1
|
Zhou W, Zheng X, Wang X, Tian Y, Wen Y, Tu Y, Lei J, Cheng H, Yu J. Bioassay-guided isolation of antibacterial and anti-inflammatory components from Atractylodes lancea. PHYTOCHEMISTRY 2024; 227:114232. [PMID: 39097216 DOI: 10.1016/j.phytochem.2024.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
A bioassay-guided isolation from Atractylodes lancea (Thunb.) DC. obtained 22 compounds, including eight previously undescribed sesquiterpenoids and polyacetylenes (1, 3 and 12-17), as well as fourteen known analogues, and their structures were confirmed by extensive spectroscopic methods. This study evaluated their antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA) for the first time, as well as anti-inflammatory activity. Most of them, including new compounds, showed varying degrees of antibacterial activity against S. aureus and MRSA. Notably, compound 21 exhibited significant antibacterial activity against four different bacteria (MIC 6.25-20.00 μg/mL). This suggested that 21 may have the potential to be developed into a broad-spectrum antibacterial agent. Moreover, except for 9 and 11, most compounds exhibited great anti-inflammatory activity (IC50 1.92-37.91 μM), and iNOS might be a potential target of these compounds according to the molecular docking analysis.
Collapse
Affiliation(s)
- Wenhao Zhou
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Xiaoqin Zheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Xilei Wang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Yinghan Tian
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Yi Wen
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Yijun Tu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Jiachuan Lei
- Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hong Cheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jianqing Yu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Niu X, Gu H, Li J, Zuo J, Ren W, Huang Y, Shu X, Jiang C, Shu P. Efficacy and safety of Atractylodes macrocephala-containing traditional Chinese medicine combined with neoadjuvant chemotherapy in the treatment of advanced gastric cancer: a systematic evaluation and meta-analysis. Front Oncol 2024; 14:1431381. [PMID: 39479020 PMCID: PMC11521787 DOI: 10.3389/fonc.2024.1431381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/18/2024] [Indexed: 11/02/2024] Open
Abstract
Background In China, Atractylodes-containing Chinese medicines are widely used as adjuvant therapy to neoadjuvant chemotherapy (NAC) in individuals diagnosed with advanced gastric cancer (AGC). Nevertheless, the findings concerning its effectiveness are still restricted. The aim from this research was to examine the efficiency and security Atractylodes macrocephala-containing traditional Chinese medicine together with NAC in the management of AGC. Methods Literature was systematically searched across 8 electronic databases until September 20, 2023. Two researchers conducted a thorough review of the selected studies. The primary outcome measures included the objective response rate (ORR), disease control rate (DCR), quality of life (QOL), adverse drug reactions (ADRs), and levels of peripheral blood lymphocytes. The relevant effect estimates are as follows as risk ratios (RR) or mean differences (MD) with corresponding 95% confidence intervals (CI). Credibility of information was evaluated using the GRADE analyzer. Results The results showed that solely on the basis of the accessible literature examined in NAC patients, individuals who received the therapeutic regimen containing Atractylodis Macrocephalae Chinese herbal preparations demonstrated a superior overall response rate (Relative Risk: 1.41, 95% confidence interval: 1.27-1.57, P < 0.001); DCR (RR: 1.20, 95% confidence interval: 1.13-1.27, P < 0.001), as compared to QOL (RR: 1.43, 95% confidence interval: 1.30-1.57, P < 0.001, MD: 8.47, 95% confidence interval: 7.16 - 9.77, P < 0.001); the proportions of CD3+ T-cells, CD4+ T-cells, CD8+ T-cells, CD4+CD8+ T-cells were increased; and the incidence of adverse reactions was decreased. Subgroup analyses showed that oral administration of all the traditional Chinese medicines containing Atractylodes macrocephala could improve tumor efficacy. Regardless of the duration of therapy of ≥8 weeks or <8 weeks, Atractylodes macrocephala-containing traditional Chinese medicine increased the tumor response in AGC patients. Combination of Atractylodes macrocephala-containing TCM with neoadjuvant chemotherapy increased ORR and DCR; when used in conjunction with cisplatin, only ORR was increased. Conclusion The combination of Atractylodes macrocephala-containing herbs with NAC in the treatment of AGC improves efficacy, improves prognosis, and reduces adverse effects. Nevertheless, additional high-quality randomized trials are required. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023461079.
Collapse
Affiliation(s)
- Xiaotao Niu
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haoqing Gu
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jingzhan Li
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiaqian Zuo
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wenqin Ren
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yujie Huang
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinyan Shu
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chao Jiang
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Peng Shu
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- School of No. 1 Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Hao Y, Zhang X, Lin X, Yang S, Huang Y, Lai W, Liao X, Liao W, Fu C, Zhang Z. *The traditional Chinese medicine processing change chemical composition and pharmacological effectiveness: Taking Atractylodes macrocephala Koidz. and honey bran-fried Atractylodes macrocephala Koidz. as examples. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155739. [PMID: 38797027 DOI: 10.1016/j.phymed.2024.155739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Atractylodes macrocephala Koidz. (Baizhu in Chinese, BZ) is a typical traditional edible-medicinal herb used for thousands of years. Known as "the spleen-reinforcing medicine", it is often used clinically to treat reduced digestive function, abdominal distension, and diarrhoea, which are all caused by spleen deficiency. Among BZ's processing products, honey bran-fried BZ (HBBZ) is the only processed product recorded in BZ in the 2020 Chinese Pharmacopoeia (ChP). There are differences in effectiveness, traditional application, and clinical indications between them. PURPOSE This review reviewed BZ and its main product HBBZ from botany, ethnopharmacology, chemical composition, pharmacological effectiveness, and safety. The changes in chemical composition and pharmacological effectiveness of BZ induced by the processing of traditional Chinese medicine were emphatically described. METHODS Keywords related to Atractylodes macrocephala Koidz., honey bran frying, essential oil, lactones, polysaccharide and combinations to include published studies of BZ and HBBZ from 2004-2023 were searched in the following databases: Pubmed, Chengdu University of TCM Library, Google Scholar, China National Knowledge Infrastructure (CNKI), and Wanfang database. All studies, published in English or Chinese, were included. However, in the process of chemical composition collection, we reviewed all available literature on the chemical composition of BZ and HBBZ. CONCLUSION Honey bran frying processing methods will affect BZ's chemical composition and pharmacological effectiveness. The types and contents of chemical components in the HBBZ showed some changes compared with those in BZ. For example, the content of volatile oil decreased and the content of lactones increased after stir-fried bran. In addition, new ingredients such as phenylacetaldehyde, 2-acetyl pyrrole, 6- (1,1-dimethylethyl) -3,4-dihydro-1 (2H) -naphthalone and 5-hydroxymethylfurfural appeared. Both BZ and HBBZ have a variety of pharmacological effectiveness. After stir-fried with honey bran, the "Zao Xing" is reduced, and the efficacy of tonify spleen is strengthened, which is more suitable for patients with weak spleen and stomach.
Collapse
Affiliation(s)
- Yiwen Hao
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xing Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Wenjing Lai
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Xin Liao
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China
| | - Wan Liao
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.
| |
Collapse
|
4
|
Choi NR, Choi WG, Lee JH, Park J, Kim YT, Das R, Woo JH, Kim BJ. Atractylodes macrocephala Koidz Alleviates Symptoms in Zymosan-Induced Irritable Bowel Syndrome Mouse Model through TRPV1, NaV1.5, and NaV1.7 Channel Modulation. Nutrients 2024; 16:1683. [PMID: 38892616 PMCID: PMC11174792 DOI: 10.3390/nu16111683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Background: Irritable bowel syndrome (IBS) is a common disease in the gastrointestinal (GI) tract. Atractylodes macrocephala Koidz (AMK) is known as one of the traditional medicines that shows a good efficacy in the GI tract. (2) Methods: We investigated the effect of AMK in a network pharmacology and zymosan-induced IBS animal model. In addition, we performed electrophysiological experiments to confirm the regulatory mechanisms related to IBS. (3) Results: Various characteristics of AMK were investigated using TCMSP data and various analysis systems. AMK restored the macroscopic changes and weight to normal. Colonic mucosa and inflammatory factors were reduced. These effects were similar to those of amitriptyline and sulfasalazine. In addition, transient receptor potential (TRP) V1, voltage-gated Na+ (NaV) 1.5, and NaV1.7 channels were inhibited. (4) Conclusion: These results suggest that AMK may be a promising therapeutic candidate for IBS management through the regulation of ion channels.
Collapse
Affiliation(s)
- Na-Ri Choi
- Department of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (W.-G.C.)
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woo-Gyun Choi
- Department of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (W.-G.C.)
| | - Jong-Hwan Lee
- Department of Biomedical Engineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea;
| | - Joon Park
- Division of Food Functionality, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (J.P.); (Y.-T.K.)
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Yun-Tai Kim
- Division of Food Functionality, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (J.P.); (Y.-T.K.)
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Raju Das
- Department of Physiology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Joo-Han Woo
- Department of Physiology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Byung-Joo Kim
- Department of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (W.-G.C.)
| |
Collapse
|
5
|
Qian H, Ye Z, Hu Y, Wu M, Chen L, Li L, Hu Z, Zhao Q, Zhang C, Yang M, Xudong W, Ye Q, Qin K. Molecular targets associated with ulcerative colitis and the benefits of atractylenolides-based therapy. Front Pharmacol 2024; 15:1398294. [PMID: 38860174 PMCID: PMC11163078 DOI: 10.3389/fphar.2024.1398294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestines that can significantly impact quality of life and lead to various complications. Currently, 5-aminosalicylic acid derivatives, corticosteroids, immunosuppressants, and biologics are the major treatment strategies for UC, but their limitations have raised concerns. Atractylenolides (ATs), sesquiterpene metabolites found in Atractylodes macrocephala Koidz., have shown promising effects in treating UC by exerting immune barrier modulation, alleviating oxidative stress, gut microbiota regulation, improving mitochondrial dysfunction and repairing the intestinal barrier. Furthermore, ATs have been shown to possess remarkable anti-fibrosis, anti-thrombus, anti-angiogenesis and anti-cancer. These findings suggest that ATs hold important potential in treating UC and its complications. Therefore, this review systematically summarizes the efficacy and potential mechanisms of ATs in treating UC and its complications, providing the latest insights for further research and clinical applications.
Collapse
Affiliation(s)
- Huanzhu Qian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, Sichuan, China
| | - Liulin Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Linzhen Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhipeng Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Maoyi Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wen Xudong
- Department of Gastroenterology, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, Sichuan, China
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kaihua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Li S, Sun Y, Gao Y, Yu X, Zhao C, Song X, Han F, Yu J. Spectrum-effect relationship analysis based on HPLC-FT-ICR-MS and multivariate statistical analysis to reveal the pharmacodynamic substances of Ling-Gui-Zhu-Gan decoction on Alzheimer's disease. J Pharm Biomed Anal 2024; 237:115765. [PMID: 37844366 DOI: 10.1016/j.jpba.2023.115765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Alzheimer's disease (AD) threatens elderly human health and still lacks effective treatment. Our previous work showed that LGZGD possessed a neuroprotective effect on the Aβ25-35-induced neurotoxicity in differentiated PC12 cells, indicating that LGZGD may be a potential drug for treatment of AD. However, its pharmacodynamic substances which show anti-inflammatory and anti-oxidant stress activities are still unrevealed. This research aims to reveal the pharmacodynamic substances of LGZGD on Aβ25-35-induced PC12 cell model of AD based on a spectrum-effect relationship study by using HPLC-FT-ICR-MS method and multivariate statistical analysis. Firstly, the chemical composition spectra of different combinations of LGZGD were recorded by HPLC-FT-ICR MS. Subsequently, Aβ25-35-induced PC12 cell model of AD was established and pharmacodynamic experiments were conducted to evaluate their anti-inflammatory and anti-oxidant activities, respectively. Finally, the potential pharmacodynamic substances were screened out through spectrum-effect relationship study accompanied by multivariate statistical analysis including bivariate correlation analysis (BCA), grey relational analysis (GRA), principal component analysis (PCA), partial least squares regression analysis (PLSR). As a result, a total of 96 chemical consistents in different combinations of LGZGD were discovered. Among them, 7 components such as isoglabrolide, licorice saponin E2, licorice saponin N2 and licoisoflavanone were directly linked with the anti-inflammatory effects, and 14 constituents such as tumulosic acid, polyporenic acid C, dehydrotumulosic acid, dehydropachymic acid, and pachymic acid were directly correlated with the anti-oxidative stress activities. In conclusion, we combined the HPLC-FT-ICR-MS spectra with pharmacodynamic indicators to develop the spectrum-effect relationships of LGZGD for the first time, and successfully revealed its potential pharmacodynamic substances in the treatment of AD from the anti-inflammatory and antioxidant pathways in the cell model.
Collapse
Affiliation(s)
- Siyue Li
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yuanfang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yutong Gao
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xinying Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chun Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiuping Song
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
7
|
Gu Z, Nie X, Guo P, Lu Y, Chen B. Simultaneous Analysis of Hydrophobic Atractylenolides, Atractylon and Hydrophilic Sugars in Bai-Zhu Using a High-Performance Liquid Chromatography Column Tandem Technique. Foods 2023; 12:3931. [PMID: 37959050 PMCID: PMC10650456 DOI: 10.3390/foods12213931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
An analytical method was established using high-performance liquid chromatography coupled with diode array and evaporative light scattering detectors (HPLC-DAD-ELSD) with -C18 and -NH2 column tandem for the simultaneous determination of hydrophobic atractylenolide I, II, III, atractylone and hydrophilic compounds glucose, fructose and sucrose in the dried rhizome of Atractylodes macrocephala Koidz (a natural raw material for health foods, Bai-Zhu aka. in Chinese). The method combines the different separation capabilities of reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography. It can provides a new choice for the simultaneous determination of hydrophilic and hydrophobic compounds in traditional Chinese medicines and health foods. It provided a reference method for the quality control of Bai-Zhu. The results showed that the linear correlation coefficients of the established column tandem chromatographic method were all greater than 0.9990, the relative standard deviation was 0.1-2.8%, and the average recovery was 96.7-103.1%. The contents of atractylenolide I, II, III, atractylone, fructose, glucose, and sucrose in 17 batches of Baizhu were 172.3-759.8 μg/g, 201.4-612.8 μg/g, 160.3-534.2 μg/g, 541.4-8723.1 μg/g, 6.9-89.7 mg/g, 0.7-7.9 mg/g, and 1.2-21.0 mg/g, respectively.
Collapse
Affiliation(s)
| | | | | | | | - Bo Chen
- Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research of Ministry of Educational of China Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; (Z.G.); (X.N.); (P.G.); (Y.L.)
| |
Collapse
|
8
|
Fan YZ, Tian C, Tong SY, Liu Q, Xu F, Shi BB, Ai HL, Liu JK. The antifungal properties of terpenoids from the endophytic fungus Bipolaris eleusines. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:43. [PMID: 37870633 PMCID: PMC10593648 DOI: 10.1007/s13659-023-00407-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
A series of terpenoids (1-17), comprising six new compounds designated bipolariterpenes A-F (1-6) and eleven recognized compounds (7-17), were isolated from the wheat culture of the potato endophytic fungus Bipolaris eleusines. Their structures and stereochemistry were clarified by HRESIMS, NMR, DP4 + probability analyses, and computations for electronic circular dichroism (ECD). All compounds are made up of six meroterpenoids, four sesterterpenes and seven sesquiterpenes. Among them, four sesterterpenes (4, 5, 10, 11) were investigated for their antifungal, antibacterial and cytotoxic properties, and six meroterpenoids (1-3, 7-9) were evaluated for their antifungal properties. The compounds 7, 9, and 10 had substantial antifungal activity against Epidermophyton floccosum at a concentration of 100 µM. No antibacterial and cytotoxic activities were observed.
Collapse
Affiliation(s)
- Yin-Zhong Fan
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Chun Tian
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Shun-Yao Tong
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Qing Liu
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Fan Xu
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Bao-Bao Shi
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| | - Hong-Lian Ai
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
9
|
Zhou H, Li XY, Fang HB, Jiang HZ, Cheng YX. Five new sesquiterpenoids from agarwood of Aquilaria sinensis. Beilstein J Org Chem 2023; 19:998-1007. [PMID: 37404799 PMCID: PMC10315886 DOI: 10.3762/bjoc.19.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
Five new eudesmane-type sesquiterpenoids (aquisinenoids F-J (1-5)) and five known compounds (6-10) were isolated from the agarwood of Aquilaria sinensis. Their structures, including absolute configurations, were identified by comprehensive spectroscopic analyses and computational methods. Inspired by our previous study on the same kinds of skeletons, we speculated that the new compounds have anticancer and anti-inflammatory activities. The results did not show any activity, but they revealed the structure-activity relationships (SAR).
Collapse
Affiliation(s)
- Hong Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Xu-Yang Li
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Hong-Bin Fang
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - He-Zhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yong-Xian Cheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
10
|
Yu Y, Fu D, Zhou H, Su J, Chen S, Lv G. Potential application of Atractylodes macrocephala Koidz. as a natural drug for bone mass regulation: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116718. [PMID: 37268258 DOI: 10.1016/j.jep.2023.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Atractylodes macrocephala Koidz. (AM) has been used for thousands of years in China, and it's extracts contain various constituents, such as volatile oils, polysaccharides, and lactones, with a myriad of pharmacological effects, including improves the healthy state of the gastrointestinal system and regulating immunity, hormone secretion, anti-inflammatory, antibacterial, antioxidation, anti-aging, and antitumor properties. Recently, researchers have focused on the effect of AM in regulating bone mass; therefore, its potential mechanism of action in regulating bone mass needs to be elucidated. AIM OF REVIEW This study reviewed the known and possible mechanisms of bone mass regulation by AM. MATERIALS AND METHODS Cochrane, Medline via PubMed, Embase, CENTRAL, CINAHL, Web of Science, Chinese biomedical literature database, Chinese Science and Technology Periodical Database, and Wanfang Database were used to search AM root extracts-related studies. The retrieval date was from the establishment of the database to January 1, 2023. RESULTS By summarizing 119 natural active substances that have been isolated from AM root to date, we explored its possible targets and pathways (such as Hedgehog, Wnt/β-catenin, and BMP/Smads pathways etc.) for bone growth and presented our position on possible future research/perspectives in the regulation of bone mass using this plant. CONCLUSIONS AM root extracts (incuding aqueous, ethanol etc.) promotes osteogenesis and inhibits osteoclastogenesis. These functions promote the absorption of nutrients, regulate gastrointestinal motility and intestinal microbial ecology, regulate endocrine function, strengthen bone immunity, and exert anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Yikang Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Danqing Fu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hengpu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Suhong Chen
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
11
|
Xie Z, Lin M, He X, Dong Y, Chen Y, Li B, Chen S, Lv G. Chemical Constitution, Pharmacological Effects and the Underlying Mechanism of Atractylenolides: A Review. Molecules 2023; 28:molecules28103987. [PMID: 37241729 DOI: 10.3390/molecules28103987] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Atractylenolides, comprising atractylenolide I, II, and III, represent the principal bioactive constituents of Atractylodes macrocephala, a traditional Chinese medicine. These compounds exhibit a diverse array of pharmacological properties, including anti-inflammatory, anti-cancer, and organ-protective effects, underscoring their potential for future research and development. Recent investigations have demonstrated that the anti-cancer activity of the three atractylenolides can be attributed to their influence on the JAK2/STAT3 signaling pathway. Additionally, the TLR4/NF-κB, PI3K/Akt, and MAPK signaling pathways primarily mediate the anti-inflammatory effects of these compounds. Atractylenolides can protect multiple organs by modulating oxidative stress, attenuating the inflammatory response, activating anti-apoptotic signaling pathways, and inhibiting cell apoptosis. These protective effects extend to the heart, liver, lung, kidney, stomach, intestine, and nervous system. Consequently, atractylenolides may emerge as clinically relevant multi-organ protective agents in the future. Notably, the pharmacological activities of the three atractylenolides differ. Atractylenolide I and III demonstrate potent anti-inflammatory and organ-protective properties, whereas the effects of atractylenolide II are infrequently reported. This review systematically examines the literature on atractylenolides published in recent years, with a primary emphasis on their pharmacological properties, in order to inform future development and application efforts.
Collapse
Affiliation(s)
- Zhiyi Xie
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Minqiu Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Yingjie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Yigong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
12
|
Li XJ, Xiao SJ, Chen J, Xu HR. Inulin-type fructans obtained from Atractylodis Macrocephalae by water/alkali extraction and immunoregulatory evaluation. Int J Biol Macromol 2023; 230:123212. [PMID: 36627035 DOI: 10.1016/j.ijbiomac.2023.123212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Two homogenous polysaccharides extracted from Atractylodes macrocephala Koidz. were investigated by water extraction (AMP-FW) and alkali solution extraction (AMP-FA) after purification by anion exchange column and size exclusion chromatography. The molecular weight of AMP-FW and AMP-FA were 2874 Da and 3438 Da, respectively, estimated by high performance gel permeation chromatography (HPGPC). The monosaccharide compositions of AMP-FW and AMP-FA were glucose and fructose at a molar ratio of 0.11:0.89 determined by high performance anion exchange chromatography (HPAEC). The functional groups, glycosidic linkages and the chemical structure were characterized by FT-IR, GC-MS and NMR, which comprehensively indicated a similar inulin-type fructan structure of the two polysaccharides from A. macrocephala. However, the scanning electron microscopy (SEM) results showed different microstructures that irregular lamellar shape for the AMP-FW and spheroid shape for the AMP-FA. The further studies on immunomodulation showed that AMP-FW at 50 μg/mL could significantly (P < 0.05) stimulate RAW 264.7 cells by enhancing the mRNA expression of TNF-α and IL-1β, which had a relative high immunomodulatory potential when compared to AMP-FA. Their activation on different toll-like receptors (TLR) also indicated their different roles in the immunoregulation. Overall, these findings reported here will serve as the basis for further structure-activity relationship studies.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China.
| | - Shi-Jun Xiao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Jiang Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Hai-Rong Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| |
Collapse
|
13
|
Zhang HX, Si JG, Li JR, Yu M, Qin LL, Zhao CX, Zhang T, Zou ZM. Eudesmane-type sesquiterpenes from the rhizomes of Atractylodes macrocephala and their bioactivities. PHYTOCHEMISTRY 2023; 206:113545. [PMID: 36481315 DOI: 10.1016/j.phytochem.2022.113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Fifteen undescribed eudesmane-type sesquiterpenes, named atramacronoids D-R, along with fourteen known analogues were isolated from the rhizomes of Atractylodes macrocephala. The structures of atramacronoids D-R were elucidated based on extensive spectroscopic data analysis, Snatzke's rule, electronic circular dichroism (ECD) calculations, and X-ray crystallographic analysis. Notably, of the undescribed isolates, atramacronoids D and E are the first example of eudesmanolactam-phenol and eudesmanolactam-ethyl hybrids obtained from plants, respectively. A pair of enantiomers, (+)- and (-)-atramacronoids F, were successfully resolved by chiral-phase HPLC. Atramacronoid D exhibited weak cytotoxicity against SGC-7901 cells. Atramacronoid E significantly promoted the proliferation of LPS-induced IEC-6 cells.
Collapse
Affiliation(s)
- Hai-Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jin-Guang Si
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jing-Rong Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Medical Sciences, Guizhou Medical University, Guiyang, 550000, China
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ling-Ling Qin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chen-Xu Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Tao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
14
|
Zhuang LX, Liu Y, Wang SY, Sun Y, Pan J, Guan W, Hao ZC, Kuang HX, Yang BY. Cytotoxic Sesquiterpenoids from Atractylodes chinensis (DC.) Koidz. Chem Biodivers 2022; 19:e202200812. [PMID: 36328982 DOI: 10.1002/cbdv.202200812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Four new sesquiterpenoids named atrchiterpenes A-D (1-4), a new natural product (5), and twelve known compounds (6-17) were isolated from Atractylodes chinensis (DC.) Koidz. Compound 1 was a rare N-containing eudesmane-type sesquiterpenoid. Structure elucidation was performed by spectroscopic techniques, including 1D, 2D NMR spectra, and HR-ESI-MS. Compounds 6-11, 14, and 17 were reported from Atractylodes for the first time. All the isolated compounds were evaluated for cytotoxicity activity. Compound 16 showed moderate cytotoxicity against HepG2 cells with an IC50 value of 5.81±0.47.
Collapse
Affiliation(s)
- Lei-Xin Zhuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Si-Yi Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Ye Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Zhi-Chao Hao
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| |
Collapse
|
15
|
Wang XZ, Chang YY, Chen Y, Wu HL, Wang T, Ding YJ, Yu RQ. Geographical origin traceability of medicine food homology species based on an extract-and-shoot inductively coupled plasma mass spectrometry method and chemometrics. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Kim HY, Kim JH. Sesquiterpenoids Isolated from the Rhizomes of Genus Atractylodes. Chem Biodivers 2022; 19:e202200703. [PMID: 36323637 DOI: 10.1002/cbdv.202200703] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Atractylodes plants have been used in traditional herbal medicine to treat gastrointestinal diseases and contain various chemical compounds. Sesquiterpenoids are the most important therapeutic compounds in Atractylodes rhizomes. Based on studies reported from 2000 to 2022, we classified sesquiterpenoids by their chemical skeletons and original resources. Moreover, we discussed their biosynthesis and physicochemical and pharmacological features. We reported sesquiterpenoids with skeletal moieties, such as monocyclic sesquiterpenes (bisabolene- and elemene-type), bicyclic sesquiterpenes (eudesmane-, isopterocarpolone-, hydroxycarissone-, eremophilane-, bisesquiterpenoid-, guaiane- and spirovetivane-type and eudesmane lactones) and tricyclic sesquiterpenes (cyperene- and patchoulene-type), with their biosynthetic pathways, chemical modifications and in vivo metabolites. The pharmacological activities of sesquiterpenoids as anti-inflammatory, anti-tumor, anti-diabetic and anti-microbial and for treating gastrointestinal disorders have been reported for this genus.
Collapse
Affiliation(s)
- Han-Young Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, 50612, Korea
| | - Jung-Hoon Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, 50612, Korea
| |
Collapse
|
17
|
Atractylenolide III Attenuates Apoptosis in H9c2 Cells by Inhibiting Endoplasmic Reticulum Stress through the GRP78/PERK/CHOP Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1149231. [PMID: 36159560 PMCID: PMC9492373 DOI: 10.1155/2022/1149231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022]
Abstract
The objective of this study was to determine the effect of atractylenolide III (ATL-III) on endoplasmic reticulum stress (ERS) injury, H9c2 cardiomyocyte apoptosis induced by tunicamycin (TM), and the GRP78/PERK/CHOP signaling pathway. Molecular docking was applied to predict the binding affinity of ATL-III to the key proteins GRP78, PERK, IREα, and ATF6 in ERS. Then, in vitro experiments were used to verify the molecular docking results. ERS injury model of H9c2 cells was established by TM. Cell viability was detected by MTT assay, and apoptosis was detected by Hoechst/PI double staining and flow cytometry. Protein expression levels of GRP78, PERK, eIF2α, ATF4, CHOP, Bax, Bcl-2, and Caspase-3 were detected by Western blot. And mRNA levels of GRP78, CHOP, PERK, eIF2α, and ATF4 were detected by RT-qPCR. Moreover, the mechanism was further studied by using GRP78 inhibitor (4-phenylbutyric acid, 4-PBA), and PERK inhibitor (GSK2656157). The results showed that ATL-III had a good binding affinity with GRP78, and the best binding affinity was with PERK. ATL-III increased the viability of H9c2 cells, decreased the apoptosis rate, downregulated Bax and Caspase-3, and increased Bcl-2 compared with the model group. Moreover, ATL-III downregulated the protein and mRNA levels of GRP78, CHOP, PERK, eIF2α, and ATF4, consistent with the inhibition of 4-PBA. ATL-III also decreased the expression levels of PERK, eIF2α, ATF4, CHOP, Bax, and Caspase-3, while increasing the expression of Bcl-2, which is consistent with GSK2656157. Taken together, ATL-III could inhibit TM-induced ERS injury and H9c2 cardiomyocyte apoptosis by regulating the GRP78/PERK/CHOP signaling pathway and has myocardial protection.
Collapse
|
18
|
Polysaccharides from Rhizoma Atractylodis Macrocephalae: A Review on Their Extraction, Purification, Structure, and Bioactivities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2338533. [PMID: 36034948 PMCID: PMC9402290 DOI: 10.1155/2022/2338533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023]
Abstract
Rhizoma Atractylodes macrocephala polysaccharide (RAMP), the main bioactive compound extracted from Rhizoma Atractylodes macrocephala (RAM), exhibits various biological activities in in vivo and in vitro methods, such as anti-inflammatory, antioxidant, antitumor, immunomodulatory, hepatoprotective effects, and other functions. This review systematically summarizes the recent research progress on the extraction, purification, structural characteristics, and biological activities of RAMP. We hope to provide a theoretical basis for further research on the application of RAMP in the fields of biomedicine and food.
Collapse
|
19
|
Gao Y, Wang J, Zhao M, Xia T, Liu Q, Chen N, Liao W, Zeng Z, You F, Zeng J. Atractylenolide III Attenuates Angiogenesis in Gastric Precancerous Lesions Through the Downregulation of Delta-Like Ligand 4. Front Pharmacol 2022; 13:797805. [PMID: 35846998 PMCID: PMC9282052 DOI: 10.3389/fphar.2022.797805] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/16/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Blocking and even reversing gastric precancerous lesions (GPL) is a key measure to lower the incidence of gastric cancer. Atractylenolide III (AT-III) is a mainly active component of the Atractylodes rhizome and has been widely used in tumor treatment. However, the effects of AT-III on GPL and its mechanisms have not been reported.Methods: H & E staining and AB-PAS staining were employed to evaluate the histopathology in the gastric mucosa. In parallel, CD34 immunostaining was performed for angiogenesis assessment, and transmission electron microscope for microvessel ultrastructural observation. Investigation for the possible mechanism in vivo and in vitro was conducted using immunohistochemistry, RT-qPCR and western blotting.Results: In most GPL specimens, AT-III treatment reduced microvascular abnormalities and attenuated early angiogenesis, with the regression of most intestinal metaplasia and partial dysplasia. Meanwhile, the expression of VEGF-A and HIF-1α was enhanced in GPL samples of model rats, and their expressions were decreased in AT-III-treated GPL rats. Moreover, DLL4 mRNA and protein expression were higher in GPL rats than in control rats. DLL4 protein expression was significantly enhanced in human GPL tissues. In addition, AT-III treatment could diminish DLL4 mRNA level and protein expression in the MNNG-induced GPL rats. In vitro study showed that in AGS and HGC-27 cells, DLL4 mRNA level and protein expression were significantly decreased after AT-III treatment. However, AT-III had no significant regulatory effect on Notch1 and Notch4.Conclusion: AT-III treatment is beneficial in lessening gastric precancerous lesions and attenuating angiogenesis in rats, and that may be contributed by the decrease of angiogenesis-associated HIF-1α and VEGF-A, and downregulation of DLL4.
Collapse
Affiliation(s)
- Ying Gao
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jundong Wang
- Gastroenterology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyuan Zhao
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Xia
- Gastroenterology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Gastroenterology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nianzhi Chen
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongzhen Zeng
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Oncology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fengming You, ; Jinhao Zeng,
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fengming You, ; Jinhao Zeng,
| |
Collapse
|
20
|
Tong GY, Wu HL, Wang T, Chang YY, Chen Y, Yang J, Fu HY, Yang XL, Li XF, Yu RQ. Analysis of active compounds and geographical origin discrimination of Atractylodes macrocephala Koidz. by using high performance liquid chromatography-diode array detection fingerprints combined with chemometrics. J Chromatogr A 2022; 1674:463121. [DOI: 10.1016/j.chroma.2022.463121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/10/2023]
|
21
|
Rui M, Chou G. Three new polyacetylenes from Atractylodes japonica Koidz.ez Kitam. Nat Prod Res 2022; 36:2063-2070. [DOI: 10.1080/14786419.2020.1845673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mengjue Rui
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Guixin Chou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| |
Collapse
|
22
|
Protective Effect of Amber Extract on Human Dopaminergic Cells against 6-Hydroxydopamine-Induced Neurotoxicity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061817. [PMID: 35335178 PMCID: PMC8956085 DOI: 10.3390/molecules27061817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disease, after Alzheimer’s disease. In our previous study, we found that amber—a fossilized plant resin—can protect cells from apoptosis by decreasing the generation of reactive oxygen species (ROS). In this study, we focused on the effect of amber on 6-hydroxydopamine-induced cell apoptosis in the human neuroblastoma cell line SHSY5Y (one model for PD). Initially, we determined the protective effect of amber on the PD model. We found that amber extract has a protective effect against 6-hydroxydopamine-induced cell apoptosis. The decrease in ROS, cleaved caspase-3, pERK, and extracellular signal-regulated kinase (ERK) protein levels confirmed that amber extract decreases apoptosis via the ROS-mediated ERK signaling pathway. Furthermore, we determined the effects of amber extract on autophagy. The results showed that amber extract increased the levels of LC3II and Beclin-1, suggesting that amber extract can protect neuronal cells against 6-hydroxydopamine-induced cell apoptosis by promoting autophagy.
Collapse
|
23
|
Chang XY, Wu JS, Zhang FQ, Li ZZ, Jin WY, Wang JX, Wang WH, Shi Y. A Strategy for Screening the Lipid-Lowering Components in Alismatis Rhizoma Decoction Based on Spectrum-Effect Analysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:2363242. [PMID: 35028165 PMCID: PMC8752264 DOI: 10.1155/2022/2363242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 05/15/2023]
Abstract
Alismatis Rhizoma decoction (ARD), comprised of Alisma plantago-aquatica subsp. orientale (Sam.) Sam and Atractylodes macrocephala Koidz. at a ratio of 5 : 2, is a classic traditional Chinese medicine (TCM) formula with successful clinical hypolipidemic effect. This paper aimed to explore the major bioactive compounds and potential mechanism of ARD in the treatment of hyperlipidemia on the basis of spectrum-effect analysis and molecular docking. Nine ARD samples with varying ratios of the constituent herbs were prepared and analyzed by UPLC-Q-TOF/MS to obtain the chemical spectra. Then, the lipid-lowering ability of the nine samples was tested in an oleic acid-induced lipid accumulation model in human hepatoma cells (HepG2). Grey relational analysis and partial least squares regression analysis were then performed to determine the correlation between the chemical spectrums and lipid-lowering efficacies of ARD. The potential mechanisms of the effective compounds were investigated by docking with the farnesoid X receptor (FXR) protein. The results indicated that alisol B 23-acetate, alisol C 23-acetate, and alisol B appeared to be the core effective components on hyperlipidemia in ARD. Molecular docking further demonstrated that all three compounds could bind to FXR and were potential FXR agonists for the treatment of hyperlipidemia. This study elucidated the effective components and potential molecular mechanism of action of ARD for treating hyperlipidemia from a perspective of different compatibility, providing a new and feasible reference for the research of TCM formulas such as ARD.
Collapse
Affiliation(s)
- Xiao-Yan Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jia-Shuo Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Fang-Qing Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhuang-Zhuang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wei-Yi Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Hebei Medical University, Shijiazhuang 050017, China
| | - Jing-Xun Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | | | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
24
|
Wang X, Chen Y, Wu H, Wang T, Yang J, Fu H, Yang X, Li X, Ding Y, Yu R. Study on the Origin Traceability of Atractylodes macrocephala Koidz. and Its Correlation with Soil Based on Mineral Elements. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21090441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Li MX, Li YZ, Chen Y, Wang T, Yang J, Fu HY, Yang XL, Li XF, Zhang G, Chen ZP, Yu RQ. Excitation-emission matrix fluorescence spectroscopy combined with chemometrics methods for rapid identification and quantification of adulteration in Atractylodes macrocephala Koidz. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Lin YC, Lin CC, Chu YC, Fu CW, Sheu JH. Bioactive Diterpenes, Norditerpenes, and Sesquiterpenes from a Formosan Soft Coral Cespitularia sp. Pharmaceuticals (Basel) 2021; 14:1252. [PMID: 34959653 PMCID: PMC8708085 DOI: 10.3390/ph14121252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/28/2021] [Indexed: 12/19/2022] Open
Abstract
Chemical investigation of the soft coral Cespitularia sp. led to the discovery of twelve new verticillane-type diterpenes and norditerpenes: cespitulins H-O (1-8), one cyclic diterpenoidal amide cespitulactam L (9), norditerpenes cespitulin P (10), cespitulins Q and R (11 and 12), four new sesquiterpenes: cespilins A-C (13-15) and cespitulolide (16), along with twelve known metabolites. The structures of these metabolites were established by extensive spectroscopic analyses, including 2D NMR experiments. Anti-inflammatory effects of the isolated compounds were studied by evaluating the suppression of pro-inflammatory protein tumor necrosis factor-α (TNF-α) and nitric oxide (NO) overproduction, and the inhibition of the gene expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in lipopolysaccharide-induced dendritic cells. A number of these metabolites were found to exhibit promising anti-inflammatory activities.
Collapse
Affiliation(s)
- You-Cheng Lin
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Chi-Chien Lin
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 402, Taiwan; (C.-C.L.); (Y.-C.C.)
| | - Yi-Chia Chu
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 402, Taiwan; (C.-C.L.); (Y.-C.C.)
| | - Chung-Wei Fu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Jyh-Horng Sheu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
27
|
Quality Evaluation of Atractylodis Macrocephalae Rhizoma Based on Combinative Method of HPLC Fingerprint, Quantitative Analysis of Multi-Components and Chemical Pattern Recognition Analysis. Molecules 2021; 26:molecules26237124. [PMID: 34885706 PMCID: PMC8658834 DOI: 10.3390/molecules26237124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
A method for the quality evaluation of Atractylodis Macrocephalae Rhizoma (AMR) based on high-performance liquid chromatography (HPLC) fingerprint, HPLC quantification, and chemical pattern recognition analysis was developed and validated. The fingerprint similarity of the 27 batches of AMR samples was 0.887–0.999, which indicates there was very limited variance between the batches. The 27 batches of samples were divided into two categories according to cluster analysis (CA) and principal component analysis (PCA). A total of six differential components of AMR were identified in the partial least-squares discriminant analysis (PLS-DA), among which atractylenolide I, II, III, and atractylone counted 0.003–0.045%, 0.006–0.023%, 0.001–0.058%, and 0.307–1.175%, respectively. The results indicate that the quality evaluation method could be used for quality control and authentication of AMR.
Collapse
|
28
|
Yang L, Luo H, Tan D, Zhang S, Zhong Z, Wang S, Vong CT, Wang Y. A recent update on the use of Chinese medicine in the treatment of inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153709. [PMID: 34560518 DOI: 10.1016/j.phymed.2021.153709] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic idiopathic disease that is characterized by inflammation of the gastrointestinal tract. Proper management of IBD requires both early diagnosis and novel therapies and management programs. Many reports have suggested that Chinese medicine has unique properties favorable to the treatment of IBD. However, there are no systematic analyses on this topic. PURPOSE This review summarizes recent studies that assessed the effects and mechanisms of Chinese medicine in the treatment of IBD in order to fully understand the advantages of Chinese medicine in the management of IBD. METHODS A literature search was conducted using peer-reviewed and clinical databases, including PubMed, Web of Science, ClinicalTrials.gov, MEDLINE, EMBASE, Springer LINK, Wan-fang database, the Chinese Biomedicine Database, and the China National Knowledge Infrastructure (CNKI). Keywords used were inflammatory bowel disease (including Ulcerative colitis or Crohn's disease) and Chinese medicine. All selected articles were from 1997 to 2021, and each were assessed critically for our exclusion criteria. Studies describing the pathogenesis of IBD, the effects and mechanisms of Chinese medicine in the treatment of IBD, in particular their roles in immune regulation, intestinal flora regulation, and improvement of intestinal barrier function, were included. CONCLUSION This review highlights recent progress in the use of Chinese medicine in the treatment of IBD. It also provides a reference for further evaluation and exploration of the potential of classical multi-herbal Chinese medicine in the treatment of IBD.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dechao Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
29
|
Fu JD, Gao CH, Li SW, Tian Y, Li SC, Wei YE, Xian LW. Atractylenolide III alleviates sepsis-mediated lung injury via inhibition of FoxO1 and VNN1 protein. Acta Cir Bras 2021; 36:e360802. [PMID: 34644770 PMCID: PMC8516425 DOI: 10.1590/acb360802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To evaluate the influence of atractylenolide (Atr) III on sepsis-induced lung damage. METHODS We constructed a mouse sepsis model through cecal ligation and puncture. These mice were allocated to the normal, sepsis, sepsis + Atr III-L (2 mg/kg), as well as Atr III-H (8 mg/kg) group. Lung injury and pulmonary fibrosis were accessed via hematoxylin-eosin (HE) and Masson's staining. We used terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and flow cytometry for detecting sepsis-induced lung cell apoptosis. The contents of the inflammatory cytokines in lung tissue were measured via enzyme-linked immunosorbent assay (ELISA). RESULTS Atr III-H did not only reduce sepsis-induced lung injury and apoptosis level, but also curbed the secretion of inflammatory factors. Atr III-H substantially ameliorated lung function and raised Bcl-2 expression. Atr III-H eased the pulmonary fibrosis damage and Bax, caspase-3, Vanin-1 (VNN1), as well as Forkhead Box Protein O1 (FoxO1) expression. CONCLUSIONS Atr III alleviates sepsis-mediated lung injury via inhibition of FoxO1 and VNN1 protein.
Collapse
Affiliation(s)
- Ji-ding Fu
- MD. Department of Intensive Care Unit - Affiliated Cancer Hospital
& Institute of Guangzhou Medical University - Guangzhou, China
| | - Chun-hui Gao
- MD. Department of Intensive Care Unit - Affiliated Cancer Hospital
& Institute of Guangzhou Medical University - Guangzhou, China
| | - Shi-wei Li
- MD. Department of Intensive Care Unit - Affiliated Cancer Hospital
& Institute of Guangzhou Medical University - Guangzhou, China
| | - Yan Tian
- MD. Department of Intensive Care Unit - Affiliated Cancer Hospital
& Institute of Guangzhou Medical University - Guangzhou, China
| | - Shi-cheng Li
- MD. Department of Intensive Care Unit - Affiliated Cancer Hospital
& Institute of Guangzhou Medical University - Guangzhou, China
| | - Yi-er Wei
- MD. Department of Intensive Care Unit - Affiliated Cancer Hospital
& Institute of Guangzhou Medical University - Guangzhou, China
| | - Le-wu Xian
- MD. Department of Intensive Care Unit - Affiliated Cancer Hospital
& Institute of Guangzhou Medical University - Guangzhou, China
| |
Collapse
|
30
|
Wu J, Zhang F, Ruan H, Chang X, Wang J, Li Z, Jin W, Shi Y. Integrating Network Pharmacology and RT-qPCR Analysis to Investigate the Mechanisms Underlying ZeXie Decoction-Mediated Treatment of Non-alcoholic Fatty Liver Disease. Front Pharmacol 2021; 12:722016. [PMID: 34566646 PMCID: PMC8458890 DOI: 10.3389/fphar.2021.722016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/26/2021] [Indexed: 01/14/2023] Open
Abstract
ZeXie Decoction (ZXD) is a traditional Chinese medicine composed of Alisma orientalis (Sam.) Juzep. and Atractylodes macrocephala Koidz. ZXD has been widely used to treat non-alcoholic fatty liver disease (NAFLD). The mechanistic basis for the pharmacological activity of ZXD, however, remains poorly understood. In this study, we used a network pharmacology approach and investigated the association between ZXD and NAFLD. We identified the active ingredients of ZXD and screened the potential targets of these ingredients, after which a database of relevant NAFLD-related targets were constructed and several enrichment analyses were performed. Furthermore, the ethanol and aqueous extracts of ZXD were prepared and experimental pharmacology validation was conducted using RT-qPCR of the non-alcoholic fatty liver disease (NAFLD) model in Sprague-Dawley (SD) rats. As a result, a herb-compound-target-pathway network model was developed, and HMGCR, SREBP-2, MAPK1, and NF-κBp65 targets were validated. The gene expression results of these four targets were consistent with those of the network pharmacology prediction. Using an integration strategy, we revealed that ZXD could treat NAFLD by targeting HMGCR, SREBP-2, MAPK1, and NF-κBp65.
Collapse
Affiliation(s)
- Jiashuo Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangqing Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haonan Ruan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingxun Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuangzhuang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiyi Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Deng M, Chen H, Long J, Song J, Xie L, Li X. Atractylenolides (I, II, and III): a review of their pharmacology and pharmacokinetics. Arch Pharm Res 2021; 44:633-654. [PMID: 34269984 DOI: 10.1007/s12272-021-01342-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 07/08/2021] [Indexed: 02/05/2023]
Abstract
Atractylodes macrocephala Koidz is a widely used as a traditional Chinese medicine. Atractylenolides (-I, -II, and -III) are a class of lactone compounds derived from Atractylodes macrocephala Koidz. Research into atractylenolides over the past two decades has shown that atractylenolides have anti-cancer, anti-inflammatory, anti-platelet, anti-osteoporosis, and antibacterial activity; protect the nervous system; and regulate blood glucose and lipids. Because of structural differences, both atractylenolide-I and atractylenolide-II have remarkable anti-cancer activities, and atractylenolide-I and atractylenolide-III have remarkable anti-inflammatory and neuroprotective activities. We therefore recommend further clinical research on the anti-cancer, anti-inflammatory and neuroprotective effects of atractylenolides, determine their therapeutic effects, alone or in combination. To investigate their ability to regulate blood glucose and lipid, as well as their anti-platelet, anti-osteoporosis, and antibacterial activities, both in vitro and in vivo studies are necessary. Atractylenolides are rapidly absorbed but slowly metabolized; thus, solubilization studies may not be necessary. However, due to the inhibitory effects of atractylenolides on metabolic enzymes, it is necessary to pay attention to the possible side effects of combining atractylenolides with other drugs, in clinical application. In short, atractylenolides have considerable medicinal value and warrant further study.
Collapse
Affiliation(s)
- Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.
| |
Collapse
|
32
|
Ho CC, Ng SC, Chuang HL, Chen JY, Wen SY, Kuo CH, Mahalakshmi B, Le QV, Huang CY, Kuo WW. Seven traditional Chinese herbal extracts fermented by Lactobacillus rhamnosus provide anti-pigmentation effects by regulating the CREB/MITF/tyrosinase pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:654-664. [PMID: 33314651 DOI: 10.1002/tox.23069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Skin pigmentation is resulted from several processes, such as melanin synthesis transportation and abnormal melanin accumulation in keratinocytes. Various studies have suggested that seven traditional Chinese herbal extracts from Atractylodes macrocephala, Paeonia lactiflora, Bletilla striata, Poria cocos, Dictamnus dasycarpus, Ampelopsis japonica and Tribulus terrestris (which we collectively named ChiBai), show several protective effects toward skin-related diseases. Lactobacillus rhamnosus, a lactic acid bacterium, has been reported to treat skin inflammation and atopic dermatitis. In this study, the broth produced by the cofermentation of ChiBai with Lactobacillus rhamnosus was studied for its effects on skin pigmentation through in vitro and in vitro experiments. In the in vitro experiments, we found that the fermented broth of ChiBai (FB-ChiBai) suppressed alpha-melanocyte stimulating hormone (α-MSH)-induced melanogenesis in B16F0 murine melanoma cells without any cytotoxicity at a concentration of 0.5%. FB-ChiBai significantly attenuated melanin production, tyrosinase activities and melanogenesis-related signaling pathways. Treatment with FB-ChiBai also reduced the nuclear translocation and promoter binding activities of MITF. In the in vivo experiments, FB-ChiBai was topically applied to the dorsal skin of C57BL/6J nude mice and concurrently irradiated with UVB, three times a week for 8 weeks. The results indicated that FB-ChiBai alleviated UVB-induced hyperpigmentation by reducing epidermal hyperplasia and inhibiting the CREB/MITF/tyrosinase pathway. In conclusion, our data indicated that the anti-melanogenic effects of FB-ChiBai are mediated by the inhibition of CREB/MITF/tyrosinase signaling pathway. The findings suggest that FB-ChiBai can protect against UV-B irradiation and that it might be used as an agent in cosmetic products to protect against UVB-induced hyperpigmentation.
Collapse
Affiliation(s)
- Chih-Chu Ho
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Shang-Chuan Ng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Ho-Lin Chuang
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Jia-Yi Chen
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
- Department of Cosmetic Applications and Management, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Quoc-Vu Le
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
33
|
Zhai C, Zhao J, Chittiboyina AG, Meng Y, Wang M, Khan IA. Newly Generated Atractylon Derivatives in Processed Rhizomes of Atractylodes macrocephala Koidz. Molecules 2020; 25:molecules25245904. [PMID: 33322214 PMCID: PMC7763829 DOI: 10.3390/molecules25245904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Thermally processed rhizomes of Atractylodes macrocephala (RAM) have a long history of use in traditional Chinese medicine (TCM) for treating various disorders, and have been an integral part of various traditional drugs and healthcare products. In TCM, herbal medicines are, in most cases, uniquely processed. Although it is thought that processing can alter the properties of herbal medicines so as to achieve desired functions, increase potency, and/or reduce side effects, the underlying chemical changes remain unclear for most thermally processed Chinese herbal medicines. In an attempt to shed some light on the scientific rationale behind the processes involved in traditional medicine, the RAM processed by stir-frying with wheat bran was investigated for the change of chemical composition. As a result, for the first time, five new chemical entities, along with ten known compounds, were isolated. Their chemical structures were determined by spectroscopic and spectrometric analyses. The possible synthetic pathway for the generation of such thermally-induced chemical entities was also proposed. Furthermore, biological activity evaluation showed that none of the compounds possessed cytotoxic effects against the tested mammalian cancer and noncancer cell lines. In addition, all compounds were ineffective at inhibiting the growth of the pathogenic microorganisms.
Collapse
Affiliation(s)
- Chunmei Zhai
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.Z.); (Y.M.)
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.Z.); (A.G.C.)
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.Z.); (A.G.C.)
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.Z.); (A.G.C.)
| | - Yonghai Meng
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.Z.); (Y.M.)
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.Z.); (A.G.C.)
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, Department of Agriculture, University of Mississippi, Oxford, MS 38677, USA;
| | - Ikhlas A. Khan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.Z.); (Y.M.)
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.Z.); (A.G.C.)
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Correspondence: ; Tel.: +1-662-915-7821
| |
Collapse
|
34
|
A Systematic Review of the Anti-Inflammatory and Immunomodulatory Properties of 16 Essential Oils of Herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8878927. [PMID: 33354224 PMCID: PMC7735857 DOI: 10.1155/2020/8878927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022]
Abstract
Background Inflammation is a host defense mechanism in the body after it is infected and damaged. If inflammation is not treated in time, then it may cause a variety of diseases, such as cancer and autoimmune diseases. Herbal essential oils are natural extracts that can suppress inflammation effectively and are expected to be used in therapeutic drugs for anti-inflammatory diseases in the future. Aim of the review. We review the anti-inflammatory and immunomodulatory effects of essential oils derived from 16 herbs. Materials and methods. We searched the literature of the fields of anti-inflammatory and immunomodulatory herbal essential oil activity published in English within the past five years via databases (PubMed, EMBASE, Scopus, and The Web of Science). Results A total of 1932 papers were found by searching, and 132 papers were screened after removing duplicates and reading article titles. Fifteen articles met the requirements to be included in this review. Among those selected, 11 articles reported in vivo research results, and 10 articles showed research results. Conclusion Essential oils extracted from herbs can reduce inflammation by regulating the release of inflammatory cytokines involved in multiple signalling pathways. Herbal essential oils are expected to be developed as anti-inflammatory drugs.
Collapse
|
35
|
Bailly C. Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: Antioxidant, anti-inflammatory and anticancer properties. Eur J Pharmacol 2020; 891:173735. [PMID: 33220271 DOI: 10.1016/j.ejphar.2020.173735] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
The rhizome of the plant Atractylodes macrocephala Koidz is the major constituent of the Traditional Chinese Medicine Baizhu, frequently used to treat gastro-intestinal diseases. Many traditional medicine prescriptions based on Baizhu and the similar preparation Cangzhu are used in China, Korea and Japan as Qi-booster. These preparations contain atractylenolides, a small group of sesquiterpenoids endowed with antioxidant and anti-inflammatory properties. Atractylenolides I, II and III also display significant anticancer properties, reviewed here. The capacity of AT-I/II/IIII to inhibit cell proliferation and to induce cancer cell death have been analyzed, together with their effects of angiogenesis, metastasis, cell differentiation and stemness. The immune-modulatory properties of ATs are discussed. AT-I has been tested clinically for the treatment of cancer-induced cachexia with encouraging results. ATs, alone or combined with cytotoxic drugs, could be useful to treat cancers or to reduce side effects of radio and chemotherapy. Several signaling pathways have been implicated in their multi-targeted mechanisms of action, in particular those involving the central regulators TLR4, NFκB and Nrf2. A drug-induced reduction of inflammatory cytokines production (TNFα, IL-6) also characterizes these molecules which are generally weakly cytotoxic and well tolerated in vivo. Inhibition of Janus kinases (notably JAK2 and JAK3 targeted by AT-I and AT-III, respectively) has been postulated. Information about their metabolism and toxicity are limited but the long-established traditional use of the Atractylodes and the diversity of anticancer effects reported with AT-I and AT-III should encourage further studies with these molecules and structurally related natural products.
Collapse
|
36
|
Huai B, Ding J. Atractylenolide III attenuates bleomycin-induced experimental pulmonary fibrosis and oxidative stress in rat model via Nrf2/NQO1/HO-1 pathway activation. Immunopharmacol Immunotoxicol 2020; 42:436-444. [PMID: 32762376 DOI: 10.1080/08923973.2020.1806871] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bleomycin (BLM) is a chemotherapy drug used to treat cancer, one of which side effects is that it can lead to pulmonary fibrosis (PF). Atractylenoide III (AtrIII), derived from the dried roots of rhizoma atractylodis of compositae, is one of the main active substances of rhizoma atractylodis. It has anti-inflammatory, anti-tumor and other effects. This study aimed to investigate whether AtrIII alleviated BLM-induced PF and oxidative stress in rats through the nuclear factor erythroid-2-related factor 2/NQO1,NAD(P)H:quinine oxidoreductase 1/Heme oxygenase-1 (Nrf2/NQO1/HO-1) pathway. METHODS A BLM-induced pulmonary fibrosis model in SD rats was established. The respiratory dynamics were evaluated by using Wholebody flow-through plethysmography. Lung injury and pulmonary fibrosis were observed by Hematoxylin-eosin (HE) and Masson staining. Apoptosis was assay by Tunel assay. Inflammatory factors were detected with commercial kits. Expression of mRNAs and proteins were detected by RT-qPCR and Western blot, respectively. RESULTS AtrIII (1.2, 2.4 mg/kg) improved the lung injury and lung function in the BLM-induced Sprague-Dawley (SD) rats. AtrIII reduced the apoptosis rate and protein expression of Caspase-3 and Caspase-9. AtrIII (1.2, 2.4 mg/kg) decrease the pulmonary fibrosis damage and protein expression transforming growth factor-β (TGF-β) and α-smooth muscle actin (α-SMA). AtrIII also down-regulated the levels of interleukin 6 (IL-6), inductible nitric oxide synthase (iNOS) and tumor necrosis factor-α (TNF-α), while up-regulated the level of IL-10 in peripheral blood serum. Moreover, AtrIII (1.2, 2.4 mg/kg) increased the activity of superoxide dismutase (SOD) and glutathione (GSH), while decreased the malondialdehyde (MDA) content and lactate dehydrogenase (LDH) activity. AtrIII (1.2, 2.4 mg/kg) increased the levels of Nrf2, NQO1 and HO-1. In addition, AtrIII reversed the effects of Nrf2 interference on pulmonary fibrosis damage, decreased SOD and GSH activity, and increased MDA content. CONCLUSION AtrIII could attenuate the pulmonary fibrosis and reliev oxidative stress through the Nrf2/NQO1/ HO-1 pathway.
Collapse
Affiliation(s)
- Bin Huai
- Department of Pharmacy, Jinan Second People's Hospital, Jinan, Shandong, China
| | - Jiyu Ding
- Department of Pharmacy, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
37
|
Chinese Herbal Medicines for Rheumatoid Arthritis: Text-Mining the Classical Literature for Potentially Effective Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7531967. [PMID: 32419824 PMCID: PMC7206865 DOI: 10.1155/2020/7531967] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease characterized by multijoint swelling, pain, and destruction of the synovial joints. Treatments are available but new therapies are still required. One source of new therapies is natural products, including herbs used in traditional medicines. In China and neighbouring countries, natural products have been used throughout recorded history and are still in use for RA and its symptoms. This study used text-mining of a database of classical Chinese medical books to identify candidates for future clinical and experimental investigations of therapeutics for RA. Methods The database Encyclopaedia of Traditional Chinese Medicine (Zhong Hua Yi Dian) includes the full texts of over 1,150 classical books. Eight traditional terms were searched. All citations were assessed for relevance to RA. Results and Conclusions. After removal of duplications, 3,174 citations were considered. After applying the exclusion and inclusion criteria, 548 citations of traditional formulas were included. These derived from 138 books written from 206 CE to 1948. These formulas included 5,018 ingredients (mean, 9 ingredients/formula) comprising 243 different natural products. When these text-mining results were compared to the 18 formulas recommended in a modern Chinese Medicine clinical practice guideline, 44% of the herbal formulas were the same. This suggests considerable continuity in the clinical application of these herbs between classical and modern Chinese medicine practice. Of the 15 herbs most frequently used as ingredients of the classical formulas, all have received research attention, and all have been reported to have anti-inflammatory effects. Two of these 15 herbs have already been developed into new anti-RA therapeutics—sinomenine from Sinomenium acutum (Thunb.) Rehd. & Wils and total glucosides of peony from Paeonia lactiflora Pall. Nevertheless, there remains considerable scope for further research. This text-mining approach was effective in identifying multiple natural product candidates for future research.
Collapse
|
38
|
Anti-Tumor Activity of Atractylenolide I in Human Colon Adenocarcinoma In Vitro. Molecules 2020; 25:molecules25010212. [PMID: 31947901 PMCID: PMC6983257 DOI: 10.3390/molecules25010212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/05/2023] Open
Abstract
Atractylodes macrocephala is known to exhibit multi-arrays of biologic activity in vitro. However, detail of its anti-tumor activity is lacking. In this study, the effects of atractylenolide I (AT-I), a bio-active compound present in Atractylodes macrocephala rhizome was studied in the human colorectal adenocarcinoma cell line HT-29. The results showed that AT-I induced apoptosis of human colon cancer cells through activation of the mitochondria-dependent pathway. The IC50 of AT-I was 277.6 μM, 95.7 μM and 57.4 μM, after 24, 48 and 72 h of incubation with HT-29, respectively. TUNEL and Annexin V-FITC/PI double stain assays showed HT-29 DNA fragmentation after cell treatment with various AT-I concentrations. Western blotting analysis revealed activation of both initiator and executioner caspases, including caspase 3, caspase 7, and caspase 9, as well as PARP, after HT-29 treatment with AT-I via downregulation of pro-survival Bcl-2, and upregulation of anti-survival Bcl-2 family proteins, including Bax, Bak, Bad, Bim, Bid and Puma. The studies show for the first time that AT-I is an effective drug candidate towards the HT-29 cell.
Collapse
|
39
|
Yuan C, Zhong S, Li X, Wang Y, Xun MM, Bai Y, Zhu K. Total synthesis, structural revision and biological evaluation of γ-elemene-type sesquiterpenes. Org Biomol Chem 2019; 16:7843-7850. [PMID: 30303229 DOI: 10.1039/c8ob02005a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Total synthesis and absolute configuration confirmation of γ-elemene-type sesquiterpenes, which possess vast potential for biological activities, was investigated based on a convergent synthetic strategy. A key intermediate with all functional groups of this family of natural products was accessed by an intermolecular aldol reaction and then an acetylation of a known ketone (12) derived from commercially available verbenone. The versatile intermediate can be easily transformed into structurally different γ-elemene-type sesquiterpenes based on control of base-promoted cyclization manipulation in different solvents. The utility of this robust approach is illustrated by the first syntheses of elema-1,3,7(11),8-tetraen-8,12-lactam (4') and 8β-methoxy-isogermafurenolide (6a), as well as the syntheses of elem-1,3,7,8-tetraen-8,12-olide (3) and hydroxyisogermafurenolide (5) in only 6 or 7 steps. In addition, the structure of the reported 5βH-elem-1,3,7,8-tetraen-8,12-olide (1) was revised as elem-1,3,7,8-tetraen-8,12-olide (3) by comparison of their identified datum, and the absolute configuration of elema-1,3,7(11),8-tetraen-8,12-lactam was confirmed as 4'. Furthermore, the inhibitory effect of all synthesized natural compounds and their natural analogues on cancer cell proliferation was evaluated. Among them compounds 3, 4 and 4' were found to possess potent inhibitory activity against Kasumi-1 and Pfeiffer. Meanwhile, preliminary structure-activity relationships for these compounds are discussed.
Collapse
Affiliation(s)
- Changchun Yuan
- National Demonstration Center for Experimental Chemical Engineering Comprehensive Education, School of Chemical Engineering and Technology, North University of China, Taiyuan 030000, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Gu S, Li L, Huang H, Wang B, Zhang T. Antitumor, Antiviral, and Anti-Inflammatory Efficacy of Essential Oils from Atractylodes macrocephala Koidz. Produced with Different Processing Methods. Molecules 2019; 24:molecules24162956. [PMID: 31443182 PMCID: PMC6719198 DOI: 10.3390/molecules24162956] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Atractylodes macrocephala Koidz. has been used as an invigorating spleen drug for eliminating dampness and phlegm in China. According to recent researches, different processing methods may affect the drug efficacy, so we collected A. macrocephala from the Zhejiang Province, produced with different processing methods, crude A. macrocephala (CA) and bran-processed A. macrocephala (BA), then analyzed its essential oils (EOs) by GC/MS. The results showed 34 components representing 98.44% of the total EOs of CA were identified, and 46 components representing 98.02% of the total EOs of BA were identified. Atractylone is the main component in A. macrocephala. Compared with CA, BA has 46 detected compounds, 28 of which were identical, and 6 undetected compounds. Pharmacodynamic results revealed that the EOs of CA and atractylone exhibited more effective anticancer activity in HepG2, MCG803, and HCT-116 cells than the EOs of BA; while the EOs of BA exhibited simple antiviral effect on viruses H3N2, both the EOs and atractylone show anti-inflammatory activity by inhibiting the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in ANA-1 cells.
Collapse
Affiliation(s)
- Sihao Gu
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China
| | - Ling Li
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China
| | - Hai Huang
- Experimental Teaching Center of Pharmaceutical Sciences, School of Pharmacy, Fudan University, 826 Zhang-heng Rd, Shanghai 201203, China
| | - Bing Wang
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai 201203, China.
| | - Tong Zhang
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China.
| |
Collapse
|
41
|
Fu Y, Shan M, Hu M, Jiang Y, Chen P, Chi Y, Yu S, Zhang L, Wu Q, Zhang F, Mao Z. Chemical profiling of Banxia-Baizhu-Tianma decoction by ultra-fast liquid chromatography with tandem mass spectrometry. J Pharm Biomed Anal 2019; 174:595-607. [PMID: 31261041 DOI: 10.1016/j.jpba.2019.06.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 06/09/2019] [Accepted: 06/22/2019] [Indexed: 12/21/2022]
Abstract
Banxia-Baizhu-Tianma decoction (BBTD) is a compound formulae of traditional Chinese medicine (TCM), which has been clinically used for treatments of neural vertigo, hypertension and epilepsy with a long history. In this study, with an ultra-fast liquid chromatography coupled with quadrupole time of flight mass spectrometry (UFLC-Q-TOF-MS) method, a total of 88 components in BBTD were identified by the accurate masses and fragmentation pathways including 19 flavonoids, 8 lactones, 12 triterpenoids, 10 phenolics, 14 amino acids, 13 nucleobases and nucleosides, 7 organic acids, and 5 other compounds. In addition, under the same chromatographic conditions, we developed an ultra-fast liquid chromatography coupled with quadrupole linear ion trap mass spectrometry (UFLC-Q-TRAP-MS) method to simultaneously quantify 20 bioactive components in multiple-reaction monitoring (MRM) mode. The assay method was validated in terms of linearity, precision, repeatability, recovery and was successfully applied for determination of 12 batches of BBTD. We hope that this study work would help to reveal the chemical profiling and provide a valuable and reliable approach for quality evaluation and even efficacy material basis study of BBTD.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Jiangsu Key Laboratory for High Technology Research of TCM Formula, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Mingqiu Shan
- Jiangsu Key Laboratory for High Technology Research of TCM Formula, Nanjing University of Chinese Medicine, Nanjing, PR China.
| | - Minhui Hu
- Jiangsu Key Laboratory for High Technology Research of TCM Formula, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yulan Jiang
- Jiangsu Key Laboratory for High Technology Research of TCM Formula, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Peidong Chen
- Jiangsu Key Laboratory for High Technology Research of TCM Formula, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yumei Chi
- Jiangsu Key Laboratory for High Technology Research of TCM Formula, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Sheng Yu
- Jiangsu Key Laboratory for High Technology Research of TCM Formula, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Li Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formula, Nanjing University of Chinese Medicine, Nanjing, PR China.
| | - Qinan Wu
- Jiangsu Key Laboratory for High Technology Research of TCM Formula, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Facheng Zhang
- Nanjing Checker Pharmacy Sci. & Tech. Co., Ltd., Nanjing, PR China
| | - Zhiying Mao
- Nanjing Checker Pharmacy Sci. & Tech. Co., Ltd., Nanjing, PR China
| |
Collapse
|
42
|
Anti-Inflammatory Compounds from Atractylodes macrocephala. Molecules 2019; 24:molecules24101859. [PMID: 31091823 PMCID: PMC6571718 DOI: 10.3390/molecules24101859] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/04/2022] Open
Abstract
In relation to anti-inflammatory agents from medicinal plants, we have isolated three compounds from Atractylodes macrocephala; 1, 2-[(2E)-3,7-dimethyl-2,6-octadienyl]-6-methyl-2, 5-cyclohexadiene-1, 4-dione; 2, 1-acetoxy-tetradeca-6E,12E-diene-8, 10-diyne-3-ol; 3, 1,3-diacetoxy-tetradeca-6E, 12E-diene-8, 10-diyne. Compounds 1–3 showed concentration-dependent inhibitory effects on production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Western blotting and RT-PCR analyses demonstrated that compounds 1–3 suppressed the protein and mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, compounds 1–3 inhibited transcriptional activity of nuclear factor-κB (NF-κB) and nuclear translocation of NF-κB in LPS-activated RAW 264.7 cells. The most active compound among them, compound 1, could reduce the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and suppress the phosphorylation of MAPK including p38, JNK, and ERK1/2. Taken together, these results suggest that compounds 1–3 from A. macrocephala can be therapeutic candidates to treat inflammatory diseases.
Collapse
|
43
|
Long L, Wang L, Qi S, Yang Y, Gao H. New sesquiterpenoid glycoside from the rhizomes of Atractylodes lancea. Nat Prod Res 2019; 34:1138-1145. [PMID: 30618310 DOI: 10.1080/14786419.2018.1553170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Six sesquiterpenoids and four lignans (1-10) were isolated from the n-BuOH extract of the rhizomes of Atractylodes lancea. Among them, the new sesquiterpenoid glycoside named (4 R, 5S, 7R)-hinesolone-11-O-β-ᴅ-glucopyranoside (1), along with three known compounds (2-4) were first obtained from this genus. All the isolates were elucidated by spectroscopic analyses and chemical methods, and the absolute configurations were assigned by electronic circular dichroism spectroscopy technique. In addition, the cytotoxic bioassay of compound 1 was evaluated and results showed it had no significant antitumor activity against human cancer cell lines MCF-7, HepG-2 and Hela.
Collapse
Affiliation(s)
- Liping Long
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Lushan Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Shizhou Qi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yiren Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
44
|
Zhu B, Zhang QL, Hua JW, Cheng WL, Qin LP. The traditional uses, phytochemistry, and pharmacology of Atractylodes macrocephala Koidz.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 226:143-167. [PMID: 30130541 DOI: 10.1016/j.jep.2018.08.023] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atractylodes macrocephala Koidz. (called Baizhu in China) is a medicinal plant that has long been used as a tonic agent in various ethno-medical systems in East Asia, especially in China, for the treatment of gastrointestinal dysfunction, cancer, osteoporosis, obesity, and fetal irritability. AIM OF THE REVIEW This review aims to provide a systematic summary on the botany, traditional uses, phytochemistry, pharmacology, pharmacokinetics, and toxicology of A. macrocephala to explore the future therapeutic potential and scientific potential of this plant. MATERIALS AND METHODS A literature search was performed on A. macrocephala using scientific databases including Web of Science, Google Scholar, Baidu Scholar, Springer, PubMed, SciFinder, and ScienceDirect. Information was also collected from classic books of Chinese herbal medicine, Ph.D. and M.Sc. dissertations, unpublished materials, and local conference papers on toxicology. Plant taxonomy was confirmed to the database "The Plant List" (www.theplantlist.org). RESULTS More than 79 chemical compounds have been isolated from A. macrocephala, including sesquiterpenoids, triterpenoids, polyacetylenes, coumarins, phenylpropanoids, flavonoids and flavonoid glycosides, steroids, benzoquinones, and polysaccharides. Crude extracts and pure compounds of A. macrocephala are used to treat gastrointestinal hypofunction, cancer, arthritis, osteoporosis, splenic asthenia, abnormal fetal movement, Alzheimer disease, and obesity. These extracts have various pharmacological effects, including anti-tumor activity, anti-inflammatory activity, anti-aging activity, anti-oxidative activity, anti-osteoporotic activity, neuroprotective activity, and immunomodulatory activity, as well as improving gastrointestinal function and gonadal hormone regulation. CONCLUSIONS A. macrocephala is a valuable traditional Chinese medicinal herb with multiple pharmacological activities. Pharmacological investigations support the traditional use of A. macrocephala, and may validate the folk medicinal use of A. macrocephala to treat many chronic diseases. The available literature shows that much of the activity of A. macrocephala can be attributed to sesquiterpenoids, polysaccharides and polyacetylenes. However, there is a need to further understand the molecular mechanisms and the structure-function relationship of these constituents, as well as their potential synergistic and antagonistic effects. Further research on the comprehensive evaluation of medicinal quality, the understanding of multi-target network pharmacology of A. macrocephala, as well as its long-term in vivo toxicity and clinical efficacy is recommended.
Collapse
Key Words
- 12-hydroxytetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (PubChem CID: 5321038)
- 12-hydroxytetradeca-2E,8Z,10E-trien-4,6-diyn-1-ol (PubChem CID: 54242098)
- 12-senecioyloxytetradeca-2E,8Z,10E-trien-4,6-diyne-1,14-diacetate (PubChem CID: 132941088)
- 13-hydroxyl-atractylenolide Ⅱ (PubChem CID: 132522412)
- 14-acetoxy-12-methylpropionyltetradeca-2E,8Z,10E-trien-4,6-diyn-1-ol (PubChem CID: 132941089)
- 14-acetoxy-12-senecioyloxytetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (PubChem CID: 14448076)
- 14-acetoxy-12-senecioyloxytetradeca-2E,8Z,10E-trien-4,6-diyn-1-ol (PubChem CID: 132941086)
- 14-acetoxy-12α-methylbutyryltetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (PubChem CID: 5319529)
- 14-acetoxy-12α-methylbutyryltetradeca-2E,8Z,10E-trien-4,6-diyn-1-ol (PubChem CID: 5319530)
- 14-acetoxy-12β-methylbutyryltetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (PubChem CID: 14586258)
- 14-acetoxytetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (PubChem CID: 129844442)
- 14-senecioyloxytetradeca-2E,8Z,10E-trien-4,6-diyne-1-ol (PubChem CID: 132919181)
- 14α-methylbutyryltetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (PubChem CID: 5319531)
- 14β-methylbutyryltetradeca-2E,8E,10E-trien-4,6-diyn-1-ol (PubChem CID: 102208392)
- 2,6-dimethoxyphenol (PubChem CID: 7041)
- 2,6-dimethoxyquinone (PubChem CID: 68262)
- 2-[(2E)-3,7-dimethyl-2,6-octadienyl]-6-methyl-2,5-cyclohexadiene-1,4-dione (PubChem CID: 642530)
- 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl) propan-1-one (PubChem CID: 75142)
- 4-ketone-atractylenolide Ⅲ (PubChem CID: 132522410)
- 4-methoxycinnamic acid (PubChem CID: 699414)
- 7-hydroxycoumarin (PubChem CID: 5281426)
- 8β-D-glucopyranosyloxy-4′,5,7-trihydroxy-flavone (PubChem CID: 6420079)
- 8β-methoxyatractylenolide (PubChem CID: 101707485)
- Apigenin (PubChem CID: 5280443)
- Atractylenolactam (PubChem CID: 101707484)
- Atractylenolide I (PubChem CID: 5321018)
- Atractylenolide V (PubChem CID: 102163989)
- Atractylenolide Ⅱ (PubChem CID: 14448070)
- Atractylenolide Ⅲ (PubChem CID: 11311230)
- Atractylenolide Ⅳ (PubChem CID: 132510447)
- Atractylodes macrocephala Koidz.
- Atractylon (PubChem CID: 3080635)
- Atractyloside A (PubChem CID: 71307451)
- Biepiasterolide (PubChem CID: 11351701)
- Caffeic acid (PubChem CID: 689043)
- D-mannitol (PubChem CID: 6251)
- Dictamnoside A (PubChem CID: 44560015)
- Ethyl 3,4-dihydroxycinnamate (PubChem CID: 5317238)
- Eudesm-4(15),7-diene-9α,11-diol (PubChem CID: 102519767)
- Eudesm-4(15)-ene-7β,11-diol (PubChem CID: 102519766)
- Ferulic acid (PubChem CID: 445858)
- Juniper camphor (PubChem CID: 5318734)
- Lupeol (PubChem CID: 259846)
- Luteolin (PubChem CID: 5280445)
- Palmitic acid (PubChem CID: 985)
- Pharmacology
- Phytochemistry
- Protocatechuic acid (PubChem CID: 72)
- Scopoletin (PubChem CID: 5280460)
- Scutellarein 6-O-glucoside (PubChem CID: 54493965)
- Selina-4(15),7(11)-dien-8-one (PubChem CID: 13986100)
- Stigmasterol (PubChem CID: 5280794)
- Syringin (PubChem CID: 5316860)
- Taraxeryl acetate (PubChem CID: 94225)
- Traditional uses
- Uridine (PubChem CID: 6029)
- Z-5-hydroxy ferulic acid (PubChem CID: 446834)
- β-sitosterol (PubChem CID: 222284)
Collapse
Affiliation(s)
- Bo Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; Lishui Academy of Agricultural Sciences, Lishui 323000, China
| | - Quan-Long Zhang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jin-Wei Hua
- Lishui Academy of Agricultural Sciences, Lishui 323000, China
| | - Wen-Liang Cheng
- Lishui Academy of Agricultural Sciences, Lishui 323000, China.
| | - Lu-Ping Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
45
|
Wang C, Ren Q, Chen XT, Song ZQ, Ning ZC, Gan JH, Ma XL, Liang DR, Guan DG, Liu ZL, Lu AP. System Pharmacology-Based Strategy to Decode the Synergistic Mechanism of Zhi-zhu Wan for Functional Dyspepsia. Front Pharmacol 2018; 9:841. [PMID: 30127739 PMCID: PMC6087764 DOI: 10.3389/fphar.2018.00841] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
Functional dyspepsia (FD) is a widely prevalent gastrointestinal disorder throughout the world, whereas the efficacy of current treatment in the Western countries is limited. As the symptom is equivalent to the traditional Chinese medicine (TCM) term "stuffiness and fullness," FD can be treated with Zhi-zhu Wan (ZZW) which is a kind of Chinese patent medicine. However, the "multi-component" and "multi-target" feature of Chinese patent medicine makes it challenge to elucidate the potential therapeutic mechanisms of ZZW on FD. Presently, a novel system pharmacology model including pharmacokinetic parameters, pharmacological data, and component contribution score (CS) is constructed to decipher the potential therapeutic mechanism of ZZW on FD. Finally, 61 components with favorable pharmacokinetic profiles and biological activities were obtained through ADME (absorption, distribution, metabolism, and excretion) screening in silico. The related targets of these components are identified by component targeting process followed by GO analysis and pathway enrichment analysis. And systematic analysis found that through acting on the target related to inflammation, gastrointestinal peristalsis, and mental disorder, ZZW plays a synergistic and complementary effect on FD at the pathway level. Furthermore, the component CS showed that 29 components contributed 90.18% of the total CS values of ZZW for the FD treatment, which suggested that the effective therapeutic effects of ZZW for FD are derived from all active components, not a few components. This study proposes the system pharmacology method and discovers the potent combination therapeutic mechanisms of ZZW for FD. This strategy will provide a reference method for other TCM mechanism research.
Collapse
Affiliation(s)
- Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Qing Ren
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Xue-Tong Chen
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, China
| | - Zhi-Qian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhang-Chi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Jia-He Gan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-Ling Ma
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dong-Rui Liang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dao-Gang Guan
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Zhen-Li Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ai-Ping Lu
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| |
Collapse
|
46
|
Atractylenolide II Inhibits Proliferation, Motility and Induces Apoptosis in Human Gastric Carcinoma Cell Lines HGC-27 and AGS. Molecules 2017; 22:molecules22111886. [PMID: 29099789 PMCID: PMC6150195 DOI: 10.3390/molecules22111886] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
Atractylenolide II (AT-II) exhibits several biological and pharmacological functions, especially anti-cancer activity as the major sesquiterpene lactones isolated from Atractylodes macrocephala (also named Baizhu in Chinese). However, the effects and mechanisms of AT-II on human gastric cancer remain unclear. Cell Counting Kit-8 (CCK-8) assay, morphological changes, flow cytometry, wound healing assay and Western blot analysis were used to investigate the effects of AT-II on cell proliferation, apoptosis and motility of human gastric carcinoma cell lines HGC-27 and AGS. Our results indicated that AT-II could significantly inhibit cell proliferation, motility and induce apoptosis in a dose and time-dependent manner. Western blot analysis showed that the expression level of Bax was upregulated and the expression levels of B-cell lymphoma-2 (Bcl-2), phosphorylated-protein kinase B (p-Akt) and phosphorylated-ERK (p-ERK) were downregulated compared to control group. In conclusion, the findings suggested that AT-II exerted significant anti-tumor effects on gastric carcinoma cells by modulating Akt/ERK signaling pathway, which might shed light on therapy of gastric carcinoma.
Collapse
|
47
|
Wang FQ, Li QQ, Zhang Q, Wang YZ, Hu YJ, Li P, Wan JB, Yang FQ, Xia ZN. Evaluation of interactions between RAW264.7 macrophages and small molecules by capillary electrophoresis. Electrophoresis 2017; 38:938-941. [DOI: 10.1002/elps.201600345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/14/2016] [Accepted: 12/02/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Feng-Qin Wang
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing P. R. China
| | - Qiao-Qiao Li
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing P. R. China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing P. R. China
| | - Yin-Zhen Wang
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing P. R. China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Macao P. R. China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Macao P. R. China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Macao P. R. China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing P. R. China
| | - Zhi-Ning Xia
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing P. R. China
| |
Collapse
|