1
|
Shu Y, Linghu X, Zhao Y, Chen Z, Zhang J, Shan D, Liu W, Di M, Wang B. Photodynamic and photothermal therapy-driven synergistic cancer treatment assisted by zeolitic imidazolate framework-8: A review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
2
|
Luo J, Ma Z, Yang F, Wu T, Wen S, Zhang J, Huang L, Deng S, Tan S. Fabrication of Laponite-Reinforced Dextran-Based Hydrogels for NIR-Responsive Controlled Drug Release. ACS Biomater Sci Eng 2022; 8:1554-1565. [PMID: 35245017 DOI: 10.1021/acsbiomaterials.1c01389] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Natural polymer gels with sensitivity to near-infrared (NIR) light have attracted the attention of scientists working on intelligent drug delivery systems. Compared to ultraviolet or visible light, NIR light has the advantages of strong trigger levels, deep penetration through affected tissues, and fewer side effects. Herein, we present a topical photothermal hydrogel for NIR-controlled drug delivery. The proposed DexIEM-GM-Laponite hydrogel was prepared through free radical polymerization of vinyl-functionalized dextran (DexIEM), vinyl-modified graphene oxide (GM), and Laponite; thereafter, the hydrogel was loaded with ciprofloxacin (CIP, an antibacterial drug) as a model drug. With the Laponite content increased, the density of crosslinking in the hydrogel increased, and its mechanical properties improved noticeably. Under NIR irradiation, the DexIEM-GM-Laponite hydrogel exhibited a photothermal property, where the surface temperature increased from 26.8 to 55.5 °C. The simulation of subcutaneous drug delivery experiments ex vivo showed that under the specified pork tissue thickness (2, 4, and 6 mm), the CIP release remained NIR-controllable. Additionally, the results of the antibacterial performance tests indicated the excellent antibacterial effect of the hydrogel, and the blood hemolysis ratio of the hydrogel was less than 5%, signifying good blood compatibility. This work will provide an avenue for the application of NIR light-responsive materials in antimicrobial therapy.
Collapse
Affiliation(s)
- Jinwei Luo
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Zewei Ma
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Fengjuan Yang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Tianhua Wu
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Shengwu Wen
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Jingxian Zhang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Langhuan Huang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Suiping Deng
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Shaozao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.,Guangdong Jianpai New Materials Co., Ltd., Foshan 528500, P. R. China
| |
Collapse
|
3
|
Cen J, Li L, Huang L, Jiang G. Construction of a photothermal controlled-release microcapsule pesticide delivery system. RSC Adv 2022; 12:23387-23395. [PMID: 36090399 PMCID: PMC9382649 DOI: 10.1039/d2ra04672e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
This study aimed to achieve the controlled-release of bioactive ingredients in microcapsule pesticide delivery systems. A photothermal controlled-release microcapsule pesticide delivery system was constructed using chitosan and polydopamine (PDA) as the wall materials to encapsulate avermectin. All the prepared microcapsules were characterized by the methods of optical microscopy, scanning electron microscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy. The slow-release, UV-shielding, photothermal performance, and the nematicidal activity of the prepared microcapsules were also systematically investigated. The results indicated that the prepared microcapsules had excellent slow-release and UV-shielding performance when further encapsulated with the PDA layer relative to those of the non-PDA-encapsulated products. The photothermal sensitivity of the AVM@CS/CMA/PDA composite microcapsule under the irradiation of near-infrared light (NIR) was dramatically enhanced with the photothermal conversion efficiency (η) of 14.93%. Furthermore, the nematicidal activity of the AVM@CS/CMA/PDA composite microcapsule system was effectively improved on exposure to the irradiation of a light-emitting diode (LED) full-spectrum light. The strategies used in this study for developing the photothermal controlled-release pesticide delivery system might play an important role on improving utilization of pesticides. A photothermal controlled-release microcapsule pesticide delivery system was constructed using chitosan and polydopamine as the wall materials to encapsulate avermectin, the utilization rate of avermectin was improved.![]()
Collapse
Affiliation(s)
- Jun Cen
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| | - Linhuai Li
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| | - Lingling Huang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| | - Guangqi Jiang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Lu Q, Qi S, Li P, Yang L, Yang S, Wang Y, Cheng Y, Song Y, Wang S, Tan F, Li N. Photothermally activatable PDA immune nanomedicine combined with PD-L1 checkpoint blockade for antimetastatic cancer photoimmunotherapy. J Mater Chem B 2019; 7:2499-2511. [PMID: 32255127 DOI: 10.1039/c9tb00089e] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photothermal therapy (PTT) has shown promising potential and bright prospects in damaging primary tumors; however, it is limited to metastatic and recrudescent tumors as PTT requires straightforward light irradiation. Moreover, metastatic and recrudescent tumor immunosuppression due to host T-cell antitumor activity is dramatically impeded because of programmed cell death 1 ligand (PD-L1) and programmed cell death receptor 1 (PD-1) pathways and immune checkpoint blockade (ICB) therapy. In this work, we demonstrate that PTT combined with ICB could not only eliminate primary tumors, but also prevent tumor metastasis to the lungs/liver. In particular, we have designed immunoadjuvant nanomedicine carriers on the basis of polydopamine (PDA) simultaneously loaded with resiquimod (R848)-a kind of toll-like receptor 7 (TLR7) agonist-and carbon dots (CDs)-a fluorescent agent. This nanomedicine is defined as PDA-PEG-R848-CD nanoparticle (NP). The multitasking PDA-PEG-R848-CD NPs can destroy 4T1 breast tumors by PTT under near-infrared laser irradiation in addition to generating tumor-associated antigens. Moreover, the PTT effect triggered the release of R848, thereby inducing a strong antitumor immune response. Meanwhile, this synergistic therapy also shows the abscopal effects by completely inhibiting the growth of untreated distant tumors by effectively triggering the tumors infiltrated by CD3/CD8. Such findings suggest that PDA-PEG-R848-CD NPs could significantly potentiate the systemic therapeutic efficiency of PD-L1 checkpoint blockade therapy by activating both innate and adaptive immune systems in the body.
Collapse
Affiliation(s)
- Qianglan Lu
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sagar V, Nair M. Near-infrared biophotonics-based nanodrug release systems and their potential application for neuro-disorders. Expert Opin Drug Deliv 2018; 15:137-152. [PMID: 28276967 PMCID: PMC5738278 DOI: 10.1080/17425247.2017.1297794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/16/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Near-infrared ray (NIR)-responsive 'smart' nanoagents allow spatial and temporal control over the drug delivery process, noninvasively, without affecting healthy tissues and therefore they possess high potential for on-demand, targeted drug/gene delivery. Various NIR-responsive drug/gene delivery techniques are under investigation for peripheral disorders (especially for cancer). Nonetheless, their potential not been extensively examined for brain biomedical application. AREAS COVERED This review focuses on NIR-responsive characteristics of different NIR-nanobiophotonics-based nanoagents and associated drug delivery strategies. Together with their ongoing applications for peripheral drug delivery, we have highlighted the opportunities, challenges and possible solutions of NIR-nanobiophotonics for potential brain drug delivery. EXPERT OPINION NIR-nanobiophotonics can be considered superior among all photo-controlled drug/gene delivery approaches. Future work should focus on coupling NIR with biocompatible nanocarriers to determine the physiological compatibility of this approach. Their applications should be extended beyond the peripheral body region to brain region. Transient or intermittent NIR exposure strategies may be more accommodating for brain physiological ambience in order to minimize or avoid the possible deleterious thermal effect. In addition, while most studies are centered around the first NIR spectral window (700-1000 nm), the potential of second (1100-1350 nm) and third (1600-1870 nm) windows must be explored.
Collapse
Affiliation(s)
- Vidya Sagar
- Center for Personalized Nanomedicine/Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida - 33199
| | - Madhavan Nair
- Center for Personalized Nanomedicine/Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida - 33199
| |
Collapse
|