1
|
Chen G, Wang Y, Li Y, Zhang J, Huo Y, Ge W, Yang H. A combined approach of lauroyl arginine ethyl ester hydrochloride and kojic acid in mitigating fresh-cut potato deterioration. Food Chem 2024; 450:139392. [PMID: 38640546 DOI: 10.1016/j.foodchem.2024.139392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The combinational effects of kojic acid and lauroyl arginine ethyl ester hydrochloride (ELAH) on fresh-cut potatoes were investigated. Kojic acid of 0.6% (w/w) effectively inhibited the browning of fresh-cut potatoes and displayed antimicrobial capacity. The color difference value of samples was decreased from 175 to 26 by kojic acid. In contrast, ELAH could not effectively bind with the active sites of tyrosinase and catechol oxidase at molecular level. Although 0.5% (w/w) of ELAH prominently inhibited the microbial growth, it promoted the browning of samples. However, combining kojic acid and ELAH effectively inhibited the browning of samples and microbial growth during the storage and the color difference value of samples was decreased to 52. This amount of kojic acid inhibited enzyme activities toward phenolic compounds. The results indicated that combination of kojic acid and ELAH could provide a potential strategy to extend the shelf life of fresh-cut products.
Collapse
Affiliation(s)
- Gang Chen
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Yuhui Wang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Yongxin Li
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Yanrong Huo
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Wanying Ge
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Huqing Yang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China.
| |
Collapse
|
2
|
Chandarajoti K, Kara J, Suwanhom P, Nualnoi T, Puripattanavong J, Lee VS, Tipmanee V, Lomlim L. Synthesis and evaluation of coumarin derivatives on antioxidative, tyrosinase inhibitory activities, melanogenesis, and in silico investigations. Sci Rep 2024; 14:5535. [PMID: 38448547 PMCID: PMC10917816 DOI: 10.1038/s41598-024-54665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
New coumarin derivatives were designed using a 2-(2-oxo-2H-chromen-4-yl)acetic acid scaffold conjugated with amino acid esters or tyramine. The anti-tyrosinase and anti-lipid peroxidation activities of the synthesized compounds were investigated. Coumarin derivatives 7,9, 11-13, 15-18 showed strong anti-lipid peroxidation activity. Compound 13 exhibited uncompetitive tyrosinase inhibitory activity with an IC50 value of 68.86 µM. Compound 14 (% activity = 123.41) showed stronger tyrosinase activating activity than 8-methoxypsolaren (8-MOP, % activity = 109.46). In silico studies revealed different poses between the inhibitors and activators near the tyrosinase catalytic site. Compounds 13 (25-50 μM) and 14 (25-100 μM) did not show cytotoxicity against B16F10 cells. In contrast to the tyrosinase inhibition assay, compound 13 (50 μM) suppressed melanogenesis in B16F10 cells with two times higher potency than KA (100 μM). Compound 14 at 100 μM showed melanogenesis enhancement in B16F10 cells in a dose-dependent manner, however, inferior to the 8-MOP. Based on the findings, compound 13 and 14 offer potential for development as skin-lightening agents and vitiligo therapy agents, respectively.
Collapse
Affiliation(s)
- Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
| | - Jiraporn Kara
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Paptawan Suwanhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Teerapat Nualnoi
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Jindaporn Puripattanavong
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Luelak Lomlim
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
- Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, 90112, Thailand.
| |
Collapse
|
3
|
Wu X, Wei F, Ding F, Yang N, Niu J, Ran Y, Tian M. Phytochemical analysis, antioxidant, antimicrobial, and anti-enzymatic properties of Alpinia coriandriodora (sweet ginger) rhizome. FRONTIERS IN PLANT SCIENCE 2023; 14:1284931. [PMID: 37936928 PMCID: PMC10626549 DOI: 10.3389/fpls.2023.1284931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Alpinia coriandriodora, also known as sweet ginger, is a medicinal and edible plant. A. coriandriodora rhizome is popularly utilized in traditional Chinese medicine and as flavouring spices, but there are few reports on its constituents and bioactivities. This study analyzed the phytochemical components of A. coriandriodora rhizome by GC-MS and UHPLC-Q-Orbitrap-MS and evaluated its antioxidant, antimicrobial, and anti-enzymatic properties. According to the GC-FID/MS data, its rhizome essential oil (EO) consisted mainly of (E)-2-decenal (53.8%), (E)-2-decenyl acetate (24.4%), (Z)-3-dodecenyl acetate (3.5%), and (E)-2-octenal (3.5%). Its water extract (WE) and 70% ethanol extract (EE) showed high total phenolic content (TPC, 52.99-60.49 mg GAEs/g extract) and total flavonoid content (TFC, 260.69-286.42 mg REs/g extract). In addition, the phytochemicals of WE and EE were further characterized using UHPLC-Q-Orbitrap-MS, and a total of sixty-three compounds were identified, including fourteen phenolic components and twenty-three flavonoid compounds. In the antioxidant assay, WE and EE revealed a potent scavenging effect on DPPH (IC50: 6.59 ± 0.88 mg/mL and 17.70 ± 1.15 mg/mL, respectively), surpassing the BHT (IC50: 21.83 ± 0.89 mg/mL). For the antimicrobial activities, EO displayed excellent antibacterial capabilities against Proteus vulgaris, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, and Staphylococcus aureus with DIZ (12.60-22.17 mm), MIC (0.78-1.56 mg/mL), and MBC (3.13 mg/mL) and significantly inhibited Aspergillus flavus growth (MIC = 0.313 mg/mL, MFC = 0.625 mg/mL, respectively). In addition to weak tyrosinase and cholinesterase inhibition, EE and WE had a prominent inhibitory effect against α-glucosidase (IC50: 0.013 ± 0.001 mg/mL and 0.017 ± 0.002 mg/mL), which was significantly higher than acarbose (IC50: 0.22 ± 0.01 mg/mL). Hence, the rhizome of A. coriandriodora has excellent potential for utilization in the pharmaceutical and food fields as a source of bioactive substances.
Collapse
Affiliation(s)
- Xia Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, China
| | - Feng Wei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Furong Ding
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, China
| | - Nian Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, China
| | - Jingming Niu
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanquan Ran
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Minyi Tian
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, China
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Areche C, Parra JR, Sepulveda B, García-Beltrán O, Simirgiotis MJ. UHPLC-MS Metabolomic Fingerprinting, Antioxidant, and Enzyme Inhibition Activities of Himantormia lugubris from Antarctica. Metabolites 2022; 12:metabo12060560. [PMID: 35736493 PMCID: PMC9227586 DOI: 10.3390/metabo12060560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/22/2023] Open
Abstract
Himantormia lugubris is a Chilean native small lichen shrub growing in the Antarctica region. In this study, the metabolite fingerprinting and the antioxidant and enzyme inhibitory potential from this species and its four major isolated compounds were investigated for the first time. Using ultra-high performance liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry analysis (UHPLC-Q-Orbitrap-MS), several metabolites were identified including specific compounds as chemotaxonomical markers, while major metabolites were quantified in this species. A good inhibition activity against cholinesterase (acetylcholinesterase (AChE) IC50: 12.38 ± 0.09 µg/mL, butyrylcholinesterase (BChE) IC50: 31.54 ± 0.20 µg/mL) and tyrosinase (22.32 ± 0.21 µg/mL) enzymes of the alcoholic extract and the main compounds (IC50: 28.82 ± 0.10 µg/mL, 36.43 ± 0.08 µg/mL, and 7.25 ± 0.18 µg/mL, respectively, for the most active phenolic atranol) was found. The extract showed a total phenolic content of 47.4 + 0.0 mg of gallic acid equivalents/g. In addition, antioxidant activity was assessed using bleaching of DPPH and ORAC (IC50: 75.3 ± 0.02 µg/mL and 32.7 ± 0.7 μmol Trolox/g lichen, respectively) and FRAP (27.8 ± 0.0 μmol Trolox equivalent/g) experiments. The findings suggest that H. lugubris is a rich source of bioactive compounds with potentiality in the prevention of neurodegenerative or noncommunicable chronic diseases.
Collapse
Affiliation(s)
- Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nuñoa, Santiago 7800024, Chile
- Correspondence: (C.A.); (M.J.S.); Tel.: +51-956-379-865 (C.A.); +56-(63)-2386110 (M.J.S.)
| | - Javier Romero Parra
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, Casilla, Santiago 6640022, Chile;
| | - Beatriz Sepulveda
- Departamento de Ciencias Químicas, Viña del Mar, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730001, Colombia;
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Elena Haverbeck S-N, Valdivia 5090000, Chile
- Correspondence: (C.A.); (M.J.S.); Tel.: +51-956-379-865 (C.A.); +56-(63)-2386110 (M.J.S.)
| |
Collapse
|
5
|
Chen R, Shi Y, Liu G, Tao Y, Fan Y, Wang X, Li L. Spectroscopic studies and molecular docking on the interaction of delphinidin-3-O-galactoside with tyrosinase. Biotechnol Appl Biochem 2021; 69:1327-1338. [PMID: 34051112 DOI: 10.1002/bab.2205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
The inhibitory effects of delphinidin-3-O-galactoside (DG) on the activities of tyrosinase (EC 1.14.18.1) (TY) from the edible Agaricus bisporus mushroom were investigated by enzyme kinetics, multispectroscopic methods, and molecular docking. As a result, DG showed strong inhibition on TY with the IC50 of 34.14 × 10-6 mol L-1 . The inhibition mode of DG against TY was mixed type with α values of 5.09. The binding constant Ka and related thermodynamic parameters at the three different temperatures showed that the fluorescence quenching of TY by DG was static quenching. Synchronous fluorescence, three-dimensional fluorescence, ultraviolet-visible spectroscopy, and circular dichroism spectroscopies confirmed that the conformation or microenvironment of the TY protein were changed after binding with DG. Molecular docking revealed that DG had strong binding affinity to TY through hydrogen bonding and van der Waals force, and the results were consistent with the fluorescence data. Our findings suggested that DG may be potential TY inhibitor.
Collapse
Affiliation(s)
- Rongda Chen
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yurui Shi
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Xiaolin Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
6
|
Iraji A, Khoshneviszadeh M, Bakhshizadeh P, Edraki N, Khoshneviszadeh M. Structure-Based Design, Synthesis, Biological Evaluation and Molecular Docking Study of 4-Hydroxy-N'-methylenebenzohydrazide Derivatives Acting as Tyrosinase Inhibitors with Potentiate Anti-Melanogenesis Activities. Med Chem 2020; 16:892-902. [DOI: 10.2174/1573406415666190724142951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Background:
Melanogenesis is a process of melanin synthesis, which is a primary response
for the pigmentation of human skin. Tyrosinase is a key enzyme, which catalyzes a ratelimiting
step of the melanin formation. Natural products have shown potent inhibitors, but some of
these possess toxicity. Numerous synthetic inhibitors have been developed in recent years may
lead to the potent anti– tyrosinase agents.
Objective:
A number of 4-hydroxy-N'-methylenebenzohydrazide analogues with related structure
to chalcone and tyrosine were constructed with various substituents at the benzyl ring of the molecule
and evaluate as a tyrosinase inhibitor. In addition, computational analysis and metal chelating
potential have been evaluated.
Methods:
Design and synthesized compounds were evaluated for activity against mushroom tyrosinase.
The metal chelating capacity of the potent compound was examined using the mole ratio
method. Molecular docking of the synthesized compounds was carried out into the tyrosine active
site.
Results:
Novel 4-hydroxy-N'-methylenebenzohydrazide derivatives were synthesized. The two
compounds 4c and 4g showed an IC50 near the positive control, led to a drastic inhibition of tyrosinase.
Confirming in vitro results were performed via the molecular docking analysis demonstrating
hydrogen bound interactions of potent compounds with histatidine-Cu+2 residues with in
the active site. Kinetic study of compound 4g showed competitive inhibition towards tyrosinase.
Metal chelating assay indicates the mole fraction of 1:2 stoichiometry of the 4g-Cu2+ complex.
Conclusion:
The findings in the present study demonstrate that 4-Hydroxy-N'-
methylenebenzohydrazide scaffold could be regarded as a bioactive core inhibitor of tyrosinase
and can be used as an inspiration for further studies in this area.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Bakhshizadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Malaspina P, Catellani E, Burlando B, Brignole D, Cornara L, Bazzicalupo M, Candiani S, Obino V, De Feo V, Caputo L, Giordani P. Depigmenting potential of lichen extracts evaluated by in vitro and in vivo tests. PeerJ 2020; 8:e9150. [PMID: 32461836 PMCID: PMC7233272 DOI: 10.7717/peerj.9150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 04/17/2020] [Indexed: 02/05/2023] Open
Abstract
Melanin is the main pigment of human skin, playing the primary role of protection from ultraviolet radiation. Alteration of the melanin production may lead to hyperpigmentation diseases, with both aesthetic and health consequences. Thus, suppressors of melanogenesis are considered useful tools for medical and cosmetic treatments. A great interest is focused on natural sources, aimed at finding safe and quantitatively available depigmenting substances. Lichens are thought to be possible sources of this kind of compounds, as the occurrence of many phenolic molecules suggests possible effects on phenolase enzymes involved in melanin synthesis, like tyrosinase. In this work, we used four lichen species, Cetraria islandica Ach., Flavoparmelia caperata Hale, Letharia vulpina (L.) Hue, and Parmotrema perlatum (Hudson) M. Choisy, to obtain extracts in solvents of increasing polarity, viz. chloroform, chloroform-methanol, methanol, and water. Cell-free, tyrosinase inhibition experiments showed highest inhibition for L. vulpina methanol extract, followed by C. islandica chloroform-methanol one. Comparable results for depigmenting activities were observed by means of in vitro and in vivo systems, such as MeWo melanoma cells and zebrafish larvae. Our study provides first evidence of depigmenting effects of lichen extracts, from tyrosinase inhibition to cell and in vivo models, suggesting that L. vulpina and C. islandica extracts deserve to be further studied for developing skin-whitening products.
Collapse
Affiliation(s)
| | | | - Bruno Burlando
- Department of Pharmacy, University of Genoa, Genoa, Italy
- Biophysics Institute, National Research Council (CNR), Genoa, Italy
| | | | | | | | | | | | | | | | - Paolo Giordani
- Department of Pharmacy, University of Genoa, Genoa, Italy
| |
Collapse
|
8
|
Zhang Y, Fu X, Yan Y, Liu J. Microwave‐assisted synthesis and biological evaluation of new thiazolylhydrazone derivatives as tyrosinase inhibitors and antioxidants. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yu Zhang
- Department of Food and Chemical EngineeringShaoyang University Shao Shui Xi Road, Shaoyang 422100 People's Republic of China
| | - Xi Fu
- Department of Food and Chemical EngineeringShaoyang University Shao Shui Xi Road, Shaoyang 422100 People's Republic of China
| | - Yangting Yan
- Department of Food and Chemical EngineeringShaoyang University Shao Shui Xi Road, Shaoyang 422100 People's Republic of China
| | - Jinbing Liu
- Department of Food and Chemical EngineeringShaoyang University Shao Shui Xi Road, Shaoyang 422100 People's Republic of China
| |
Collapse
|
9
|
Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 2019; 34:279-309. [PMID: 30734608 PMCID: PMC6327992 DOI: 10.1080/14756366.2018.1545767] [Citation(s) in RCA: 525] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Asieh Bahrami
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - J. Munoz-Munoz
- Group of Microbiology, Department of Applied Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, UK
| | - F. Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - F. Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Vittorio S, Seidel T, Germanò MP, Gitto R, Ielo L, Garon A, Rapisarda A, Pace V, Langer T, De Luca L. A Combination of Pharmacophore and Docking-based Virtual Screening to Discover new Tyrosinase Inhibitors. Mol Inform 2019; 39:e1900054. [PMID: 31508903 DOI: 10.1002/minf.201900054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/01/2019] [Indexed: 01/09/2023]
Abstract
Melanogenesis controls the formation of melanin pigment whose overproduction is related to various hyperpigmentary disorders in humans. Tyrosinase is a type-3 copper enzyme involved in the rate limiting step of melanin synthesis, therefore its inhibition could represent an efficient way for the development of depigmenting agents. In this work, a combination of pharmacophore and docking-based studies has been employed to screen two in-house 3D compound databases containing about 2,000 molecules from natural and synthetic sources. As result we selected two "hit compounds" which proved to inhibit tyrosinase activity showing IC50 values in the micromolar range.
Collapse
Affiliation(s)
- Serena Vittorio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168, Messina, Italy.,Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Thomas Seidel
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168, Messina, Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168, Messina, Italy
| | - Laura Ielo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168, Messina, Italy.,Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Arthur Garon
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Antonio Rapisarda
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168, Messina, Italy
| | - Vittorio Pace
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168, Messina, Italy
| |
Collapse
|