1
|
Welch JF, Mitchell GS. Inaugural Review Prize 2023: The exercise hyperpnoea dilemma: A 21st-century perspective. Exp Physiol 2024; 109:1217-1237. [PMID: 38551996 PMCID: PMC11291877 DOI: 10.1113/ep091506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/12/2024] [Indexed: 08/02/2024]
Abstract
During mild or moderate exercise, alveolar ventilation increases in direct proportion to metabolic rate, regulating arterial CO2 pressure near resting levels. Mechanisms giving rise to the hyperpnoea of exercise are unsettled despite over a century of investigation. In the past three decades, neuroscience has advanced tremendously, raising optimism that the 'exercise hyperpnoea dilemma' can finally be solved. In this review, new perspectives are offered in the hope of stimulating original ideas based on modern neuroscience methods and current understanding. We first describe the ventilatory control system and the challenge exercise places upon blood-gas regulation. We highlight relevant system properties, including feedforward, feedback and adaptive (i.e., plasticity) control of breathing. We then elaborate a seldom explored hypothesis that the exercise ventilatory response continuously adapts (learns and relearns) throughout life and ponder if the memory 'engram' encoding the feedforward exercise ventilatory stimulus could reside within the cerebellum. Our hypotheses are based on accumulating evidence supporting the cerebellum's role in motor learning and the numerous direct and indirect projections from deep cerebellar nuclei to brainstem respiratory neurons. We propose that cerebellar learning may be obligatory for the accurate and adjustable exercise hyperpnoea capable of tracking changes in life conditions/experiences, and that learning arises from specific cerebellar microcircuits that can be interrogated using powerful techniques such as optogenetics and chemogenetics. Although this review is speculative, we consider it essential to reframe our perspective if we are to solve the till-now intractable exercise hyperpnoea dilemma.
Collapse
Affiliation(s)
- Joseph F. Welch
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Gordon S. Mitchell
- Breathing Research and Therapeutics Centre, Department of Physical Therapy, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
2
|
Nicolò A, Sacchetti M. Differential control of respiratory frequency and tidal volume during exercise. Eur J Appl Physiol 2023; 123:215-242. [PMID: 36326866 DOI: 10.1007/s00421-022-05077-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
The lack of a testable model explaining how ventilation is regulated in different exercise conditions has been repeatedly acknowledged in the field of exercise physiology. Yet, this issue contrasts with the abundance of insightful findings produced over the last century and calls for the adoption of new integrative perspectives. In this review, we provide a methodological approach supporting the importance of producing a set of evidence by evaluating different studies together-especially those conducted in 'real' exercise conditions-instead of single studies separately. We show how the collective assessment of findings from three domains and three levels of observation support the development of a simple model of ventilatory control which proves to be effective in different exercise protocols, populations and experimental interventions. The main feature of the model is the differential control of respiratory frequency (fR) and tidal volume (VT); fR is primarily modulated by central command (especially during high-intensity exercise) and muscle afferent feedback (especially during moderate exercise) whereas VT by metabolic inputs. Furthermore, VT appears to be fine-tuned based on fR levels to match alveolar ventilation with metabolic requirements in different intensity domains, and even at a breath-by-breath level. This model reconciles the classical neuro-humoral theory with apparently contrasting findings by leveraging on the emerging control properties of the behavioural (i.e. fR) and metabolic (i.e. VT) components of minute ventilation. The integrative approach presented is expected to help in the design and interpretation of future studies on the control of fR and VT during exercise.
Collapse
Affiliation(s)
- Andrea Nicolò
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy.
| | - Massimo Sacchetti
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy
| |
Collapse
|
3
|
Gonçalves TR, Soares PPDS. Positive Pressure Ventilation Improves Exercise Performance and Attenuates the Fall of Postexercise Inspiratory Muscular Strength in Rower Athletes. J Strength Cond Res 2021; 35:253-259. [PMID: 29309387 DOI: 10.1519/jsc.0000000000002420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Gonçalves, TR and Soares, PP. Positive pressure ventilation improves exercise performance and attenuates the fall of postexercise inspiratory muscular strength in rower athletes. J Strength Cond Res 35(1): 253-259, 2021-Positive pressure ventilation (PPV) can increase exercise performance in cyclists, but its effects are unclear in other exercise modes, especially those using large muscle mass. The aim of this study was to compare the exercise performance and postexercise inspiratory muscles' strength with and without PPV (NO-PPV) during rowing. Nine male rowers (19 ± 1 year) participated in 3 experimental days (M1, M2, and M3) separated by 1 week. In M1, rowers performed a 2,000-m test (2k) on a rowing ergometer to obtain average power (W2k). In M2 and M3, the rowers performed 4 minutes' workouts at 55, 65, 75, and 85% W2k, respectively, separated by 1 minute of recovery, with PPV and NO-PPV application in randomized order. Blood lactate (La) was measured during intervals. After submaximal exercises, with 10 minutes of "cool down," the rowers performed a maximal performance test of 4 minutes (4-minute all-out rowing). Traveled distance was computed and correlated with maximal inspiratory pressure (MIP) changes from pretest to posttest (∆). Positive pressure ventilation application increased the traveled distance in relation to NO-PPV exercise (1,210.7 ± 45.5 vs. 1,199.8 ± 43.4 m, p ≤ 0.05). The ∆MIP (cmH2O) was lower in PPV as compared to NO-PPV exercise (-19.1 ± 10.2 vs. -26.3 ± 7.9 cmH2O, p ≤ 0.05). The [La] showed no significant difference between PPV and NO-PPV exercises (p > 0.05). Therefore, the PPV during whole-body rowing exercise improved the exercise performance and attenuated the inspiratory postexercise fatigue. These findings suggest that inspiratory muscles' strength plays a role during high-intensity exercise with large muscle mass.
Collapse
Affiliation(s)
- Thiago R Gonçalves
- Department of Physiology and Pharmacology, Laboratory of Experimental and Applied Exercise Physiology, Fluminense Federal University, Niterói, Brazil
| | | |
Collapse
|
4
|
|
5
|
Heyde C, Mahler H, Roecker K, Gollhofer A. Predictive value of ventilatory inflection points determined under field conditions. J Sports Sci 2015; 34:787-93. [PMID: 26190229 DOI: 10.1080/02640414.2015.1069883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to evaluate the predictive potential provided by two ventilatory inflection points (VIP1 and VIP2) examined in field without using gas analysis systems and uncomfortable facemasks. A calibrated respiratory inductance plethysmograph (RIP) and a computerised routine were utilised, respectively, to derive ventilation and to detect VIP1 and VIP2 during a standardised field ramp test on a 400 m running track on 81 participants. In addition, average running speed of a competitive 1000 m run (S1k) was observed as criterion. The predictive value of running speed at VIP1 (SVIP1) and the speed range between VIP1 and VIP2 in relation to VIP2 (VIPSPAN) was analysed via regression analysis. VIPSPAN rather than running speed at VIP2 (SVIP2) was operationalised as a predictor to consider the covariance between SVIP1 and SVIP2. SVIP1 and VIPSPAN, respectively, provided 58.9% and 22.9% of explained variance in regard to S1k. Considering covariance, the timing of two ventilatory inflection points provides predictive value in regard to a competitive 1000 m run. This is the first study to apply computerised detection of ventilatory inflection points in a field setting independent on measurements of the respiratory gas exchange and without using any facemasks.
Collapse
Affiliation(s)
- Christian Heyde
- a Department of Sport and Sport Science , Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Hubert Mahler
- a Department of Sport and Sport Science , Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Kai Roecker
- b Applied Public Health , Furtwangen University , Furtwangen , Germany
| | - Albert Gollhofer
- a Department of Sport and Sport Science , Albert-Ludwigs-University Freiburg , Freiburg , Germany
| |
Collapse
|
6
|
Pastré J, Prévotat A, Tardif C, Langlois C, Duhamel A, Wallaert B. Determinants of exercise capacity in cystic fibrosis patients with mild-to-moderate lung disease. BMC Pulm Med 2014; 14:74. [PMID: 24884656 PMCID: PMC4011768 DOI: 10.1186/1471-2466-14-74] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 04/23/2014] [Indexed: 11/30/2022] Open
Abstract
Background Adult patients with cystic fibrosis (CF) frequently have reduced exercise tolerance, which is multifactorial but mainly due to bronchial obstruction. The aim of this retrospective analysis was to determine the mechanisms responsible for exercise intolerance in patients with mild-to-moderate or severe disease. Methods Cardiopulmonary exercise testing with blood gas analysis at peak exercise was performed in 102 patients aged 28 ± 11 years: 48 patients had severe lung disease (FEV1 < 50%, group 1) and 54 had mild-to-moderate lung disease (FEV1 ≥ 50%, group 2). VO2 peak was measured and correlated with clinical, biological, and functional parameters. Results VO2 peak for all patients was 25 ± 9 mL/kg/min (65 ± 21% of the predicted value) and was < 84% of predicted in 82% of patients (100% of group 1, 65% of group 2). VO2 peak was correlated with body mass index, C-reactive protein, FEV1, FVC, RV, DLCO, VE/VCO2 peak, VD/VT, PaO2, PaCO2, P(A-a)O2, and breathing reserve. In multivariate analysis, FEV1 and overall hyperventilation during exercise were independent determinants of exercise capacity (R2 = 0.67). FEV1 was the major significant predictor of VO2 peak impairment in group 1, accounting for 31% of VO2 peak alteration, whereas excessive overall hyperventilation (reduced or absent breathing reserve and VE/VCO2) accounted for 41% of VO2 alteration in group 2. Conclusion Exercise limitation in adult patients with CF is largely dependent on FEV1 in patients with severe lung disease and on the magnitude of the ventilatory response to exercise in patients with mild-to-moderate lung disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Benoit Wallaert
- Université Lille 2 et Clinique des Maladies Respiratoires, CRCM Hôpital Calmette, CHRU Lille, France.
| |
Collapse
|
7
|
Abstract
Many sports incorporate training at altitude as a key component of their athlete training plan. Furthermore, many sports are required to compete at high altitude venues. Exercise at high altitude provides unique challenges to the athlete and to the sport medicine clinician working with these athletes. These challenges include altitude illness, alterations in training intensity and performance, nutritional and hydration difficulties, and challenges related to the austerity of the environment. Furthermore, many of the strategies that are typically utilized by visitors to altitude may have implications from an anti-doping point of view.This position statement was commissioned and approved by the Canadian Academy of Sport and Exercise Medicine. The purpose of this statement was to provide an evidence-based, best practices summary to assist clinicians with the preparation and management of athletes and individuals travelling to altitude for both competition and training.
Collapse
|
8
|
Afroundeh R, Arimitsu T, Yamanaka R, Lian CS, Shirakawa K, Yunoki T, Yano T. Relationship between ventilation and predicted arterial CO2 pressure during recovery from an impulse-like exercise without metabolic acidosis. Physiol Res 2013; 62:387-93. [PMID: 23590606 DOI: 10.33549/physiolres.932435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We investigated ventilation (V(.)E) control factors during recovery from light impulse-like exercise (100 watts) with a duration of 20 s. Blood ions and gases were measured at rest and during recovery. V(.)E, end tidal CO(2) pressure (PETCO(2)) and respiratory exchange ratio (RER) were measured continuously during rest, exercise and recovery periods. Arterial CO(2) pressure (PaCO(2) (pre) was estimated from PETCO(2) and tidal volume (V(T)). RER at 20 s of exercise and until 50 s during recovery was significantly lower than RER at rest. Despite no change in arterialized blood pH level, PaCO(2) (pre) was significantly higher in the last 10 s of exercise and until 70 s during recovery than the resting value. V(.)E increased during exercise and then decreased during recovery; however, it was elevated and was significantly higher than the resting value until 155 s (p<0.05). There was a significant relationship between V(.)E and PaCO(2) (pre) during the first 70 s of recovery in each subject. The results suggest that PaCO(2) drives V(.)E during the first 70 s of recovery after light impulse-like exercise. Elevated V(.)E in the interval from 70 s until 155 s during recovery might be due to neural factors.
Collapse
Affiliation(s)
- R Afroundeh
- Graduate School of Education, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Heinonen I, Savolainen AM, Han C, Kemppainen J, Oikonen V, Luotolahti M, Duncker DJ, Merkus D, Knuuti J, Kalliokoski KK. Pulmonary blood flow and its distribution in highly trained endurance athletes and healthy control subjects. J Appl Physiol (1985) 2013; 114:329-34. [DOI: 10.1152/japplphysiol.00710.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary blood flow (PBF) is an important determinant of endurance sports performance, yet studies investigating adaptations of the pulmonary circulation in athletes are scarce. In the present study, we investigated PBF, its distribution, and heterogeneity at baseline and during intravenous systemic adenosine infusion in 10 highly trained male endurance athletes and 10 untrained but fit healthy controls, using positron emission tomography and [15O]water at rest and during adenosine infusion at supine body posture. Our results indicate that PBF at rest and during adenosine stimulation was similar in both groups (213 ± 55 and 563 ± 138 ml·100 ml−1·min−1 in athletes and 206 ± 83 and 473 ± 212 ml·100 ml−1·min−1 in controls, respectively). Although the PBF response to adenosine was thus unchanged in athletes, overall PBF heterogeneity was reduced from rest to adenosine infusion (from 84 ± 18 to 70 ± 19%, P < 0.05), while remaining unchanged in healthy controls (77 ± 16 to 85 ± 33%, P = 0.4). Additionally, there was a marked gravitational influence on general PBF distribution so that clear dorsal dominance was observed both at rest and during adenosine infusion, but training status did not have an effect on this distribution. Regional blood flow heterogeneity was markedly lower in the high-perfusion dorsal areas, both at rest and during adenosine, in all subjects, but flow heterogeneity in dorsal area tended to further decrease in response to adenosine in athletes. In conclusion, reduced blood flow heterogeneity in response to adenosine in endurance athletes may be a reflection of capillary reserve, which is more extensively recruitable in athletes than in matched healthy control subjects.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku and Turku University Hospital, Turku, Finland
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Anna M. Savolainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Chunlei Han
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jukka Kemppainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Matti Luotolahti
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Dirk J. Duncker
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Juhani Knuuti
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Kari K. Kalliokoski
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
10
|
Péronnet F, Aguilaniu B. Ventilation pulmonaire et alvéolaire, échanges gazeux et gaz du sang à l’exercice en rampe. Rev Mal Respir 2012; 29:1017-34. [DOI: 10.1016/j.rmr.2012.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 09/03/2012] [Indexed: 11/28/2022]
|
11
|
Afroundeh R, Arimitsu T, Yamanaka R, Lian CS, Yunoki T, Yano T. Effect of arterial carbon dioxide on ventilation during recovery from impulse exercises of various intensities. ACTA PHYSIOLOGICA HUNGARICA 2012; 99:251-260. [PMID: 22982713 DOI: 10.1556/aphysiol.99.2012.3.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To determine that whether arterial carbon dioxide (PaCO₂) affects ventilation (VE) during recovery from impulse-like exercises of various intensities, subjects performed four impulse-like tests with different workloads. Each test consisted of a 20-sec impulse-like exercise at 80 rpm and 60-min recovery. Blood samples were collected at rest and during recovery to measure blood ions and gases. VE was measured continuously during rest, exercise and recovery periods. A significant curvilinear relationship was observed between VE and pH during recovery from the 300- and 400-watt tests in all subjects. VE was elevated during recovery from the 100-watt test despite no change in any of the humoral factors. Arterialized carbon dioxide (PaCO₂) kinetics showed fluctuation, being increased at 1 min and decreased at 5 min during recovery, and this fluctuation was more enhanced with increase in exercise intensity. There was a significant relationship between VE and PaCO₂ during recovery from the 300- and 400-watt tests in all subjects. The results of the present study demonstrate that pH and neural factors drive VE during recovery from impulse-like exercise and that fluctuation in PaCO₂ controls VE as a feedback loop and this feedback function is more enhanced as the work intensity increases.
Collapse
Affiliation(s)
- R Afroundeh
- Graduate School of Education, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Afroundeh R, Arimitsu T, Yamanaka R, Lian C, Yunoki T, Yano T. Effects of humoral factors on ventilation kinetics during recovery after impulse-like exercise. ACTA PHYSIOLOGICA HUNGARICA 2012; 99:185-93. [PMID: 22849843 DOI: 10.1556/aphysiol.99.2012.2.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To clarify the ventilatory kinetics during recovery after impulse-like exercise, subjects performed one impulse-like exercise test (one-impulse) and a five-times repeated impulse-like exercises test (five-impulse). Duration and intensity of the impulse-like exercise were 20 sec and 400 watts (80 rpm), respectively. Although blood pH during recovery (until 10 min) was significantly lower in the five-impulse test than in the one-impulse test, ventilation (.VE) in the two tests was similar except during the first 30 sec of recovery, in which it was higher in the five-impulse test. In one-impulse, blood CO2 pressure (PCO2) was significantly increased at 1 min during recovery and then returned to the pre-exercise level at 5 min during recovery. In the five-impulse test, PCO2 at 1 min during recovery was similar to the pre-exercise level, and then it decreased to a level lower than the pre-exercise level at 5 min during recovery. Accordingly, PCO2 during recovery (until 30 min) was significantly lower in the five-impulse than in one-impulse test..VE and pH during recovery showed a curvilinear relationship, and at the same pH, ventilation was higher in the one-impulse test. These results suggest that ventilatory kinetics during recovery after impulse-like exercise is attributed partly to pH, but the stimulatory effect of lower pH is diminished by the inhibitory effect of lower PCO2.
Collapse
Affiliation(s)
- R Afroundeh
- Laboratory of Exercise Physiology, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Lindsey BG, Rybak IA, Smith JC. Computational models and emergent properties of respiratory neural networks. Compr Physiol 2012; 2:1619-70. [PMID: 23687564 PMCID: PMC3656479 DOI: 10.1002/cphy.c110016] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components,including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions,enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered.
Collapse
Affiliation(s)
- Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology and Neuroscience Program, University of South Florida College of Medicine, Tampa, Florida, USA.
| | | | | |
Collapse
|
14
|
Wallaert B, Talleu C, Wemeau-Stervinou L, Duhamel A, Robin S, Aguilaniu B. Reduction of Maximal Oxygen Uptake in Sarcoidosis: Relationship with Disease Severity. Respiration 2011; 82:501-8. [DOI: 10.1159/000330050] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 06/10/2011] [Indexed: 11/19/2022] Open
|
15
|
Poon CS. Evolving paradigms in H+ control of breathing: from homeostatic regulation to homeostatic competition. Respir Physiol Neurobiol 2011; 179:122-6. [PMID: 21864724 DOI: 10.1016/j.resp.2011.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 11/25/2022]
Affiliation(s)
- Chi-Sang Poon
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Heinicke K, Taivassalo T, Wyrick P, Wood H, Babb TG, Haller RG. Exertional dyspnea in mitochondrial myopathy: clinical features and physiological mechanisms. Am J Physiol Regul Integr Comp Physiol 2011; 301:R873-84. [PMID: 21813873 DOI: 10.1152/ajpregu.00001.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Exertional dyspnea limits exercise in some mitochondrial myopathy (MM) patients, but the clinical features of this syndrome are poorly defined, and its underlying mechanism is unknown. We evaluated ventilation and arterial blood gases during cycle exercise and recovery in five MM patients with exertional dyspnea and genetically defined mitochondrial defects, and in four control subjects (C). Patient ventilation was normal at rest. During exercise, MM patients had low Vo(2peak) (28 ± 9% of predicted) and exaggerated systemic O(2) delivery relative to O(2) utilization (i.e., a hyperkinetic circulation). High perceived breathing effort in patients was associated with exaggerated ventilation relative to metabolic rate with high VE/VO(2peak), (MM = 104 ± 18; C = 42 ± 8, P ≤ 0.001), and Ve/VCO(2peak)(,) (MM = 54 ± 9; C = 34 ± 7, P ≤ 0.01); a steeper slope of increase in ΔVE/ΔVCO(2) (MM = 50.0 ± 6.9; C = 32.2 ± 6.6, P ≤ 0.01); and elevated peak respiratory exchange ratio (RER), (MM = 1.95 ± 0.31, C = 1.25 ± 0.03, P ≤ 0.01). Arterial lactate was higher in MM patients, and evidence for ventilatory compensation to metabolic acidosis included lower Pa(CO(2)) and standard bicarbonate. However, during 5 min of recovery, despite a further fall in arterial pH and lactate elevation, ventilation in MM rapidly normalized. These data indicate that exertional dyspnea in MM is attributable to mitochondrial defects that severely impair muscle oxidative phosphorylation and result in a hyperkinetic circulation in exercise. Exaggerated exercise ventilation is indicated by markedly elevated VE/VO(2), VE/VCO(2), and RER. While lactic acidosis likely contributes to exercise hyperventilation, the fact that ventilation normalizes during recovery from exercise despite increasing metabolic acidosis strongly indicates that additional, exercise-specific mechanisms are responsible for this distinctive pattern of exercise ventilation.
Collapse
Affiliation(s)
- Katja Heinicke
- Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Ave., #435, Dallas, TX 75231-5129, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Miyamoto T, Inagaki M, Takaki H, Kawada T, Shishido T, Kamiya A, Sugimachi M. Adaptation of the respiratory controller contributes to the attenuation of exercise hyperpnea in endurance-trained athletes. Eur J Appl Physiol 2011; 112:237-51. [DOI: 10.1007/s00421-011-1968-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/09/2011] [Indexed: 10/18/2022]
|
18
|
Ventilatory response to moderate incremental exercise performed 24 h after resistance exercise with concentric and eccentric contractions. Eur J Appl Physiol 2011; 111:1769-75. [DOI: 10.1007/s00421-010-1801-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 12/21/2010] [Indexed: 11/26/2022]
|
19
|
Slessarev M, Prisman E, Ito S, Watson RR, Jensen D, Preiss D, Greene R, Norboo T, Stobdan T, Diskit D, Norboo A, Kunzang M, Appenzeller O, Duffin J, Fisher JA. Differences in the control of breathing between Himalayan and sea-level residents. J Physiol 2010; 588:1591-606. [PMID: 20194122 DOI: 10.1113/jphysiol.2009.185504] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We compared the control of breathing of 12 male Himalayan highlanders with that of 21 male sea-level Caucasian lowlanders using isoxic hyperoxic ( = 150 mmHg) and hypoxic ( = 50 mmHg) Duffin's rebreathing tests. Highlanders had lower mean +/- s.e.m. ventilatory sensitivities to CO(2) than lowlanders at both isoxic tensions (hyperoxic: 2.3 +/- 0.3 vs. 4.2 +/- 0.3 l min(1) mmHg(1), P = 0.021; hypoxic: 2.8 +/- 0.3 vs. 7.1 +/- 0.6 l min(1) mmHg(1), P < 0.001), and the usual increase in ventilatory sensitivity to CO(2) induced by hypoxia in lowlanders was absent in highlanders (P = 0.361). Furthermore, the ventilatory recruitment threshold (VRT) CO(2) tensions in highlanders were lower than in lowlanders (hyperoxic: 33.8 +/- 0.9 vs. 48.9 +/- 0.7 mmHg, P < 0.001; hypoxic: 31.2 +/- 1.1 vs. 44.7 +/- 0.7 mmHg, P < 0.001). Both groups had reduced ventilatory recruitment thresholds with hypoxia (P < 0.001) and there were no differences in the sub-threshold ventilations (non-chemoreflex drives to breathe) between lowlanders and highlanders at both isoxic tensions (P = 0.982), with a trend for higher basal ventilation during hypoxia (P = 0.052). We conclude that control of breathing in Himalayan highlanders is distinctly different from that of sea-level lowlanders. Specifically, Himalayan highlanders have decreased central and absent peripheral sensitivities to CO(2). Their response to hypoxia was heterogeneous, with the majority decreasing their VRT indicating either a CO(2)-independent increase in activity of peripheral chemoreceptor or hypoxia-induced increase in [H(+)] at the central chemoreceptor. In some highlanders, the decrease in VRT was accompanied by an increase in sensitivity to CO(2), while in others VRT remained unchanged and their sub-threshold ventilations increased, although these were not statistically significant.
Collapse
Affiliation(s)
- M Slessarev
- Department of Anesthesia, University Health Network, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kirkton SD, Howlett RA, Gonzalez NC, Giuliano PG, Britton SL, Koch LG, Wagner HE, Wagner PD. Continued artificial selection for running endurance in rats is associated with improved lung function. J Appl Physiol (1985) 2009; 106:1810-8. [PMID: 19299574 DOI: 10.1152/japplphysiol.90419.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies found that selection for endurance running in untrained rats produced distinct high (HCR) and low (LCR) capacity runners. Furthermore, despite weighing 14% less, 7th generation HCR rats achieved the same absolute maximal oxygen consumption (Vo(2max)) as LCR due to muscle adaptations that improved oxygen extraction and use. However, there were no differences in cardiopulmonary function after seven generations of selection. If selection for increased endurance capacity continued, we hypothesized that due to the serial nature of oxygen delivery enhanced cardiopulmonary function would be required. In the present study, generation 15 rats selected for high and low endurance running capacity showed differences in pulmonary function. HCR, now 25% lighter than LCR, reached a 12% higher absolute Vo(2max) than LCR, P < 0.05 (49% higher Vo(2max)/kg). Despite the 25% difference in body size, both lung volume (at 20 cmH(2)O airway pressure) and exercise diffusing capacity were similar in HCR and LCR. Lung volume of LCR lay on published mammalian allometrical relationships while that of HCR lay above that line. Alveolar ventilation at Vo(2max) was 30% higher, P < 0.05 (78% higher, per kg), arterial Pco(2) was 4.5 mmHg (17%) lower, P < 0.05, while total pulmonary vascular resistance was (insignificantly) 5% lower (30% lower, per kg) in HCR. The smaller mass of HCR animals was due mostly to a smaller body frame rather than to a lower fat mass. These findings show that by generation 15, lung size in smaller HCR rats is not reduced in concert with their smaller body size, but has remained similar to that of LCR, supporting the hypothesis that continued selection for increased endurance capacity requires relatively larger lungs, supporting greater ventilation, gas exchange, and pulmonary vascular conductance.
Collapse
Affiliation(s)
- Scott D Kirkton
- Department of Medicine, University of California, La Jolla, CA 92093-0623, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
West JB. The major limitation to exercise performance in COPD is inadequate energy supply to the respiratory and locomotor muscles vs. lower limb muscle dysfunction vs. dynamic hyperinflation. J Appl Physiol (1985) 2008; 105:762. [DOI: 10.1152/japplphysiol.zdg-8100.pcpcomm.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Sheel AW, MacNutt MJ. Control of ventilation in humans following intermittent hypoxia. Appl Physiol Nutr Metab 2008; 33:573-81. [DOI: 10.1139/h08-008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to chronic or intermittent hypoxia produces alterations in the ventilatory response to hypoxia. These adaptations can differ depending on the severity of the hypoxic stimulus, its duration, its pattern, and the presence or absence of other chemical stimuli. As such, there are significant differences between the responses to intermittent versus continuous hypoxia. Intermittent hypoxia (IH) has been shown to elicit significant changes in the peripheral chemoresponse, but the functional implications of these changes for resting and exercise ventilation are not clear. We summarize the impact of IH on resting chemosensitivity and discuss the use of IH to better understand ventilatory control during exercise. We also suggest future directions for this relatively young field, including potential clinical applications of IH research.
Collapse
Affiliation(s)
- Andrew William Sheel
- Health and Integrative Physiology Laboratory, School of Human Kinetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Meaghan Joelle MacNutt
- Health and Integrative Physiology Laboratory, School of Human Kinetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
23
|
Chiappa GR, Roseguini BT, Vieira PJ, Alves CN, Tavares A, Winkelmann ER, Ferlin EL, Stein R, Ribeiro JP. Inspiratory Muscle Training Improves Blood Flow to Resting and Exercising Limbs in Patients With Chronic Heart Failure. J Am Coll Cardiol 2008; 51:1663-71. [DOI: 10.1016/j.jacc.2007.12.045] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 12/12/2007] [Accepted: 12/17/2007] [Indexed: 11/25/2022]
|
24
|
Vogiatzis I, Zakynthinos S, Boushel R, Athanasopoulos D, Guenette JA, Wagner H, Roussos C, Wagner PD. The contribution of intrapulmonary shunts to the alveolar-to-arterial oxygen difference during exercise is very small. J Physiol 2008; 586:2381-91. [PMID: 18339692 DOI: 10.1113/jphysiol.2007.150128] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Exercise is well known to cause arterial PO2 to fall and the alveolar-arterial PO2 difference(Aa PO2 ) to increase. Until recently, the physiological basis for this was considered to be mostly ventilation/perfusion ((.)VA/(.)Q) inequality and alveolar-capillary diffusion limitation. Recently, arterio-venous shunting through dilated pulmonary blood vessels has been proposed to explain a significant part of the Aa PO2 during exercise. To test this hypothesis we determined venous admixture during 5 min of near-maximal, constant-load, exercise in hypoxia (in inspired O2 fraction, FIO2 , 0.13), normoxia (FIO2 , 0.21) and hyperoxia (FIO2 , 1.0) undertaken in balanced order on the same day in seven fit cyclists ((.)VO2max, 61.3 +/- 2.4 ml kg(-1) min(-1); mean +/- S.E.M.). Venous admixture reflects three causes of hypoxaemia combined: true shunt, diffusion limitation and ((.)VA/(.)Q) inequality. In hypoxia, venous admixture was 22.8 +/- 2.5% of the cardiac output; in normoxia it was 3.5 +/- 0.5%; in hyperoxia it was 0.5 +/- 0.2%. Since only true shunt accounts for venous admixture while breathing 100% O2, the present study suggests that shunt accounts for only a very small portion of the observed venous admixture, Aa PO2 and hypoxaemia during heavy exercise.
Collapse
Affiliation(s)
- Ioannis Vogiatzis
- Medical School of Athens University, Department of Critical Care and Pulmonary Services, Evangelismos Hospital, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Control of the Exercise Hyperpnea: The Unanswered Question. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 605:16-21. [DOI: 10.1007/978-0-387-73693-8_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
26
|
Querido JS, Godwin JB, Sheel AW. Intermittent hypoxia reduces cerebrovascular sensitivity to isocapnic hypoxia in humans. Respir Physiol Neurobiol 2007; 161:1-9. [PMID: 18206428 DOI: 10.1016/j.resp.2007.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 10/10/2007] [Accepted: 11/08/2007] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to determine the changes in human cerebrovascular function associated with intermittent poikilocapnic hypoxia (IH). Healthy men (n=8; 24+/-1 years) were exposed to IH for 10 days (12% O(2) for 5min followed by 5min of normoxia for 1h). During the hypoxic exposures, oxyhemoglobin saturation (SaO(2)) was 85% and the end-tidal partial pressure of CO(2) was permitted to fall as a result of hypoxic hyperventilation. Pre- and post-IH intervention subjects underwent a progressive isocapnic hypoxic test where ventilation, blood pressure, heart rate, and cerebral blood flow velocity (middle cerebral artery, transcranial Doppler) were measured to determine the ventilatory, cardiovascular and cerebrovascular sensitivities to isocapnic hypoxia. When compared to the pre-IH trial, cerebrovascular sensitivity to hypoxia significantly decreased (pre-IH=0.28+/-0.15; post-IH=0.16+/-0.14cms(-1)%SaO(2)(-1); P<0.05). No changes in ventilatory, blood pressure or heart rate sensitivity were observed (P>0.05). We have previously shown that the ability to oxygenate cerebral tissue measured using spatially resolved near infrared spectroscopy is significantly reduced following IH in healthy humans. Our collective findings indicate that intermittent hypoxia can blunt cerebrovascular regulation. Thus, it appears that intermittent hypoxia has direct cerebrovascular effects that can occur in the absence of changes to the ventilatory and neurovascular control systems.
Collapse
Affiliation(s)
- Jordan S Querido
- School of Human Kinetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
27
|
Wells GD, Diep T, Duffin J. The ventilatory response to sine wave variation in exercise loads and limb movement frequency. Respir Physiol Neurobiol 2007; 158:45-50. [PMID: 17466602 DOI: 10.1016/j.resp.2007.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
The current study's experiments tested the hypothesis that limb movement frequency is a significant determinant of exercise hyperpnoea. To this end, 19 healthy participants walked on a treadmill, where work was varied sinusiodally by alterations in either treadmill speed or grade. Measured responses were fitted with sine waves to determine their amplitudes and phase angles. Walking pace amplitude was greater during speed tests than grade tests, and phase lag relative to the treadmill smaller, as expected. Ventilation, carbon dioxide production, and oxygen uptake amplitudes were higher during speed tests than grade tests. Further, phase angle lags relative to the treadmill for these measures were shorter during speed tests than grade tests. We concluded that these findings demonstrate the presence of changes in breathing during exercise that can be attributed to changes in limb movement frequency.
Collapse
Affiliation(s)
- Gregory D Wells
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Canada.
| | | | | |
Collapse
|
28
|
Abstract
Below the lactate threshold ((thetaL)), ventilation (V(E))responds in close proportion to CO(2) output to regulate arterial partial pressure of CO(2) (PaCO2). While ventilatory control models have traditionally included proportional feedback (central and carotid chemosensory) and feedforward (central and peripheral neurogenic) elements, the mechanisms involved remain unclear. Regardless, putative control schemes have to accommodate the close dynamic 'coupling' between and V(E) and V(CO2). Above (thetaL), PaCO2 is driven down to constrain the fall of arterial pH by a compensatory hyperventilation, probably of carotid body origin. When V(E) requirements are high (as in highly fit endurance athletes), V(E) can attain limiting proportions. Not only does this impair gas exchange at these work rates, but there may be an associated high metabolic cost for generation of respiratory muscle power, which may be sufficient to divert a fraction of the cardiac output away from the muscles of locomotion to the respiratory muscles, further compromising exercise tolerance.
Collapse
Affiliation(s)
- Susan A Ward
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
29
|
Péronnet F, Meyer T, Aguilaniu B, Juneau CE, Faude O, Kindermann W. Bicarbonate infusion and pH clamp moderately reduce hyperventilation during ramp exercise in humans. J Appl Physiol (1985) 2006; 102:426-8. [PMID: 16959908 DOI: 10.1152/japplphysiol.00559.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To test the hypothesis that the decrease in plasma pH contributes to the hyperventilation observed in humans in response to exercise at high workloads, five healthy male subjects performed a ramp exercise [maximal workload: 352 W (SD 35)] in a control situation and when arterialized plasma pH was maintained at the resting level (pH clamp) by intravenous infusion of sodium bicarbonate [129 mmol (SD 23), beginning at 59% maximal workload (SD 5)]. Bicarbonate infusion did not modify O(2) consumption (Vo(2)) but significantly (P < 0.05) increased arterial Pco(2), plasma bicarbonate concentration, and respiratory exchange ratio (P < 0.05). At the three highest workloads, pulmonary ventilation (Ve) and Ve/Vo(2) were approximately 5-10% lower (P < 0.05) when bicarbonate was infused than in the control situation, and hyperventilation was reduced by 15-30%. These data suggest that the decrease in plasma pH is one of the factors that contribute to the hyperventilation observed at high workloads.
Collapse
Affiliation(s)
- François Péronnet
- Département de Kinésiologie, Université de Montréal, CP 6128, Centre Ville, Montréal, QC, Canada H3C3J7.
| | | | | | | | | | | |
Collapse
|