zhang Y, Yin T, He H, Gou J, Tang X. Effect of hydroxyethyl starch on drug stability and release of semaglutide in PLGA microspheres. Int J Pharm 2024; 654:123991. [PMID: 38471578 DOI: 10.1016/j.ijpharm.2024.123991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/14/2024]
Abstract
The degradation of peptide drugs limits the application of peptide drug microspheres. Structural changes of peptides at the water-oil interface and the destruction of their spatial structure in the complex microenvironment during polymer degradation can affect drug release and in vivo biological activity. This study demonstrates that adding hydroxyethyl starch (HES) to the internal aqueous phase (W1) significantly enhances the stability of semaglutide and optimizes its release behavior in PLGA microspheres. The results showed that this improvement was due to a spontaneous exothermic reaction (ΔH = -132.20 kJ mol-1) facilitated by hydrogen bonds. Incorporating HES into the internal aqueous phase using the water-in-oil-in-water (W1/O/W2) emulsion method yielded PLGA microspheres with a high encapsulation rate of 94.38 %. Moreover, microspheres with HES demonstrated well-controlled drug release over 44 days, unlike the slower and incomplete release in microspheres without HES. The optimized h-MG2 formulation achieved a more complete drug release (83.23 %) and prevented 30.65 % of drug loss compared to the HES-free microspheres within the same period. Additionally, the optimized semaglutide microspheres provided nearly three weeks of glycemic control with adequate safety. In conclusion, adding HES to the internal aqueous phase improved the in-situ drug stability and release behavior of semaglutide-loaded PLGA microspheres, effectively increasing the peptide drug payload in PLGA microspheres.
Collapse
Affiliation(s)
- Han Zeng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jiaxin Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yiyao Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Chen Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
3
|
Liu L, Zheng M, Liang R. Improvement of liraglutide release from PLGA microspheres by a porous microsphere-gel composite system. Pharm Dev Technol 2024; 29:291-299. [PMID: 38466377 DOI: 10.1080/10837450.2024.2329763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
In the current work, we aimed to prepare a liraglutide-loaded porous microsphere-gel composite system. By employing polyethylene glycol (PEG) as a porogenic agent and poly (lactic-co-glycolic acid) copolymer (PLGA) as a carrier, the liraglutide microspheres were prepared and dispersed in a temperature-sensitive gel made of poloxamer 407 (F-127) and poloxamer 188 (F-68), which served as the gel matrix, to construct the composite system. The porous microsphere-gel composite system demonstrated prolonged and steady drug release, with a reduction to 4.7% in the initial release within 1 d, according to data from in vitro release tests. The drug release from the porous microspheres decreased from 53% to 29% during the rapid release phase as the PEG concentration increased and the release rate slowed down. In vivo experiments in rats revealed that the composite system prolonged the release period by about 10 d. The pharmacokinetic parameter AUC0-1 was decreased by 24.78 ng/ml*h, the initial burst release was decreased, and the blood drug concentration fluctuation was lessened. The construction of a porous microsphere-gel composite matrix offers a novel approach to the systems with a sustained, long-lasting release that utilizes rational design.
Collapse
Affiliation(s)
- Lei Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation(Yantai University), Ministry of Education, Yantai University, Yantai, People's Republic of China
| | - Mingxiu Zheng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation(Yantai University), Ministry of Education, Yantai University, Yantai, People's Republic of China
| | - Rongcai Liang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation(Yantai University), Ministry of Education, Yantai University, Yantai, People's Republic of China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd, Yantai, People's Republic of China
| |
Collapse
|
4
|
Gao Z, Wei Y, Ma G. A review of recent research and development on GLP-1 receptor agonists-sustained-release microspheres. J Mater Chem B 2023; 11:11184-11197. [PMID: 37975420 DOI: 10.1039/d3tb02207b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used in treating type 2 diabetes (T2D). However, owing to their limited oral bioavailability, most commercially available GLP-1 RAs are administered through frequent subcutaneous injections, which may result in poor patient compliance during clinical treatment. To improve patients' compliance, sustained-release GLP-1 RA-loaded microspheres have been explored. This review is an overview of recent progress and research in GLP-1 RA-loaded microspheres. First, the fabrication methods of GLP-1 RA-loaded microspheres including the coacervation method, emulsion-solvent evaporation method based on agitation, premix membrane emulsification technology, spray drying, microfluidic droplet technology, and supercritical fluid technology are summarized. Next, the strategies for maintaining GLP-1 RAs' stability and activity in microspheres by adding additives and PEGylation are reviewed. Finally, the effect of particle size, drug distribution, the internal structure of microspheres, and the hydrogel/microsphere composite strategy on improved release behavior is summarized.
Collapse
Affiliation(s)
- Zejing Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Jiang W, Gao X, Wang Q, Chen Y, Li D, Zhang X, Yang X. The Modified Exenatide Microspheres: PLGA-PEG-PLGA Gel and Zinc-Exenatide Complex Synergistically Reduce Burst Release and Shorten Platform Stage. AAPS PharmSciTech 2023; 24:251. [PMID: 38036924 DOI: 10.1208/s12249-023-02705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
The existing exenatide microspheres have the problem of burst release in the early stage, and minimal release in the middle stage which makes it difficult to achieve effective blood drug concentration (platform period). In this study, the modified exenatide microspheres were constructed to address the aforementioned issues. Poly(D,L-lactic-co-glycolic acid) (PLGA) and triblock copolymer with sol-gel conversion characteristics (PLGA-PEG-PLGA gel) were introduced as carriers to prepare microspheres. The hot gel characteristics and hydrophilicity of PLGA-PEG-PLGA gel were utilized to decline the burst release and shorten the platform period. Simultaneously, zinc acetate and exenatide were combined to generate an insoluble complex to further reduce the burst release. Herein, we prepared three types of exenatide microspheres using the solvent evaporation method and investigated their characterization as well as in vitro and in vivo release. According to the experimental findings, the modified exenatide microspheres, i.e., PLGA-PEG-PLGA gel and PLGA co-loaded zinc-exenatide insoluble complex microspheres (Zn-EXT-Gel-MS), had smooth and rounded surfaces, with a particle size of 24.7 μm, and the encapsulation rate reached 89.43%. And it was released for 40 days in vitro, behaving better than the other two microspheres in terms of release behavior. When this product was administered subcutaneously to rats, it produced a comparatively constant plasma exenatide concentration that lasted for 24 days and superior bioavailability than the exenatide microspheres (EXT-MS). The creation of modified exenatide microspheres may serve as a heuristic method for other long-acting medications. Schematic diagram of the synthesis process and release curves of three types of exenatide microspheres in vitro and in vivo.
Collapse
Affiliation(s)
- Wenjing Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Xiangjun Gao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Qiuli Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Yang Chen
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Dan Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Xiaoyan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Xinggang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
6
|
Chandrashekar A, Beig A, Wang Y, Schwendeman SP. In vitro performance of composition-equivalent PLGA microspheres encapsulating exenatide acetate by solvent evaporation. Int J Pharm 2023; 643:123213. [PMID: 37423376 DOI: 10.1016/j.ijpharm.2023.123213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The once-weekly Bydureon® (Bdn) PLGA microsphere formulation encapsulating the GLP-1 receptor agonist, exenatide acetate, is an important complex injectable product prepared by coacervation for the treatment of type 2 diabetic patients. Encapsulation by coacervation is useful to minimize an undesirable initial burst of exenatide, but it suffers from manufacturing difficulties such as process scale-up and batch-to-batch variations. Herein we prepared exenatide acetate-PLGA formulations of similar compositions using the desirable alternative double emulsion-solvent evaporation technique. After screening several process variables, we varied the PLGA concentration, the hardening temperature, and the collected particle size range, and determined the resulting drug and sucrose loading, initial burst release, in vitro retention kinetics, and peptide degradation profiles using Bdn as a positive control. All formulations exhibited a triphasic release profile with a burst, lag, and rapid release phase, although the burst release was greatly decreased to <5% for some. Marked differences were observed in the peptide degradation profiles, particularly the oxidized and acylated fractions, when the polymer concentration was varied. For one optimal formulation, the release and peptide degradation profiles were similar to Bdn microspheres, albeit with an induction time shift of one week, likely due to the slightly higher Mw of PLGA in Bdn. These results highlight the effects of key manufacturing variables on drug release and stability in composition-equivalent microspheres encapsulating exenatide acetate and indicate the potential of manufacturing the microsphere component of Bdn by solvent evaporation.
Collapse
Affiliation(s)
- Aishwarya Chandrashekar
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Avital Beig
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Yan Wang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Gumieniczek A, Berecka-Rycerz A. Metabolism and Chemical Degradation of New Antidiabetic Drugs: A Review of Analytical Approaches for Analysis of Glutides and Gliflozins. Biomedicines 2023; 11:2127. [PMID: 37626624 PMCID: PMC10452759 DOI: 10.3390/biomedicines11082127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The drug metabolism and drug degradation pathways may overlap, resulting in the formation of similar constituents. Therefore, the metabolism data can be helpful for deriving safe levels of degradation impurities and improving the quality of respective pharmaceutical products. The present article contains considerations on possible links between metabolic and degradation pathways for new antidiabetic drugs such as glutides, gliflozins, and gliptins. Special attention was paid to their reported metabolites and identified degradation products. At the same time, many interesting analytical approaches to conducting metabolism as well as degradation experiments were mentioned, including chromatographic methods and radioactive labeling of the drugs. The review addresses the analytical approaches elaborated for examining the metabolism and degradation pathways of glutides, i.e., glucagon like peptide 1 (GLP-1) receptor agonists, and gliflozins, i.e., sodium glucose co-transporter 2 (SGLT2) inhibitors. The problems associated with the chromatographic analysis of the peptide compounds (glutides) and the polar drugs (gliflozins) were addressed. Furthermore, issues related to in vitro experiments and the use of stable isotopes were discussed.
Collapse
Affiliation(s)
- Anna Gumieniczek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | | |
Collapse
|
8
|
Park H, Ha E, Kim J, Kim M. Injectable sustained-release poly(lactic-co-glycolic acid) (PLGA) microspheres of exenatide prepared by supercritical fluid extraction of emulsion process based on a design of experiment approach. Bioeng Transl Med 2023; 8:e10485. [PMID: 37206215 PMCID: PMC10189459 DOI: 10.1002/btm2.10485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
This study aimed to develop an improved sustained-release (SR) PLGA microsphere of exenatide using supercritical fluid extraction of emulsions (SFEE). As a translational research, we investigated the effect of various process parameters on the fabrication of exenatide-loaded PLGA microspheres by SFEE (ELPM_SFEE) using the Box-Behnken design (BBD), a design of experiment approach. Further, ELPM obtained under optimized conditions and satisfying all the response criteria were compared with PLGA microspheres prepared using the conventional solvent evaporation (ELPM_SE) method through various solid-state characterizations and in vitro and in vivo evaluations. The four process parameters selected as independent variables were pressure (X 1), temperature (X 2), stirring rate (X 3), and flow ratio (X 4). The effects of these independent variables on five responses, namely the particle size, its distribution (SPAN value), encapsulation efficiency (EE), initial drug burst release (IBR), and residual organic solvent, were evaluated using BBD. Based on the experimental results, a desirable range of combinations of various variables in the SFEE process was determined by graphical optimization. Solid-state characterization and in vitro evaluation revealed that ELPM_SFEE improved properties, including a smaller particle size and SPAN value, higher EE, lower IBR, and lower residual solvent. Furthermore, the pharmacokinetic and pharmacodynamic study results indicated better in vivo efficacy with desirable SR properties, including a reduction in blood glucose levels, weight gain, and food intake, for ELPM_SFEE than those generated using SE. Therefore, the potential drawback of conventional technologies such as the SE for the preparation of injectable SR PLGA microspheres could be improved by optimizing the SFEE process.
Collapse
Affiliation(s)
- Heejun Park
- College of PharmacyDuksung Women's UniversitySeoulSouth Korea
| | - Eun‐Sol Ha
- College of PharmacyPusan National UniversityBusanSouth Korea
| | - Jeong‐Soo Kim
- Dong‐A ST Research InstituteDong‐A ST Co. Ltd.Giheung‐guYongin‐siGyeonggiSouth Korea
| | - Min‐Soo Kim
- College of PharmacyPusan National UniversityBusanSouth Korea
| |
Collapse
|
9
|
Jurić Simčić A, Abrami M, Erak I, Paladin I, Cetina Čižmek B, Hafner A, Grassi M, Filipović-Grčić J. Use of low-field NMR and rheology to evaluate the microstructure and stability of a poly(d,l-lactide-co-glycolide)-based W/O emulsion to be processed by spray drying. Int J Pharm 2023; 631:122471. [PMID: 36509222 DOI: 10.1016/j.ijpharm.2022.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Drug-loaded emulsions for spray drying should be optimised for their rheological behaviour and stability under operating conditions, as this is essential for achieving the desired physicochemical properties of the final dry product. Our aim was therefore to investigate the structure and stability of a water-in-oil (W/O) emulsion containing vancomycin hydrochloride as the active ingredient in the aqueous phase, poly(d,l-lactide-co-glycolide) as the structural polymer in the dichloromethane-based organic phase, and various stabilisers using low-field nuclear magnetic resonance (LF NMR) and rheological characterisation. Four emulsions were tested, namely-one without stabiliser, one with Poloxamer® 407, one with chitosan and Span™ 80 and one with chitosan only. The theoretical interpretation of the rheological data allowed the determination of the velocity and the shear rate/stress profiles inside the feed path of the W/O emulsion, aspects that are critical for the industrial scale-up of the emulsion drying process. In addition, LF NMR demonstrated that shaking was sufficient to restore the original emulsion structure and that the droplet size of all emulsions was in the range of 1-10 μm, although the emulsion with chitosan had the narrowest droplet size distribution and the higher zero shear viscosity, which accounts for the increased long-term stability due to impeded droplets movement.
Collapse
Affiliation(s)
- Ana Jurić Simčić
- R&D, PLIVA Croatia Ltd, TEVA Group Member, Prilaz baruna Filipovića 25, 10000 Zagreb, Croatia.
| | - Michela Abrami
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| | - Iva Erak
- R&D, PLIVA Croatia Ltd, TEVA Group Member, Prilaz baruna Filipovića 25, 10000 Zagreb, Croatia.
| | - Iva Paladin
- R&D, PLIVA Croatia Ltd, TEVA Group Member, Prilaz baruna Filipovića 25, 10000 Zagreb, Croatia.
| | - Biserka Cetina Čižmek
- R&D, PLIVA Croatia Ltd, TEVA Group Member, Prilaz baruna Filipovića 25, 10000 Zagreb, Croatia.
| | - Anita Hafner
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| | - Jelena Filipović-Grčić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
10
|
Park H, Ha DH, Ha ES, Kim JS, Kim MS, Hwang SJ. Effect of Stabilizers on Encapsulation Efficiency and Release Behavior of Exenatide-Loaded PLGA Microsphere Prepared by the W/O/W Solvent Evaporation Method. Pharmaceutics 2019; 11:E627. [PMID: 31771254 PMCID: PMC6955873 DOI: 10.3390/pharmaceutics11120627] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to investigate the effects of various stabilizers on the encapsulation efficiency and release of exenatide-loaded PLGA (poly(lactic-co-glycolic acid)) microspheres prepared by the water-in-oil-in-water (W/O/W) solvent evaporation (SE) method. It was shown that the stabilizers affected exenatide stability in aqueous solutions, at water/dichloromethane interfaces, on PLGA surfaces, or during freeze-thawing and freeze-drying procedures. Sucrose predominantly reduces instability generated during freeze-thawing and freeze-drying. Phenylalanine prevents the destabilization at the water-dichloromethane (DCM) interface through decreased adsorption. Poloxamer 188 enhances stability in aqueous solutions and prevents adsorption to PLGA. Proline and lysine decrease adsorption on PLGA surfaces. Fourier transform infra-red spectroscopy (FT-IR) was used to find the molecular interaction of additives with exenatide or PLGA. Additives used in stability assessments were then added stepwise into the inner or outer water phase of the W/O/W double emulsion, and exenatide-loaded microspheres were prepared using the solvent evaporation method. The effect of each stabilizer on the encapsulation efficiency and release behavior of microspheres correlated well with the stability assessment results, except for the negative effect of poloxamer 188. Particle size analysis using laser diffractometry, scanning electron microscopy (SEM), water vapor sorption analysis, differential scanning calorimetry (DSC), and circular dichroism (CD) spectroscopy were also employed to characterize the prepared exenatide-loaded PLGA microsphere. This study demonstrated that an adequate formulation can be obtained by the study about the effect of stabilizers on peptide stability at the preformulation step. In addition, it can help to overcome various problems that can cause the destabilization of a peptide during the microsphere-manufacturing process and sustained drug release.
Collapse
Affiliation(s)
- Heejun Park
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (H.P.); (D.-H.H.); (E.-S.H.)
| | - Dong-Hyun Ha
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (H.P.); (D.-H.H.); (E.-S.H.)
| | - Eun-Sol Ha
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (H.P.); (D.-H.H.); (E.-S.H.)
| | - Jeong-Soo Kim
- Dong-A ST Co., Ltd., Giheung-gu, Yongin, Gyeonggi 446-905, Korea;
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (H.P.); (D.-H.H.); (E.-S.H.)
| | - Sung-Joo Hwang
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
| |
Collapse
|
11
|
Icart LP, Souza FGD, Lima LMTR. Sustained release and pharmacologic evaluation of human glucagon-like peptide-1 and liraglutide from polymeric microparticles. J Microencapsul 2019; 36:747-758. [PMID: 31594428 DOI: 10.1080/02652048.2019.1677795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The GLP1-receptor agonists exert regulatory key roles in diabetes, obesity and related complications. Here we aimed to develop polymeric microparticles loaded with homologous human GLP1 (7-37) or the analogue liraglutide. Peptide-loaded microparticles were prepared by a double emulsion and solvent evaporation process with a set of eight polymers based on lactide (PLA) or lactide-glycolide (PLGA), and evaluated for particle-size distribution, morphology, in vitro release and pharmacologic activity in mice. The resulting microparticles showed size distribution of about 30-50 μm. The in vitro kinetic release assays showed a sustained release of the peptides extending up to 30-40 days. In vivo evaluation in Swiss male mice revealed a similar extension of glycemic and body weight gain modulation for up to 25 days after a single subcutaneous administration of either hGLP1-microparticles or liraglutide-microparticles. Microparticles-loaded hGLP1 shows equivalent in vivo pharmacologic activity to the microparticles-loaded liraglutide.
Collapse
Affiliation(s)
- Luis Peña Icart
- Laboratory of Pharmaceutical Biotechnology (pbiotech), Faculty of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Rio de Janeiro, Brazil.,Laboratory of Biopolymers and Sensors (LaBioS), Institute of Macromolecules, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Fernando Gomes de Souza
- Laboratory of Biopolymers and Sensors (LaBioS), Institute of Macromolecules, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Luís Maurício T R Lima
- Laboratory of Pharmaceutical Biotechnology (pbiotech), Faculty of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Rio de Janeiro, Brazil.,Laboratory of Macromolecules (LAMAC/DIMAV), National Institute for Metrology, Quality and Technology (INMETRO), Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Faidi A, Lassoued MA, Becheikh MEH, Touati M, Stumbé JF, Farhat F. Application of sodium alginate extracted from a Tunisian brown algae Padina pavonica for essential oil encapsulation: Microspheres preparation, characterization and in vitro release study. Int J Biol Macromol 2019; 136:386-394. [PMID: 31173834 DOI: 10.1016/j.ijbiomac.2019.06.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/19/2019] [Accepted: 06/03/2019] [Indexed: 11/23/2022]
Abstract
In recent years, there has been considerable interest in essential oils encapsulation and in developing biodegradable microparticles. The aim of this present work was to prepare clove essential oil loaded microspheres, by a modified emulsification method, using sodium alginate extracted from a Tunisian Brown seaweed Algae Padina pavonica as biopolymer. The obtained microparticles were characterized by FT-IR, DSC and SEM. Loading capacity yield, encapsulation efficiency (%EE) and in vitro release of the essential oil were also investigated. Sodium alginate microspheres were successfully prepared as confirmed by physico-chemical characterizations. %yield of microspheres and %EE of essential oil were 72.73% and 24.77% ± 7.47%, respectively. SEM showed pseudospherical microspheres with rough surface ranging, in size, from 1500 μm to 3000 μm. In vitro dissolution study indicates a controlled released of the essential oil which follows, mainly, classical Fickian diffusion. Thus, this present work highlighted the potential of this polysaccharide as a biopolymer to formulate polymeric microspheres.
Collapse
Affiliation(s)
- Adel Faidi
- Laboratory of Chemical, Galenic and Pharmacological Development of Medicines (LR12ES09), University of Monastir, Faculty of Pharmacy of Monastir, Ibn Sina Street, 5000 Monastir, Tunisia.
| | - Mohamed Ali Lassoued
- Laboratory of Chemical, Galenic and Pharmacological Development of Medicines (LR12ES09), University of Monastir, Faculty of Pharmacy of Monastir, Ibn Sina Street, 5000 Monastir, Tunisia
| | - Mohamed El Hédi Becheikh
- Laboratory of Chemical, Galenic and Pharmacological Development of Medicines (LR12ES09), University of Monastir, Faculty of Pharmacy of Monastir, Ibn Sina Street, 5000 Monastir, Tunisia
| | - Mouna Touati
- Laboratory of Chemical, Galenic and Pharmacological Development of Medicines (LR12ES09), University of Monastir, Faculty of Pharmacy of Monastir, Ibn Sina Street, 5000 Monastir, Tunisia
| | - Jean-François Stumbé
- Laboratory of Photochemistry and Macromolecular Engineering Jean Baptiste Donnet Institute, National Engineering School of Chemistry of Mulhouse, 68093 Mulhouse, France
| | - Farhat Farhat
- Laboratory of Chemical, Galenic and Pharmacological Development of Medicines (LR12ES09), University of Monastir, Faculty of Pharmacy of Monastir, Ibn Sina Street, 5000 Monastir, Tunisia
| |
Collapse
|
13
|
Terahertz Spectroscopy: An Investigation of the Structural Dynamics of Freeze-Dried Poly Lactic-co-glycolic Acid Microspheres. Pharmaceutics 2019; 11:pharmaceutics11060291. [PMID: 31226751 PMCID: PMC6631728 DOI: 10.3390/pharmaceutics11060291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 11/26/2022] Open
Abstract
Biodegradable poly lactic-co-glycolic acid (PLGA) microspheres can be used to encapsulate peptide and offer a promising drug-delivery vehicle. In this work we investigate the dynamics of PLGA microspheres prepared by freeze-drying and the molecular mobility at lower temperatures leading to the glass transition temperature, using temperature-variable terahertz time-domain spectroscopy (THz-TDS) experiments. The microspheres were prepared using a water-in-oil-in-water (w/o/w) double-emulsion technique and subsequent freeze-drying of the samples. Physical characterization was performed by morphology measurements, scanning electron microscopy, and helium pycnometry. The THz-TDS data show two distinct transition processes, Tg,β in the range of 167–219 K, associated with local motions, and Tg,α in the range of 313–330 K, associated with large-scale motions, for the microspheres examined. Using Fourier transform infrared spectroscopy measurements in the mid-infrared, we were able to characterize the interactions between a model polypeptide, exendin-4, and the PLGA copolymer. We observe a relationship between the experimentally determined Tg,β and Tg,α and free volume and microsphere dynamics.
Collapse
|
14
|
Release of Pharmaceutical Peptides in an Aggregated State: Using Fibrillar Polymorphism to Modulate Release Levels. COLLOIDS AND INTERFACES 2019. [DOI: 10.3390/colloids3010042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Traditional approaches to achieve sustained delivery of pharmaceutical peptides traditionally use co-excipients (e.g., microspheres and hydrogels). Here, we investigate the release of an amyloidogenic glucagon analogue (3474) from an aggregated state and the influence of surfactants on this process. The formulation of peptide 3474 in dodecyl maltoside (DDM), rhamnolipid (RL), and sophorolipid (SL) led to faster fibrillation. When the aggregates were subjected to multiple cycles of release by repeated resuspension in fresh buffer, the kinetics of the release of soluble peptide 3474 from different surfactant aggregates all followed a simple exponential decay fit, with half-lives of 5–18 min and relatively constant levels of release in each cycle. However, different amounts of peptide are released from different aggregates, ranging from 0.015 mg/mL (3475-buffer) up to 0.03 mg/mL (3474-DDM), with 3474-buffer and 3474-RL in between. In addition to higher release levels, 3474-DDM aggregates showed a different amyloid FTIR structure, compared to 3474-RL and 3474-SL aggregates and a faster rate of degradation by proteinase K. This demonstrates that the stability of organized peptide aggregates can be modulated to achieve differences in release of soluble peptides, thus coupling aggregate polymorphism to differential release profiles. We achieved aggregate polymorphism by the addition of different surfactants, but polymorphism may also be reached through other approaches, including different excipients as well as changes in pH and salinity, providing a versatile handle to control release profiles.
Collapse
|
15
|
Cheang JY, Moyle PM. Glucagon-Like Peptide-1 (GLP-1)-Based Therapeutics: Current Status and Future Opportunities beyond Type 2 Diabetes. ChemMedChem 2018; 13:662-671. [PMID: 29430842 DOI: 10.1002/cmdc.201700781] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/07/2018] [Indexed: 12/21/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is secreted by intestinal L-cells following food intake, and plays an important role in glucose homeostasis due to its stimulation of glucose-dependent insulin secretion. Further, GLP-1 is also associated with protective effects on pancreatic β-cells and the cardiovascular system, decreased appetite, and weight loss, making GLP-1 derivatives an exciting treatment for type 2 diabetes and obesity. Despite these benefits, wild-type GLP-1 exhibits a short circulation time due to its poor metabolic stability and rapid renal clearance, and must be administered by injection, making it a poor therapeutic agent. Many strategies have been used to improve the circulation time of GLP-1 (e.g., mutations, unnatural amino acids, depot formulations, use of exendin-4 sequences, and fusions with high-molecular-weight proteins or polymers), with its therapeutic utility further improved by adding agonist activity for gastric inhibitory peptide and glucagon receptors. This minireview focuses on strategies that have been used to improve the pharmacokinetics of GLP-1 and provides an overview of GLP-1-based therapeutics in the pipeline.
Collapse
Affiliation(s)
- Jia Ying Cheang
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, QLD, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, QLD, Australia
| |
Collapse
|
16
|
Lew B, Kim IY, Choi H, Kim K. Sustained exenatide delivery via intracapsular microspheres for improved survival and function of microencapsulated porcine islets. Drug Deliv Transl Res 2018; 8:857-862. [DOI: 10.1007/s13346-018-0484-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Goto N, Okazaki K, Akasaki Y, Ishihara K, Murakami K, Koyano K, Ayukawa Y, Yasunami N, Masuzaki T, Nakashima Y. Single intra-articular injection of fluvastatin-PLGA microspheres reduces cartilage degradation in rabbits with experimental osteoarthritis. J Orthop Res 2017; 35:2465-2475. [PMID: 28303595 DOI: 10.1002/jor.23562] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/14/2017] [Indexed: 02/04/2023]
Abstract
Statins are cholesterol-lowering drugs that inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, a rate-limiting enzyme of the mevalonate pathway. The anti-inflammatory effect of statins has been reported in recent years. The present study investigated therapeutic effects of the local administration of statin in osteoarthritis (OA). We assessed clinically used statins and selected fluvastatin for further experimentation, as it showed potent anabolic and anti-catabolic effects on human OA chondrocytes. To achieve controlled intra-articular administration of statin, we developed an intra-articular injectable statin using poly(lactic-co-glycolic acid) (PLGA) as a drug delivery system (DDS). The release profile of the statin was evaluated in vitro. Finally, therapeutic effects of fluvastatin-loaded PLGA microspheres (FLU-PLGA) were tested in a rabbit OA model. Rabbit knees were divided into four subgroups: group 1-A, PLGA-treated group; group 1-B, PLGA contralateral saline control group; group 2-A, FLU-PLGA-treated group; and group 2-B, FLU-PLGA contralateral saline control group. Histological analysis 5 weeks after intra-articular injection revealed that OARSI scores were lower in group 2-A. No significant differences in OARSI scores were observed between groups 1-A, 1-B, and 2-B. This study indicates that a single intra-articular injection of fluvastatin-loaded PLGA microspheres could be a novel therapeutic approach for treating patients with OA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2465-2475, 2017.
Collapse
Affiliation(s)
- Norio Goto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yukio Akasaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kohei Ishihara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Murakami
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noriyuki Yasunami
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiro Masuzaki
- Department of Oral Maxillofacial Prosthodontics, Field of Oral and Maxillofacial Rehabilitation, Advanced Therapeutic Course, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
18
|
Chen C, Zheng H, Xu J, Shi X, Li F, Wang X. Sustained-release study on Exenatide loaded into mesoporous silica nanoparticles: in vitro characterization and in vivo evaluation. ACTA ACUST UNITED AC 2017; 25:20. [PMID: 28870261 PMCID: PMC5583966 DOI: 10.1186/s40199-017-0186-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Exenatide (EXT), the first glucagon-like peptide-1 receptor agonist, has been approved as an adjunctive therapy for patients with type 2 diabetes. Due to EXT's short half-life, EXT must be administrated by continuous subcutaneous (s.c.) injection twice daily. In previous studies, many studies on EXT loaded into polymer materials carriers for sustained release had been reported. However, these carriers have some defects, such as hydrophobicity, low surface energy, low mechanical strength, and poor chemical stability. Therefore, this study aims to develop a novel drug delivery system, which is EXT loaded into well-ordered hexagonal mesoporous silica structures (EXT-SBA-15), to control the sustainability of EXT. METHODS SBA-15 was prepared by hydrothermal method with uniform size. Morphology of SBA-15 was employed by transmission electron microscopy. The pore size of SBA-15 was characterized by N2 adsorption-desorption isotherms. The in vitro drug release behavior and pharmacokinetics of EXT-SBA-15 were investigated. Furthermore, the blood glucose levels of diabetic mice were monitored after subcutaneous injection of EXT-Sol and EXT-SBA-15 to evaluate further the stable hypoglycemic effect of EXT-SBA-15. RESULTS EXT-SBA-15 showed a higher drug loading efficiency (15.2 ± 2.0%) and sustained-release features in vitro. In addition, pharmacokinetic studies revealed that the EXT-SBA-15 treatment group extended the half-life t 1/2(β) to 14.53 ± 0.70 h compared with that of the EXT solution (EXT-Sol) treatment group (0.60 ± 0.08 h) in vivo. Results of the pharmacodynamics study show that the EXT-SBA-15 treatment group had inhibited blood glucose levels below 20 mmol/L for 25 days, and the lowest blood glucose level was 13 mmol/L on the 10th day. CONCLUSIONS This study demonstrates that the EXT-SBA-15 delivery system can control the sustainability of EXT and contribute to improve EXT clinical use.
Collapse
Affiliation(s)
- Cuiwei Chen
- Department of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou, 311042, China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junjun Xu
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xiaowei Shi
- Department of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou, 311042, China
| | - Fanzhu Li
- Department of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou, 311042, China.
| | - Xuanshen Wang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, 116027, China.
| |
Collapse
|
19
|
Park MH, Jun HS, Jeon JW, Park JK, Lee BJ, Suh GH, Park JS, Cho CW. Preparation and characterization of bee venom-loaded PLGA particles for sustained release. Pharm Dev Technol 2016; 23:857-864. [PMID: 27881046 DOI: 10.1080/10837450.2016.1264415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bee venom-loaded poly(lactic-co-glycolic acid) (PLGA) particles were prepared by double emulsion-solvent evaporation, and characterized for a sustained-release system. Factors such as the type of organic solvent, the amount of bee venom and PLGA, the type of PLGA, the type of polyvinyl alcohol, and the emulsification method were considered. Physicochemical properties, including the encapsulation efficiency, drug loading, particle size, zeta-potential and surface morphology were examined by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The size of the bee venom-loaded PLGA particles was 500 nm (measured using sonication). Zeta-potentials of the bee venom-loaded PLGA particles were negative owing to the PLGA. FT-IR results demonstrated that the bee venom was completely encapsulated in the PLGA particles, indicated by the disappearance of the amine and amide peaks. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the bee venom in the bee venom-loaded PLGA particles was intact. In vitro release of the bee venom from the bee venom-loaded PLGA particles showed a sustained-release profile over 1 month. Bee venom-loaded PLGA particles can help improve patients' quality of life by reducing the number of injections required.
Collapse
Affiliation(s)
- Min-Ho Park
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| | - Hye-Suk Jun
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| | | | | | - Bong-Joo Lee
- c College of Veterinary Medicine , Chonnam National University , Gwangju , South Korea
| | - Guk-Hyun Suh
- c College of Veterinary Medicine , Chonnam National University , Gwangju , South Korea
| | - Jeong-Sook Park
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| | - Cheong-Weon Cho
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| |
Collapse
|
20
|
Wang Y, Sun T, Zhang Y, Chaurasiya B, Huang L, Liu X, Tu J, Xiong Y, Sun C. Exenatide loaded PLGA microspheres for long-acting antidiabetic therapy: preparation, characterization, pharmacokinetics and pharmacodynamics. RSC Adv 2016. [DOI: 10.1039/c6ra02994a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We herein fabricated the exenatide-loaded microspheres by a water in oil in oil (W/O/O) method, which presented great effect on glycemic control with low initial burst release and reduced risk of gastrointestinal intolerance and hypoglycemia.
Collapse
Affiliation(s)
- Yutong Wang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| | - Ting Sun
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| | - Yue Zhang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| | - Birendra Chaurasiya
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| | - Liping Huang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| | - Xi Liu
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| | - Jiasheng Tu
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| | - Yerong Xiong
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| | - Chunmeng Sun
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
21
|
Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 2015; 496:173-90. [DOI: 10.1016/j.ijpharm.2015.10.057] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022]
|
22
|
Zhang Y, Zhong Y, Hu M, Xiang N, Fu Y, Gong T, Zhang Z. In vitro and in vivo sustained release of exenatide from vesicular phospholipid gels for type II diabetes. Drug Dev Ind Pharm 2015; 42:1042-9. [PMID: 26558908 DOI: 10.3109/03639045.2015.1107090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Diabetes is a chronic disease that requires daily treatment to maintain a stable blood glucose level. Sustained-release formulations can thus benefit the treatment of diabetes by reducing the repeated administration of therapeutics. Our study aimed to develop a sustained-release platform for exenatide that is biocompatible and capable of mass production. Vesicular phospholipid gels (VPGs) are semisolid phospholipid dispersions with controlled release profiles. Exenatide-VPGs prepared via simple magnetic stirring showed excellent biocompatibility with an average particle size of about 15 μm after redispersion. VPGs were shown to achieve sustained release for up to 21 days in vitro with no obvious burst effect. The in vivo release study showed that VPGs sustained the release of the exenatide for up to 11 days. Moreover, after subcutaneous injection of the exenatide-VPGs in the diabetic rats, the hypoglycemic effect lasted for 10 days compared with exenatide solution. In sum, the exenatide-VPGs system represents a promising sustained-release formulation for exenatide with a long-acting therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Yu Zhang
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University , Sichuan , People's Republic of China
| | - Ying Zhong
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University , Sichuan , People's Republic of China
| | - Mei Hu
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University , Sichuan , People's Republic of China
| | - Nanxi Xiang
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University , Sichuan , People's Republic of China
| | - Yao Fu
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University , Sichuan , People's Republic of China
| | - Tao Gong
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University , Sichuan , People's Republic of China
| | - Zhirong Zhang
- a Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University , Sichuan , People's Republic of China
| |
Collapse
|
23
|
Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: an immense hope for diabetics. Drug Deliv 2014; 23:2371-2390. [PMID: 25544604 DOI: 10.3109/10717544.2014.991001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CONTEXT Existing medication systems for the treatment of diabetes mellitus (DM) are inconvenient and troublesome for effective and safe delivery of drugs to the specific site. Therefore, investigations are desired to deliver antidiabetics using novel delivery approaches followed by their commercialization. OBJECTIVE The present review aims to provide a compilation on the latest development in the field of novel drug delivery systems (NDDSs) for antidiabetics with special emphasis on particulate, vesicular and miscellaneous systems. METHODS Review of literature (restricted to English language only) was done using electronic databases like Pubmed® and Scirus, i.e. published during 2005-2013. The CIMS/MIMS India Medical Drug Information eBook was used regarding available marketed formulation of antidiabetic drugs. Keywords used were "nanoparticle", "microparticle", "liposomes", "niosomes", "transdermal systems", "insulin", "antidiabetic drugs" and "novel drug delivery systems". Single inclusion was made for one article. If in vivo study was not done then article was seldom included in the manuscript. RESULTS The curiosity to develop NDDSs of antidiabetic drugs with special attention to the nanoparticulate system followed by microparticulate and lipid-based system is found to emerge gradually to overcome the problems associated with the conventional dosage forms and to win the confidence of end users towards the higher acceptability. CONCLUSION In the current scientific panorama when the area of novel drug delivery system has been recognized for its palpable benefits, unique potential of providing physical stability, sustained and site-specific drug delivery for a scheduled period of time can open new vistas for precise, safe and quality treatment of DM.
Collapse
Affiliation(s)
- Vineet Kumar Rai
- a Herbal Medicinal Products Department , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India and
| | - Nidhi Mishra
- a Herbal Medicinal Products Department , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India and
| | - Ashish Kumar Agrawal
- b Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research , Mohali , Punjab , India
| | - Sanyog Jain
- b Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research , Mohali , Punjab , India
| | - Narayan Prasad Yadav
- a Herbal Medicinal Products Department , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India and
| |
Collapse
|
24
|
Kim YM, Lee SM, Chung HS. Novel AGLP-1 albumin fusion protein as a long-lasting agent for type 2 diabetes. BMB Rep 2014; 46:606-10. [PMID: 24195794 PMCID: PMC4133866 DOI: 10.5483/bmbrep.2013.46.12.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 12/25/2022] Open
Abstract
Glucagon like peptide-1 (GLP-1) regulates glucose mediated-insulin secretion, nutrient accumulation, and β-cell growth. Despite the potential therapeutic usage for type 2 diabetes (T2D), GLP-1 has a short half-life in vivo (t1/2 <2 min). In an attempt to prolong half-life, GLP-1 fusion proteins were genetically engineered: GLP-1 human serum albumin fusion (GLP-1/HSA), AGLP-1/HSA which has an additional alanine at the N-terminus of GLP-1, and AGLP-1-L/HSA, in which a peptide linker is inserted between AGLP-1 and HSA. Recombinant fusion proteins secreted from the Chinese Hamster Ovary-K1 (CHO-K1) cell line were purified with high purity (>96%). AGLP-1 fusion protein was resistant against the dipeptidyl peptidase-IV (DPP-IV). The fusion proteins activated cAMP-mediated signaling in rat insulinoma INS-1 cells. Furthermore, a C57BL/6N mice pharmacodynamics study exhibited that AGLP-1-L/HSA effectively reduced blood glucose level compared to AGLP-1/HSA. [BMB Reports 2013; 46(12): 606-610]
Collapse
Affiliation(s)
| | | | - Hye-Shin Chung
- Alteogen Inc., Bioventure Town, Daejeon 305-812; Department of Biotechnology, Hannam University, Daejeon 305-811, Korea
| |
Collapse
|
25
|
Hlavaty KA, Gibly RF, Zhang X, Rives CB, Graham JG, Lowe WL, Luo X, Shea LD. Enhancing human islet transplantation by localized release of trophic factors from PLG scaffolds. Am J Transplant 2014; 14:1523-32. [PMID: 24909237 PMCID: PMC4232190 DOI: 10.1111/ajt.12742] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 02/18/2014] [Accepted: 03/12/2014] [Indexed: 01/25/2023]
Abstract
Islet transplantation represents a potential cure for type 1 diabetes, yet the clinical approach of intrahepatic delivery is limited by the microenvironment. Microporous scaffolds enable extrahepatic transplantation, and the microenvironment can be designed to enhance islet engraftment and function. We investigated localized trophic factor delivery in a xenogeneic human islet to mouse model of islet transplantation. Double emulsion microspheres containing exendin-4 (Ex4) or insulin-like growth factor-1 (IGF-1) were incorporated into a layered scaffold design consisting of porous outer layers for islet transplantation and a center layer for sustained factor release. Protein encapsulation and release were dependent on both the polymer concentration and the identity of the protein. Proteins retained bioactivity upon release from scaffolds in vitro. A minimal human islet mass transplanted on Ex4-releasing scaffolds demonstrated significant improvement and prolongation of graft function relative to blank scaffolds carrying no protein, and the release profile significantly impacted the duration over which the graft functioned. Ex4-releasing scaffolds enabled better glycemic control in animals subjected to an intraperitoneal glucose tolerance test. Scaffolds releasing IGF-1 lowered blood glucose levels, yet the reduction was insufficient to achieve euglycemia. Ex4-delivering scaffolds provide an extrahepatic transplantation site for modulating the islet microenvironment to enhance islet function posttransplant.
Collapse
Affiliation(s)
- K. A. Hlavaty
- The Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
| | - R. F. Gibly
- The Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL
- Integrated Graduate Program, Northwestern University, Chicago, IL
| | - X. Zhang
- Department of Surgery, Division of Transplantation, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - C. B. Rives
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | - J. G. Graham
- The Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL
- Integrated Graduate Program, Northwestern University, Chicago, IL
| | - W. L. Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - X. Luo
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - L. D. Shea
- The Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL
- The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| |
Collapse
|
26
|
Abstract
Discovery of insulin in the early 1900s initiated the research and development to improve the means of therapeutic protein delivery in patients. In the past decade, great emphasis has been placed on bringing protein and peptide therapeutics to market. Despite tremendous efforts, parenteral delivery still remains the major mode of administration for protein and peptide therapeutics. Other routes such as oral, nasal, pulmonary and buccal are considered more opportunistic rather than routine application. Improving biological half-life, stability and therapeutic efficacy is central to protein and peptide delivery. Several approaches have been tried in the past to improve protein and peptide in vitro/in vivo stability and performance. Approaches may be broadly categorized as chemical modification and colloidal delivery systems. In this review we have discussed various chemical approaches such as PEGylation, hyperglycosylation, mannosylation, and colloidal carriers including microparticles, nanoparticles, liposomes, carbon nanotubes and micelles for improving protein and peptide delivery. Recent developments on in situ thermosensitive gel-based protein and peptide delivery have also been described. This review summarizes recent developments on some currently existing approaches to improve stability, bioavailability and bioactivity of peptide and protein therapeutics following parenteral administration.
Collapse
|
27
|
Qi F, Wu J, Fan Q, He F, Tian G, Yang T, Ma G, Su Z. Preparation of uniform-sized exenatide-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency and bio-stability. Colloids Surf B Biointerfaces 2013; 112:492-8. [DOI: 10.1016/j.colsurfb.2013.08.048] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/21/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
|
28
|
Cai Y, Wei L, Ma L, Huang X, Tao A, Liu Z, Yuan W. Long-acting preparations of exenatide. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:963-70. [PMID: 24039406 PMCID: PMC3771853 DOI: 10.2147/dddt.s46970] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exenatide has been widely used for the treatment of type 2 diabetes mellitus. However, its short plasma half-life of 2.4 hours has limited its clinical application. The exenatide products on the market, twice-daily Byetta™ and once-weekly Bydureon™ (both Amylin Pharmaceuticals, San Diego, CA, USA), are still not perfect. Many researchers have attempted to prolong the acting time of exenatide by preparing sustained-release dosage forms, modifying its structure, gene therapies, and other means. This review summarizes recent advances in long-acting exenatide preparations.
Collapse
Affiliation(s)
- Yunpeng Cai
- Department of Neurology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Sustained local delivery of insulin for potential improvement of peri-implant bone formation in diabetes. SCIENCE CHINA-LIFE SCIENCES 2012; 55:948-57. [DOI: 10.1007/s11427-012-4392-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/05/2012] [Indexed: 10/27/2022]
|
30
|
Li X, Li L, Wang X, Ren Y, Zhou T, Lu W. Application of Model‐based Methods to Characterize Exenatide‐loaded Double‐walled Microspheres: In vivo Release, Pharmacokinetic/Pharmacodynamic Model, and In Vitro and In Vivo Correlation. J Pharm Sci 2012; 101:3946-61. [DOI: 10.1002/jps.23236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/03/2012] [Accepted: 05/30/2012] [Indexed: 12/12/2022]
|
31
|
Giri TK, Choudhary C, Ajazuddin, Alexander A, Badwaik H, Tripathi DK. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery. Saudi Pharm J 2012; 21:125-41. [PMID: 23960828 DOI: 10.1016/j.jsps.2012.05.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022] Open
Abstract
Several methods and techniques are potentially useful for the preparation of microparticles in the field of controlled drug delivery. The type and the size of the microparticles, the entrapment, release characteristics and stability of drug in microparticles in the formulations are dependent on the method used. One of the most common methods of preparing microparticles is the single emulsion technique. Poorly soluble, lipophilic drugs are successfully retained within the microparticles prepared by this method. However, the encapsulation of highly water soluble compounds including protein and peptides presents formidable challenges to the researchers. The successful encapsulation of such compounds requires high drug loading in the microparticles, prevention of protein and peptide degradation by the encapsulation method involved and predictable release, both rate and extent, of the drug compound from the microparticles. The above mentioned problems can be overcome by using the double emulsion technique, alternatively called as multiple emulsion technique. Aiming to achieve this various techniques have been examined to prepare stable formulations utilizing w/o/w, s/o/w, w/o/o, and s/o/o type double emulsion methods. This article reviews the current state of the art in double emulsion based technologies for the preparation of microparticles including the investigation of various classes of substances that are pharmaceutically and biopharmaceutically active.
Collapse
Affiliation(s)
- Tapan Kumar Giri
- Rungta College of Pharmaceutical Sciences and Research, Kohka Road, Kurud, Bhilai 490024, India
| | | | | | | | | | | |
Collapse
|