1
|
Mitochondria as a potential target for the development of prophylactic and therapeutic drugs against Schistosoma mansoni infection. Antimicrob Agents Chemother 2021; 65:e0041821. [PMID: 34339272 DOI: 10.1128/aac.00418-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emergence of parasites resistant to praziquantel, the only therapeutic agent, and its ineffectiveness as a prophylactic agent (inactive against the migratory/juvenile Schistosoma mansoni), makes the development of new antischistosomal drugs urgent. The parasite's mitochondrion is an attractive target for drug development because this organelle is essential for survival throughout the parasite's life cycle. We investigated the effects of 116 compounds against Schistosoma mansoni cercariae motility that have been reported to affect mitochondria-related processes in other organisms. Next, eight compounds plus two controls (mefloquine and praziquantel) were selected and assayed against motility of schistosomula (in vitro) and adults (ex vivo). Prophylactic and therapeutic assays were performed using infected mouse models. Inhibition of oxygen consumption rate (OCR) was assayed using Seahorse XFe24 Analyzer. All selected compounds showed excellent prophylactic activity, reducing the worm burden in the lungs to less than 15% that obtained in the vehicle control. Notably, ascofuranone showed the highest activity with a 98% reduction of the worm burden, suggesting the potential for development of ascofuranone as a prophylactic agent. The worm burden of infected mice with S. mansoni at the adult stage was reduced by more than 50% in mice treated with mefloquine, nitazoxanide, amiodarone, ascofuranone, pyrvinium pamoate, or plumbagin. Moreover, adult mitochondrial OCR was severely inhibited by ascofuranone, atovaquone, and nitazoxanide, while pyrvinium pamoate inhibited both mitochondrial and non-mitochondrial OCRs. These results demonstrate that the mitochondria of S. mansoni are feasible target for drug development.
Collapse
|
2
|
Rhodoquinone in bacteria and animals: Two distinct pathways for biosynthesis of this key electron transporter used in anaerobic bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148278. [DOI: 10.1016/j.bbabio.2020.148278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
|
3
|
Yadav DK, Kumar S, Teli MK, Yadav R, Chaudhary S. Molecular Targets for Malarial Chemotherapy: A Review. Curr Top Med Chem 2019; 19:861-873. [DOI: 10.2174/1568026619666190603080000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 11/22/2022]
Abstract
The malaria parasite resistance to the existing drugs is a serious problem to the currently used
antimalarials and, thus, highlights the urgent need to develop new and effective anti-malarial molecules.
This could be achieved either by the identification of the new drugs for the validated targets or by further
refining/improving the existing antimalarials; or by combining previously effective agents with
new/existing drugs to have a synergistic effect that counters parasite resistance; or by identifying novel
targets for the malarial chemotherapy. In this review article, a comprehensive collection of some of the
novel molecular targets has been enlisted for the antimalarial drugs. The targets which could be deliberated
for developing new anti-malarial drugs could be: membrane biosynthesis, mitochondrial system,
apicoplasts, parasite transporters, shikimate pathway, hematin crystals, parasite proteases, glycolysis,
isoprenoid synthesis, cell cycle control/cycline dependent kinase, redox system, nucleic acid metabolism,
methionine cycle and the polyamines, folate metabolism, the helicases, erythrocyte G-protein, and
farnesyl transferases. Modern genomic tools approaches such as structural biology and combinatorial
chemistry, novel targets could be identified followed by drug development for drug resistant strains providing
wide ranges of novel targets in the development of new therapy. The new approaches and targets
mentioned in the manuscript provide a basis for the development of new unique strategies for antimalarial
therapy with limited off-target effects in the near future.
Collapse
Affiliation(s)
- Dharmendra K. Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, 191, Yeonsu-gu, Incheon 406-799, South Korea
| | - Surendra Kumar
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, 191, Yeonsu-gu, Incheon 406-799, South Korea
| | - Mahesh K. Teli
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, 191, Yeonsu-gu, Incheon 406-799, South Korea
| | - Ravikant Yadav
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur-302017, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur-302017, India
| |
Collapse
|
4
|
Olszewska A, Szewczyk A. Mitochondria as a pharmacological target: magnum overview. IUBMB Life 2013; 65:273-81. [PMID: 23441041 DOI: 10.1002/iub.1147] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 12/14/2012] [Indexed: 12/30/2022]
Abstract
Mitochondria, responsible for energy metabolism within the cell, act as signaling organelles. Mitochondrial dysfunction may lead to cell death and oxidative stress and may disturb calcium metabolism. Additionally, mitochondria play a pivotal role in cardioprotective phenomena and a variety of neurodegenerative disorders ranging from Parkinson's to Alzheimer's disease. Mitochondrial DNA mutations may lead to impaired respiration. Hence, targeting the mitochondria with drugs offers great potential for new therapeutic approaches. The purpose of this overview is to present the recent state of knowledge concerning the interactions of various substances with mitochondria.
Collapse
Affiliation(s)
- Anna Olszewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | |
Collapse
|
5
|
Identification of a new gene required for the biosynthesis of rhodoquinone in Rhodospirillum rubrum. J Bacteriol 2011; 194:965-71. [PMID: 22194448 DOI: 10.1128/jb.06319-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodoquinone (RQ) is a required cofactor for anaerobic respiration in Rhodospirillum rubrum, and it is also found in several helminth parasites that utilize a fumarate reductase pathway. RQ is an aminoquinone that is structurally similar to ubiquinone (Q), a polyprenylated benzoquinone used in the aerobic respiratory chain. RQ is not found in humans or other mammals, and therefore, the inhibition of its biosynthesis may provide a novel antiparasitic drug target. To identify a gene specifically required for RQ biosynthesis, we determined the complete genome sequence of a mutant strain of R. rubrum (F11), which cannot grow anaerobically and does not synthesize RQ, and compared it with that of a spontaneous revertant (RF111). RF111 can grow anaerobically and has recovered the ability to synthesize RQ. The two strains differ by a single base pair, which causes a nonsense mutation in the putative methyltransferase gene rquA. To test whether this mutation is important for the F11 phenotype, the wild-type rquA gene was cloned into the pRK404E1 vector and conjugated into F11. Complementation of the anaerobic growth defect in F11 was observed, and liquid chromatography-time of flight mass spectrometry (LC-TOF-MS) analysis of lipid extracts confirmed that plasmid-complemented F11 was able to synthesize RQ. To further validate the requirement of rquA for RQ biosynthesis, we generated a deletion mutant from wild-type R. rubrum by the targeted replacement of rquA with a gentamicin resistance cassette. The ΔrquA mutant exhibited the same phenotype as that of F11. These results are significant because rquA is the first gene to be discovered that is required for RQ biosynthesis.
Collapse
|
6
|
Habila N, Inuwa MH, Aimola IA, Udeh MU, Haruna E. Pathogenic mechanisms of Trypanosoma evansi infections. Res Vet Sci 2011; 93:13-7. [PMID: 21940025 DOI: 10.1016/j.rvsc.2011.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/16/2011] [Accepted: 08/19/2011] [Indexed: 11/19/2022]
Abstract
Insect-borne diseases exact a high public health burden and have a devastating impact on livestock and agriculture. To date, control has proved to be exceedingly difficult. One such disease that has plagued sub-Saharan Africa is caused by the protozoan African trypanosomes (Trypanosoma species) and transmitted by tsetse flies (Diptera: Glossinidae). This presentation describes Trypanosoma evansi (T. evansi) which causes the disease known as trypanosomosis (Surra) or trypanosomiasis in which several attempts have being made to unravel the clinical pathogenic mechanisms in T. evansi infections, yielding various reports which have implicated hemolysis associated to decrease in life span of erythrocytes and extensive erythrophagocytosis being among those that enjoy prominence. T. evansi generates Adenosine Triphosphate (ATP) from glucose catabolism which is required for the parasite motility and survival. Oxidation of the erythrocytes induces oxidative stress due to free radical generation. Lipid peroxidation of the erythrocytes causes membrane injury, osmotic fragility and destruction of the red blood cell (RBC) making anemia a hallmark of the pathology of T. evansi infections.
Collapse
Affiliation(s)
- Nathan Habila
- Department of Biochemistry, Ahmadu Bello University, Zaria 810001, Nigeria.
| | | | | | | | | |
Collapse
|
7
|
Dolgikh VV, Senderskiy IV, Pavlova OA, Naumov AM, Beznoussenko GV. Immunolocalization of an alternative respiratory chain in Antonospora (Paranosema) locustae spores: mitosomes retain their role in microsporidial energy metabolism. EUKARYOTIC CELL 2011; 10:588-93. [PMID: 21296913 PMCID: PMC3127642 DOI: 10.1128/ec.00283-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/28/2011] [Indexed: 11/20/2022]
Abstract
Microsporidia are a group of fungus-related intracellular parasites with severely reduced metabolic machinery. They lack canonical mitochondria, a Krebs cycle, and a respiratory chain but possess genes encoding glycolysis enzymes, a glycerol phosphate shuttle, and ATP/ADP carriers to import host ATP. The recent finding of alternative oxidase genes in two clades suggests that microsporidial mitosomes may retain an alternative respiratory pathway. We expressed the fragments of mitochondrial chaperone Hsp70 (mitHsp70), mitochondrial glycerol-3-phosphate dehydrogenase (mitG3PDH), and alternative oxidase (AOX) from the microsporidium Antonospora (Paranosema) locustae in Escherichia coli. Immunoblotting with antibodies against recombinant polypeptides demonstrated specific accumulation of both metabolic enzymes in A. locustae spores. At the same time comparable amounts of mitochondrial Hsp70 were found in spores and in stages of intracellular development as well. Immunoelectron microscopy of ultrathin cryosections of spores confirmed mitosomal localization of the studied proteins. Small amounts of enzymes of an alternative respiratory chain in merogonial and early sporogonial stages, alongside their accumulation in mature spores, suggest conspicuous changes in components and functions of mitosomes during the life cycle of microsporidia and the important role of these organelles in parasite energy metabolism, at least at the final stages of sporogenesis.
Collapse
|
8
|
Evidence that ubiquinone is a required intermediate for rhodoquinone biosynthesis in Rhodospirillum rubrum. J Bacteriol 2009; 192:436-45. [PMID: 19933361 DOI: 10.1128/jb.01040-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodoquinone (RQ) is an important cofactor used in the anaerobic energy metabolism of Rhodospirillum rubrum. RQ is structurally similar to ubiquinone (coenzyme Q or Q), a polyprenylated benzoquinone used in the aerobic respiratory chain. RQ is also found in several eukaryotic species that utilize a fumarate reductase pathway for anaerobic respiration, an important example being the parasitic helminths. RQ is not found in humans or other mammals, and therefore inhibition of its biosynthesis may provide a parasite-specific drug target. In this report, we describe several in vivo feeding experiments with R. rubrum used for the identification of RQ biosynthetic intermediates. Cultures of R. rubrum were grown in the presence of synthetic analogs of ubiquinone and the known Q biosynthetic precursors demethylubiquinone, demethoxyubiquinone, and demethyldemethoxyubiquinone, and assays were monitored for the formation of RQ(3). Data from time course experiments and S-adenosyl-l-methionine-dependent O-methyltransferase inhibition studies are discussed. Based on the results presented, we have demonstrated that Q is a required intermediate for the biosynthesis of RQ in R. rubrum.
Collapse
|
9
|
Jana S, Paliwal J. Novel molecular targets for antimalarial chemotherapy. Int J Antimicrob Agents 2007; 30:4-10. [PMID: 17339102 DOI: 10.1016/j.ijantimicag.2007.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 01/09/2007] [Indexed: 11/20/2022]
Abstract
The emergence and spread of drug-resistant malaria parasites is a serious public health problem in the tropical world. Malaria control has relied upon the traditional quinoline, antifolate and artemisinin compounds. Very few new antimalarials were developed in the last quarter of the 20th century. An alarming increase in drug-resistant strains of the malaria parasite poses a significant problem for effective control. Recent advances in our knowledge of parasite biology as well as the availability of the genome sequence provide a wide range of novel targets for drug design. Gene products involved in controlling vital aspects of parasite metabolism and organelle function could be attractive targets. It is expected that the application of functional genomic tools in combination with modern approaches such as structure-based drug design and combinatorial chemistry will lead to the development of effective new drugs against drug-resistant malaria strains. This review discusses novel molecular targets of the malaria parasite available to the drug discovery scientist.
Collapse
Affiliation(s)
- Snehasis Jana
- Metabolism and Pharmacokinetics Division, Ranbaxy Research Laboratories, Plot-18, Sector-20, Udyog Vihar, Industrial Area, Gurgaon, Haryana 122015, India
| | | |
Collapse
|
10
|
Menezes D, Valentim C, Oliveira MF, Vannier-Santos MA. Putrescine analogue cytotoxicity against Trypanosoma cruzi. Parasitol Res 2005; 98:99-105. [PMID: 16283411 DOI: 10.1007/s00436-005-0010-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 08/23/2005] [Indexed: 01/12/2023]
Abstract
Trypanosoma cruzi is the etiological agent of American trypanosomiasis. Most of the available data on trypanosomatid parasites were obtained from African trypanosomes. Parasitic protozoa polyamine metabolism and transport pathways comprise valuable targets for chemotherapy. T. cruzi cannot synthesize putrescine, but its uptake from the extracellular milieu can promote parasite survival. Nevertheless, little is known about the cell biology of this diamine in T. cruzi. Here we notice that the putrescine analogue 1,4-diamino-2-butanone (DAB) inhibited T. cruzi epimastigotes' in vitro proliferation and produced remarkable mitochondrial destruction and cell architecture disorganization, as assessed by transmission electron microscopy. Mitochondrial damage was confirmed by MTT reduction. We decided to analyze the oxidative stress undergone by DAB-treated parasites. Thiobarbituric-acid-reactive substances were measured to assess lipid peroxidation. Analogue effects were dose-dependent; 5 mM DAB only slightly enhanced peroxidation, whereas 10 mM DAB significantly (P < 0.05) diminished it. These data indicate that putrescine uptake by this diamine auxotrophic parasite may be important for epimastigote axenic growth and cellular organization.
Collapse
Affiliation(s)
- D Menezes
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz-FIOCRUZ, Rua Waldemar Falcão 121, 40.295-001 Brotas, Salvador, Brazil
| | | | | | | |
Collapse
|
11
|
Putignani L, Tait A, Smith HV, Horner D, Tovar J, Tetley L, Wastling JM. Characterization of a mitochondrion-like organelle in Cryptosporidium parvum. Parasitology 2004; 129:1-18. [PMID: 15267107 DOI: 10.1017/s003118200400527x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cryptosporidium parvum is a protozoan parasite that causes widespread diarrhoeal disease in humans and other animals and is responsible for large waterborne outbreaks of cryptosporidiosis. Unlike many organisms belonging to the phylum Apicomplexa, such as Plasmodium spp. and Toxoplasma gondii, there is no clinically proven drug treatment against this parasite. Aspects of the basic biology of C. parvum remain poorly understood, including a detailed knowledge of key metabolic pathways, its genome organization and organellar complement. Previous studies have proposed that C. parvum lacks a relic plastid organelle, or 'apicoplast', but that it may possess a mitochondrion. Here we characterize a mitochondrion-like organelle in C. parvum by (i) ultrastructural and morphological description (ii) localization of heterologous mitochondrial chaperonin antibody probes (iii) phylogenetic analysis of genes encoding mitochondrial transport proteins (iv) identification and analysis of mitochondrion-associated gene sequences. Our descriptive morphological analysis was performed by energy-filtering transmission electron microscopy (EFTEM) of C. hominis and C. parvum. The 'mitochondrion-like' organelle was characterized by labelling the structure with a heterologous mitochondrial chaperonin probe (hsp60) both in immunoelectron microscopy (IMEM) and immunofluorescence (IMF). Phylogenetic analysis of the mitochondrial import system and housekeeping components (hsp60 and hsp70-dnaK) suggested that the C. parvum mitochondrion-like organelle is likely to have descended from a common ancestral apicomplexan mitochondrion. We also identified a partial cDNA sequence coding for an alternative oxidase (AOX) gene, a component of the electron transport chain which can act as an alternative to the terminal mitochondrial respiratory complexes III and IV, which has not yet been reported in any other member of this phylum. Degenerate primers developed to identify selected mitochondrial genes failed to identify either cytochrome oxidase subunit I, or cytochrome b. Taken together, our data aim to provide new insights into the characterization of this Cryptosporidium organelle and a logical framework for future functional investigation.
Collapse
Affiliation(s)
- L Putignani
- Division of Infection and Immunity, Institute of Biomedical and Life Science, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | |
Collapse
|