1
|
Cheng MY, Yu CL, An X, Wang L, Tsai CL, Qi F, Wang KP. Evaluating EEG neurofeedback in sport psychology: a systematic review of RCT studies for insights into mechanisms and performance improvement. Front Psychol 2024; 15:1331997. [PMID: 39156814 PMCID: PMC11328324 DOI: 10.3389/fpsyg.2024.1331997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/01/2024] [Indexed: 08/20/2024] Open
Abstract
Electroencephalographic Neurofeedback Training (EEG NFT) aims to improve sport performance by teaching athletes to control their mental states, leading to better cognitive, emotional, and physical outcomes. The psychomotor efficiency hypothesis suggests that optimizing brain function could enhance athletic ability, indicating the potential of EEG NFT. However, evidence for EEG-NFT's ability to alter critical brain activity patterns, such as sensorimotor rhythm and frontal midline theta-key for concentration and relaxation-is not fully established. Current research lacks standardized methods and comprehensive studies. This shortfall is due to inconsistent EEG target selection and insufficient focus on coherence in training. This review aims to provide empirical support for EEG target selection, conduct detailed control analyses, and examine the specificity of electrodes and frequencies to relation to the psychomotor efficiency hypothesis. Following the PRISMA method, 2,869 empirical studies were identified from PubMed, Science Direct, Web of Science, Embase, CNKI, and PsycINFO. Thirteen studies met the inclusion criteria: (i) proficient skill levels; (ii) use of EEG; (iii) neurofeedback training (NFT); (iv) motor performance metrics (reaction time, precision, dexterity, balance); (v) control group for NFT comparison; (vi) peer-reviewed English-language publication; and (vii) randomized controlled trial (RCT) design. Studies indicate that NFT can enhance sports performance, including improvements in shooting accuracy, golf putting, and overall motor skills, as supported by the psychomotor efficiency hypothesis. EEG NFT demonstrates potential in enhancing sports performance by optimizing performers' mental states and psychomotor efficiency. However, the current body of research is hampered by inconsistent methodologies and a lack of standardized EEG target selection. To strengthen the empirical evidence supporting EEG NFT, future studies need to focus on standardizing target selection, employing rigorous control analyses, and investigating underexplored EEG markers. These steps are vital to bolster the evidence for EEG NFT and enhance its effectiveness in boosting sport performance.
Collapse
Affiliation(s)
- Ming-Yang Cheng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Chien-Lin Yu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
| | - Xin An
- School of Psychology, Beijing Sport University, Beijing, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Chi-Lun Tsai
- Department of Sport Psychology, Faculty of Sport Science, Universität Leipzig, Leipzig, Germany
| | - Fengxue Qi
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| | - Kuo-Pin Wang
- Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
- Neurocognition and Action - Biomechanics Research Group, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Morrone JM, Pedlar CR. Selective cortical adaptations associated with neural efficiency in visuospatial tasks - the comparison of electroencephalographic profiles of expert and novice artists. Neuropsychologia 2024; 198:108854. [PMID: 38493826 DOI: 10.1016/j.neuropsychologia.2024.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Visuospatial cognition encapsulates an individual's ability to efficiently navigate and make sense of the multimodal cues from their surroundings, and therefore has been linked to expert performance across multiple domains, including sports, performing arts, and highly skilled tasks, such as drawing (Morrone and Minini, 2023). As neural efficiency posits a task-specific functional reorganization facilitated by long-term training, the present study employs a visuospatial construction task as a means of investigating the neurophysiological adaptations associated with expert visuospatial cognitive performance. Electroencephalogram (EEG) data acquisitions were used to evaluate the event-related changes (ER%) and statistical topographic maps of nine expert versus nine novice artists. The expert artists displayed overall higher global ER% compared to the novices within task-active intervals. Significant increases in relative ER% were found in the theta (t (10) = 3.528, p = 0.003, CI = [27.3,120.9]), lower-alpha (t (10) = 3.751, p = 0.002, CI = [28.2,110.5]), upper-alpha (t (10) = 3.829, p = 0.002, CI = [50.2,189.8]), and low beta (t (10) = 4.342, p < 0.001, CI = [37.0,114.9]) frequency bands, when comparing the experts to the novice participants. These results were particularly found in the frontal (t (14) = 2.014, p = 0.032, CI = [7.7,245.4]) and occipital (t (14) = 2.647, p = 0.010, CI = [45.0,429.7]) regions. Further, a significant decrease in alpha ER% from lower to upper activity (t (8) = 4.475, p = 0.001, CI = [21.0, 65.8]) was found across cortical regions in the novice group. Notably, greater deviation between lower and upper-alpha activity was found across scalp locations in the novice group, compared to the experts. Overall, the findings demonstrate potential local and global EEG-based indices of selective cortical adaptations within a task requiring a high degree of visuospatial cognition, although further work is needed to replicate these findings across other domains.
Collapse
Affiliation(s)
- Jazmin M Morrone
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK
| | - Charles R Pedlar
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK; Institute of Sport, Exercise and Health, Division of Surgery and Interventional Science, University College London, UK
| |
Collapse
|
3
|
Wang KP, Yu CL, Shen C, Schack T, Hung TM. A longitudinal study of the effect of visuomotor learning on functional brain connectivity. Psychophysiology 2024; 61:e14510. [PMID: 38159049 DOI: 10.1111/psyp.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 01/03/2024]
Abstract
Neural adaptation in the frontoparietal and motor cortex-sensorimotor circuits is crucial for acquiring visuomotor skills. However, the specific nature of highly dynamic neural connectivity in these circuits during the acquisition of visuomotor skills remains unclear. To achieve a more comprehensive understanding of the relationship between acquisition of visuomotor skills and neural connectivity, we used electroencephalographic coherence to capture highly dynamic nature of neural connectivity. We recruited 60 male novices who were randomly assigned to either the experimental group (EG) or the control group (CG). Participants in EG were asked to engage in repeated putting practice, but CG did not engage in golf practice. In addition, we analyzed the connectivity by using 8-13 Hz imaginary inter-site phase coherence in the frontoparietal networks (Fz-P3 and Fz-P4) and the motor cortex-sensorimotor networks (Cz-C3 and Cz-C4) during a golf putting task. To gain a deeper understanding of the dynamic nature of learning trajectories, we compared data at three time points: baseline (T1), 50% improvement from baseline (T2), and 100% improvement from baseline (T3). The results primarily focused on EG, an inverted U-shaped coherence curve was observed in the connectivity of the left motor cortex-sensorimotor circuit, whereas an increase in the connectivity of the right frontoparietal circuit from T2 to T3 was revealed. These results imply that the dynamics of cortico-cortical communication, particularly involving the left motor cortex-sensorimotor and frontal-left parietal circuits. In addition, our findings partially support Hikosaka et al.'s model and provide additional insight into the specific role of these circuits in visuomotor learning.
Collapse
Affiliation(s)
- Kuo-Pin Wang
- Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
- Neurocognition and Action, Biomechanics Research Group, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| | - Chien-Lin Yu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Cheng Shen
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Thomas Schack
- Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
- Neurocognition and Action, Biomechanics Research Group, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| | - Tsung-Min Hung
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
- Institute for Research Excellence in Learning Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
4
|
Morrone JM, Pedlar CR. EEG-based neurophysiological indices for expert psychomotor performance - a review. Brain Cogn 2024; 175:106132. [PMID: 38219415 DOI: 10.1016/j.bandc.2024.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/19/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
A primary objective of current human neuropsychological performance research is to define the physiological correlates of adaptive knowledge utilization, in order to support the enhanced execution of both simple and complex tasks. Within the present article, electroencephalography-based neurophysiological indices characterizing expert psychomotor performance, will be explored. As a means of characterizing fundamental processes underlying efficient psychometric performance, the neural efficiency model will be evaluated in terms of alpha-wave-based selective cortical processes. Cognitive and motor domains will initially be explored independently, which will act to encapsulate the task-related neuronal adaptive requirements for enhanced psychomotor performance associating with the neural efficiency model. Moderating variables impacting the practical application of such neuropsychological model, will also be investigated. As a result, the aim of this review is to provide insight into detectable task-related modulation involved in developed neurocognitive strategies which support heightened psychomotor performance, for the implementation within practical settings requiring a high degree of expert performance (such as sports or military operational settings).
Collapse
Affiliation(s)
- Jazmin M Morrone
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK.
| | - Charles R Pedlar
- Faculty of Sport, Allied Health, and Performance Science, St Mary's University, Twickenham, London, UK; Institute of Sport, Exercise and Health, Division of Surgery and Interventional Science, University College London, UK
| |
Collapse
|
5
|
Wang KP, Cheng MY, Elbanna H, Schack T. A new EEG neurofeedback training approach in sports: the effects function-specific instruction of Mu rhythm and visuomotor skill performance. Front Psychol 2023; 14:1273186. [PMID: 38187413 PMCID: PMC10771324 DOI: 10.3389/fpsyg.2023.1273186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Achieving optimal visuomotor performance in precision sports relies on maintaining an optimal psychological state during motor preparation. To uncover the optimal psychological state, extensive EEG studies have established a link between the Mu rhythm (8-13 Hz at Cz) and cognitive resource allocation during visuomotor tasks (i.e., golf or shooting). In addition, the new approach in EEG neurofeedback training (NFT), called the function-specific instruction (FSI) approach, for sports involves providing function-directed verbal instructions to assist individuals to control specific EEG parameters and align them with targeted brain activity features. While this approach was initially hypothesized to aid individuals in attaining a particular mental state during NFT, the impact of EEG-NFT involving Mu rhythm on visuomotor performance, especially when contrasting the traditional instruction (TI) approach with the FSI approach, underscores the necessity for additional exploration. Hence, the objective of this study is to investigate the impact of the FSI approach on modulating Mu rhythm through EEG-NFT in the context of visuomotor performance. Methods Thirty novice participants were recruited and divided into three groups: function-specific instruction (FSI, four females, six males; mean age = 27.00 ± 7.13), traditional instruction (TI, five females, five males; mean age = 27.00 ± 3.88), and sham control (SC, five females, five males; mean age = 27.80 ± 5.34). These groups engaged in a single-session EEG-NFT and performed golf putting tasks both before and after the EEG-NFT. Results The results showed that within the FSI group, single-session NFT with augmented Mu power led to a significant decrease in putting performance (p = 0.013). Furthermore, we noted a marginal significance indicating a slight increase in Mu power and a reduction in the subjective sensation of action control following EEG-NFT (p = 0.119). While there was a positive correlation between Mu power and mean radial error in golf putting performance (p = 0.043), it is important to interpret this relationship cautiously in the context of reduced accuracy in golf putting. Discussion The findings emphasize the necessity for extended investigation to attain a more profound comprehension of the nuanced significance of Mu power in visuomotor performance. The study highlights the potential effectiveness of the FSI approach in EEG-NFT and in enhancing visuomotor performance, but it also emphasizes the potential impact of skill level and attentional control, particularly in complex visuomotor tasks.
Collapse
Affiliation(s)
- Kuo-Pin Wang
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
- Neurocognition and Action - Biomechanics Research Group, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| | - Ming-Yang Cheng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Hatem Elbanna
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
- Neurocognition and Action - Biomechanics Research Group, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
- Department of Sports Psychology, Faculty of Physical Education, Mansoura University, Mansoura, Egypt
| | - Thomas Schack
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
- Neurocognition and Action - Biomechanics Research Group, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
6
|
Cheng MY, Wang KP, Doppelmayr M, Steinberg F, Hung TM, Lu C, Tan YY, Hatfield B. QEEG markers of superior shooting performance in skilled marksmen: An investigation of cortical activity on psychomotor efficiency hypothesis. PSYCHOLOGY OF SPORT AND EXERCISE 2023; 65:102320. [PMID: 37665825 DOI: 10.1016/j.psychsport.2022.102320] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 09/06/2023]
Abstract
For elite performers, psychomotor behavior's success or failure can be traced to differences in brain dynamics. The psychomotor efficiency hypothesis suggests refined cortical activity through 1) selective activation of task-relevant processes and 2) inhibition of non-essential processes. The use of electroencephalography (EEG) has been applied to investigate psychomotor performance's neural processes. The EEG markers that reflect an elevation of psychomotor efficiency include left temporal alpha (T3 alpha), frontal midline theta (Fm theta), sensorimotor rhythm (SMR), and the coherence between frontal and left temporal regions. However, the relationship between elite performers' task-relevant and non-essential neural processes is still not well understood. Therefore, this study aimed to explore how each task-relevant and inhibition of non-essential processes contribute to superior psychomotor behavior. Thirty-five highly skilled marksmen were recruited to perform 30 shots in the shooting task while the EEG was recorded. The marksmen were divided into two groups (superior & inferior) based on a median split of shooting performance. The superior group exhibited higher accuracy and precision, with a reduction in movement jerk. EEG measures revealed that the superior group exhibited higher SMR before the trigger pull than the inferior group. In addition, the superior group demonstrated reduced Fz-T3 coherence in their bull's eye shots than the missed shots. These results suggest that the superior group exhibited less effortful engagement of task-relevant processes and lower interference from non-essential cortical regions than the inferior group. The study's overall findings support the psychomotor efficiency hypothesis. When comparing highly skilled performers, the slight differences in brain dynamics ultimately contribute to the success or failure of psychomotor performance.
Collapse
Affiliation(s)
- Ming-Yang Cheng
- School of Psychology, Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, 100084, China
| | - Kuo-Pin Wang
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Inspiration 1, 33619, Bielefeld, Germany; Neurocognition and Action - Biomechanics Research Group, Faculty of Psychology and Sports Science, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Michael Doppelmayr
- Institute of Sports Science, Johannes Gutenberg University Mainz, Albert Schweitzerstr. 22, 55128, Mainz, Germany
| | - Fabian Steinberg
- School of Kinesiology, Louisiana State University, 112 Long Field house, Baton Rouge, LA, 70803, USA; Institute of Sports Science, Johannes Gutenberg University Mainz, Albert Schweitzerstr. 22, 55128, Mainz, Germany
| | - Tsung-Min Hung
- Department of Physical Education & Sport Sciences, National Taiwan Normal University, No.162, Sec. 1, Heping E. Rd., Da an Dist., Taipei, 106, Taiwan; Institute for Research Excellence in Learning Science, National Taiwan Normal University, No.162, Sec. 1, Heping E. Rd., Da an Dist., Taipei, 106, Taiwan
| | - Calvin Lu
- Department of Kinesiology, University of Maryland at College Park 4200 Valley Dr, College Park, MD, 20742, USA; University of Maryland. Department of Veterans Affairs, War Related Illness and Injury Study Center (WRIISC), Washington, DC, 20422, USA
| | - Ying Ying Tan
- Department of Kinesiology, University of Maryland at College Park 4200 Valley Dr, College Park, MD, 20742, USA; Neuroscience and Cognitive Sciences Program, University of Maryland at College Park 4090 Union Drive, College Park, MD, 20742, USA.
| | - Bradley Hatfield
- Department of Kinesiology, University of Maryland at College Park 4200 Valley Dr, College Park, MD, 20742, USA; Neuroscience and Cognitive Sciences Program, University of Maryland at College Park 4090 Union Drive, College Park, MD, 20742, USA
| |
Collapse
|
7
|
Cervetto S, Birba A, Pérez G, Amoruso L, García AM. Body into Narrative: Behavioral and Neurophysiological Signatures of Action Text Processing After Ecological Motor Training. Neuroscience 2022; 507:52-63. [PMID: 36368604 DOI: 10.1016/j.neuroscience.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Embodied cognition research indicates that sensorimotor training can influence action concept processing. Yet, most studies employ isolated (pseudo)randomized stimuli and require repetitive single-effector responses, thus lacking ecological validity. Moreover, the neural signatures of these effects remain poorly understood. Here, we examined whether immersive bodily training can modulate behavioral and functional connectivity correlates of action-verb processing in naturalistic narratives. The study involved three phases. First, in the Pre-training phase, 32 healthy persons listened to an action text (rich in movement descriptions) and a non-action text (focused on its characters' perceptual and mental processes), completed comprehension questionnaires, and underwent resting-state electroencephalogram (EEG) recordings. Second, in the four-day Training phase, half the participants completed an exergaming intervention (eliciting full-body movements for 60 min a day) while the remaining half played static videogames (requiring no bodily engagement other than button presses). Finally, in the Post-training phase, all participants repeated the Pre-training protocol with different action and non-action texts and a new EEG session. We found that exergaming selectively reduced action-verb outcomes and fronto-posterior functional connectivity in the motor-sensitive ∼ 10-20 Hz range, both patterns being positively correlated. Conversely, static videogame playing yielded no specific effect on any linguistic category and did not modulate functional connectivity. Together, these findings suggest that action-verb processing and key neural correlates can be focally influenced by full-body motor training in a highly ecological setting. Our study illuminates the role of situated experience and sensorimotor circuits in action-concept processing, addressing calls for naturalistic insights on language embodiment.
Collapse
Affiliation(s)
- Sabrina Cervetto
- Departamento de Educación Física y Salud, Instituto Superior de Educación Física, Universidad de la República, Uruguay; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Gonzalo Pérez
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Lucía Amoruso
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Basque Center on Cognition, Brain and Language (BCBL), San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Adolfo M García
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Global Brain Health Institute, University of California San Francisco, CA, United States; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Wang KP, Frank C, Hung TM, Schack T. Neurofeedback training: Decreases in Mu rhythm lead to improved motor performance in complex visuomotor skills. CURRENT PSYCHOLOGY 2022; 42:1-12. [PMID: 35600260 PMCID: PMC9115543 DOI: 10.1007/s12144-022-03190-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
The physiological function of the Mu rhythm (8-13 Hz in the central region) is still unclear, particularly its role in visuomotor performance in sports (shooting vs. golf putting), as both the complexity of the motor skills (i.e., simple vs. complex visuomotor skills) and the skill level (e.g., novices vs. experts or low-skilled vs. highly skilled) may modulate Mu rhythm. To gain a broader understanding of the association between Mu rhythm and visuomotor skill performance, a study design that considers both a control moderator (the difference in skill level) and the ability to manipulate Mu rhythm (i.e., either increase or decrease Mu rhythm) is required. To achieve this, we recruited 30 novice golfers who were randomly assigned to either the increased Mu rhythm group (IMG), decreased Mu rhythm group (DMG), or sham group (SG) and used electroencephalographic-neurofeedback training (EEG-NFT) to manipulate Mu rhythm during a golf putting task (complex visuomotor skill). The aim was to determine whether the complexity of the motor skill was a potential moderator of Mu rhythm. We mainly found that Mu power was significantly decreased in the DMG following EEG-NFT, which lead to increased motor control and improved performance. We suggest that (1) the complexity of the motor skill, rather than the difference in skill level, may be a potential moderator of Mu rhythm and visuomotor performance, as our results were not consistent with a previous study that reported that increased Mu rhythm improved shooting performance (a simple visuomotor task) in novices.
Collapse
Affiliation(s)
- Kuo-Pin Wang
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
- Neurocognition and Action - Biomechanics Research Group, Faculty of Psychology and Sports Science, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Cornelia Frank
- Sports and Movement Group, Department of Sports Science, School of Educational and Cultural Studies, Osnabrück University, Jahnstraße 75, 49080 Osnabrück, Germany
| | - Tsung-Min Hung
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, No. 162, Section 1, Heping East Road, Da-an District, Taipei, 106 Republic of China (Taiwan)
- Institute for Research Excellence in Learning Science, National Taiwan Normal University, No. 162, Section 1, Heping East Road, Da-an District, Taipei, 106 Republic of China (Taiwan)
| | - Thomas Schack
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
- Neurocognition and Action - Biomechanics Research Group, Faculty of Psychology and Sports Science, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
9
|
Using EEG to study sensorimotor adaptation. Neurosci Biobehav Rev 2022; 134:104520. [PMID: 35016897 DOI: 10.1016/j.neubiorev.2021.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/10/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022]
Abstract
Sensorimotor adaptation, or the capacity to flexibly adapt movements to changes in the body or the environment, is crucial to our ability to move efficiently in a dynamic world. The field of sensorimotor adaptation is replete with rigorous behavioural and computational methods, which support strong conceptual frameworks. An increasing number of studies have combined these methods with electroencephalography (EEG) to unveil insights into the neural mechanisms of adaptation. We review these studies: discussing EEG markers of adaptation in the frequency and the temporal domain, EEG predictors for successful adaptation and how EEG can be used to unmask latent processes resulting from adaptation, such as the modulation of spatial attention. With its high temporal resolution, EEG can be further exploited to deepen our understanding of sensorimotor adaptation.
Collapse
|
10
|
Chang M, Büchel D, Reinecke K, Lehmann T, Baumeister J. Ecological validity in exercise neuroscience research: A systematic investigation. Eur J Neurosci 2022; 55:487-509. [PMID: 34997653 DOI: 10.1111/ejn.15595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 11/28/2022]
Abstract
The contribution of cortical processes to adaptive motor behaviour is of great interest in the field of exercise neuroscience. Next to established criteria of objectivity, reliability and validity, ecological validity refers to the concerns of whether measurements and behaviour in research settings are representative of the real world. Because exercise neuroscience investigations using mobile electroencephalography are oftentimes conducted in laboratory settings under controlled environments, methodological approaches may interfere with the idea of ecological validity. This review utilizes an original ecological validity tool to assess the degree of ecological validity in current exercise neuroscience research. A systematic literature search was conducted to identify articles investigating cortical dynamics during goal-directed sports movement. To assess ecological validity, five elements (environment, stimulus, response, body and mind) were assessed on a continuum of artificiality-naturality and simplicity-complexity. Forty-seven studies were included in the present review. Results indicate lowest average ratings for the element of environment. The elements stimulus, body and mind had mediocre ratings, and the element of response had the highest overall ratings. In terms of the type of sport, studies that assessed closed-skill indoor sports had the highest ratings, whereas closed-skill outdoor sports had the lowest overall rating. Our findings identify specific elements that are lacking in ecological validity and areas of improvement in current exercise neuroscience literature. Future studies may potentially increase ecological validity by moving from reductionist, artificial environments towards complex, natural environments and incorporating real-world sport elements such as adaptive responses and competition.
Collapse
Affiliation(s)
- Melissa Chang
- Exercise Science & Neuroscience Unit, Department of Exercise & Health, Paderborn University, Paderborn, Germany
| | - Daniel Büchel
- Exercise Science & Neuroscience Unit, Department of Exercise & Health, Paderborn University, Paderborn, Germany
| | - Kirsten Reinecke
- Institute of Sports Medicine, Department of Exercise & Health, Paderborn University, Paderborn, Germany
| | - Tim Lehmann
- Exercise Science & Neuroscience Unit, Department of Exercise & Health, Paderborn University, Paderborn, Germany
| | - Jochen Baumeister
- Exercise Science & Neuroscience Unit, Department of Exercise & Health, Paderborn University, Paderborn, Germany
| |
Collapse
|
11
|
Abstract
This research project aimed to develop and validate a rowing-specific reinvestment scale. In Study 1, a 24-item questionnaire was developed and the content validity was assessed using experts (N = 7) and pilot-tested in rowers (N = 24). Next, rowers (N = 282) completed the questionnaire with the remaining items, and exploratory factor analysis (EFA) was conducted. This further reduced the number of items and revealed two factors, rowing specific conscious motor processing (RS-CMP) and movement self-consciousness (RS-MSC). In Study 2, rowers (N = 270) completed the scale that was evaluated using confirmatory factor analysis (CFA). Moreover, the construct validity of the scale was investigated by asking them to complete measures of movement-specific reinvestment, perceived performance, self-consciousness, and state anxiety. Actual performance was also determined based on their race finishing position. Study 1 EFA resulted in a 2-factor model with six items assessing RS-CMP and six items assessing RS-MSC. Study 2 supported the factor structure of scale; CFA indicated an acceptable model fit with good internal consistency. Content validity was also supported, with evidence of concurrent, convergent, discriminant, and predictive validity. In conclusion, these studies provided good initial evidence for the validity and reliability of the RSRS.
Collapse
Affiliation(s)
- Katherine V Sparks
- School of Sport & Exercise Science, University of Birmingham, Birmingham, UK
| | - Maria Kavussanu
- School of Sport & Exercise Science, University of Birmingham, Birmingham, UK
| | - Rich S W Masters
- Te Huataki Waiora Faculty of Health, Sport and Human Performance, University of Waikato, Hamilton, New Zealand
| | - Christopher Ring
- School of Sport & Exercise Science, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Luan M, Mirifar A. The Effect of Attentional Direction on Sub-Stages of Preparing for Motor Skill Execution Across Practice. Percept Mot Skills 2021; 128:1292-1309. [PMID: 33928825 PMCID: PMC8107505 DOI: 10.1177/00315125211009026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
While several empirical studies using dual-task methodology have examined the effect of attentional direction on motor skill execution; few have studied the effect of attentional direction on just the preparation phase of motor practice. In this study, via a keying sequence paradigm, we explored processing stages of preparation for a motor skill and disentangled the effect of attentional direction on various stages across practice. First, participants learned two keying sequences (three versus six keys). Then, they practiced the keying sequences in response to corresponding sequence labels under two block-wise alternating dual-task conditions. To dissect the preparation phase into sequence selection and sequence initiation stages, participants received varying amounts of preparation time (0, 300, 900 ms) before a starting signal instructed them to begin sequence execution. In each trial, a tone was paired with one of the three or six keypresses, and participants indicated either the keypress with which the tone was presented (skill-focused dual task) or the tone's pitch (extraneous dual task) after the sequence execution. We found that attentional direction affected only the sequence selection stage, not the sequence initiation stage. During early practice, compared to drawing attention away from execution, directing attention toward execution led to faster sequence selection. This advantage decreased with practice and vanished during late blocks of trials. Moreover, for the execution phase, relative to directing attention toward execution, drawing attention away from execution led to better performance of keying sequence execution across practice. Thus, attentional direction alone does not fully explain the difference between performance patterns at different skill levels in the dual-task literature; rather, types of motor skills and dual task difficulty levels may also drive performance differences.
Collapse
Affiliation(s)
- Mengkai Luan
- Department of Sport and Health Sciences, Technische Universität München, Germany
| | - Arash Mirifar
- Department of Sport and Health Sciences, Technische Universität München, Germany
| |
Collapse
|
13
|
Slutter MWJ, Thammasan N, Poel M. Exploring the Brain Activity Related to Missing Penalty Kicks: An fNIRS Study. FRONTIERS IN COMPUTER SCIENCE 2021. [DOI: 10.3389/fcomp.2021.661466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
At vital moments in professional soccer matches, penalties were often missed. Psychological factors, such as anxiety and pressure, are among the critical causes of the mistakes, commonly known as choking under pressure. Nevertheless, the factors have not been fully explored. In this study, we used functional near-infrared spectroscopy (fNIRS) to investigate the influence of the brain on this process. An in-situ study was set-up (N = 22), in which each participant took 15 penalties under three different pressure conditions: without a goalkeeper, with an amiable goalkeeper, and with a competitive goalkeeper. Both experienced and inexperienced soccer players were recruited, and the brain activation was compared across groups. Besides, fNIRS activation was compared between sessions that participants felt anxious against sessions without anxiety report, and between penalty-scoring and -missing sessions. The results show that the task-relevant brain region, the motor cortex, was more activated when players were not experiencing performance anxiety. The activation of task-irrelevant areas was shown to be related to players experiencing anxiety and missing penalties, especially the prefrontal cortex (PFC). More particularly, an overall higher activation of the PFC and an increase of PFC lateral asymmetry were related to anxious players and missed penalties, which can be caused by players' worries about the consequences of scoring or missing the penalty kicks. When experienced players were feeling anxious, their left temporal cortex activation increased, which could be an indication that experienced overthink the situation and neglect their automated skills. Besides, the left temporal cortex activation is higher when inexperienced players succeeded to score a penalty. Overall, the results of this study are in line with the neural efficiency theory and demonstrate the feasibility and ecological validity to detect neurological clues relevant to anxiety and performance from fNIRS recordings in the field.
Collapse
|
14
|
Khoshnoud S, Alvarez Igarzábal F, Wittmann M. Peripheral-physiological and neural correlates of the flow experience while playing video games: a comprehensive review. PeerJ 2020; 8:e10520. [PMID: 33384898 PMCID: PMC7751419 DOI: 10.7717/peerj.10520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/17/2020] [Indexed: 12/30/2022] Open
Abstract
The flow state is defined by intense involvement in an activity with high degrees of concentration and focused attention accompanied by a sense of pleasure. Video games are effective tools for inducing flow, and keeping players in this state is considered to be one of the central goals of game design. Many studies have focused on the underlying physiological and neural mechanisms of flow. Results are inconsistent when describing a unified mechanism underlying this mental state. This paper provides a comprehensive review of the physiological and neural correlates of flow and explains the relationship between the reported physiological and neural markers of the flow experience. Despite the heterogeneous results, it seems possible to establish associations between reported markers and the cognitive and experiential aspects of flow, particularly regarding arousal, attention control, reward processing, automaticity, and self-referential processing.
Collapse
Affiliation(s)
- Shiva Khoshnoud
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
| | | | - Marc Wittmann
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
| |
Collapse
|
15
|
Parr JVV, Gallicchio G, Harrison NR, Johnen AK, Wood G. All talk? Challenging the use of left-temporal EEG alpha oscillations as valid measures of verbal processing and conscious motor control. Biol Psychol 2020; 155:107943. [PMID: 32781009 DOI: 10.1016/j.biopsycho.2020.107943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/19/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
This study tested the validity of EEG left-temporal alpha power and upper-alpha T7-Fz connectivity as indices of verbal activity and conscious motor control. Participants (n = 20) reached for, and transported, a jar under three conditions: a control condition and two self-talk conditions aimed at eliciting either task-unrelated verbal processing or task-related conscious control, while EEG and hand kinematics were recorded. Compared to the control condition, both self-talk conditions increased self-reported verbal processing, but only the task-related self-talk condition increased left-temporal activity (i.e., alpha power decreased). However, as cortical activity increased across the entire scalp topography, conscious control likely elicits a multitude of processes that may not be explained by left-temporal activity or verbal processing alone, but by a widespread decrease in neural efficiency. No significant effects for T7-Fz connectivity were detected. Results suggest that left-temporal EEG alpha oscillations are unlikely to uniquely reflect verbal processing during conscious motor control.
Collapse
Affiliation(s)
- Johnny V V Parr
- Research Centre for Musculoskeletal Science and Sports Medicine, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK.
| | - Germano Gallicchio
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Neil R Harrison
- Department of Psychology, Liverpool Hope University, Liverpool, UK
| | | | - Greg Wood
- Research Centre for Musculoskeletal Science and Sports Medicine, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
16
|
Mikicin M, Mróz A, Karczewska-Lindinger M, Malinowska K, Mastalerz A, Kowalczyk M. Effect of the Neurofeedback-EEG Training During Physical Exercise on the Range of Mental Work Performance and Individual Physiological Parameters in Swimmers. Appl Psychophysiol Biofeedback 2020; 45:49-55. [PMID: 32232604 PMCID: PMC7250807 DOI: 10.1007/s10484-020-09456-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of the study was to demonstrate the effects of the Neurofeedback-EEG training during physical exercise on the improvements in mental work performance and physiological parameters. The study examined seven swimmers based on the following anthropometric measurements: body height, body mass and body composition. The Kraepelin's work curve test, EEG and EMG during physical exercise were also performed. The athletes followed 20 Neurofeedback-EEG training sessions on the swimming ergometer for 4 months. Most mean indices of partial measures of the work curve were significantly modified (p < 0.05) following the Neurofeedback-EEG training. Mean level of maximal oxygen uptake in study participants was over 55 ml/kg/min, with statistically significant differences documented between the first and the second measurements. No significant differences were found in the fatigue rate between the measurements 1 and 2. The improved mental work performance following the Neurofeedback-EEG training facilitates optimization of psychomotor activities.
Collapse
Affiliation(s)
- Mirosław Mikicin
- Józef Piłsudski University of Physical Education, Marymoncka 34, 00-968, Warsaw, Poland.
| | - Anna Mróz
- Józef Piłsudski University of Physical Education, Marymoncka 34, 00-968, Warsaw, Poland
| | - Magdalena Karczewska-Lindinger
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Center for Health and Performance, Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Karolina Malinowska
- Józef Piłsudski University of Physical Education, Marymoncka 34, 00-968, Warsaw, Poland
| | - Andrzej Mastalerz
- Józef Piłsudski University of Physical Education, Marymoncka 34, 00-968, Warsaw, Poland
| | - Marek Kowalczyk
- Józef Piłsudski University of Physical Education, Marymoncka 34, 00-968, Warsaw, Poland
| |
Collapse
|
17
|
Shuggi IM, Oh H, Wu H, Ayoub MJ, Moreno A, Shaw EP, Shewokis PA, Gentili RJ. Motor Performance, Mental Workload and Self-Efficacy Dynamics during Learning of Reaching Movements throughout Multiple Practice Sessions. Neuroscience 2019; 423:232-248. [PMID: 31325564 DOI: 10.1016/j.neuroscience.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
The human capability to learn new motor skills depends on the efficient engagement of cognitive-motor resources, as reflected by mental workload, and psychological mechanisms (e.g., self-efficacy). While numerous investigations have examined the relationship between motor behavior and mental workload or self-efficacy in a performance context, a fairly limited effort focused on the combined examination of these notions during learning. Thus, this study aimed to examine their concomitant dynamics during the learning of a novel reaching skill practiced throughout multiple sessions. Individuals had to learn to control a virtual robotic arm via a human-machine interface by using limited head motion throughout eight practice sessions while motor performance, mental workload, and self-efficacy were assessed. The results revealed that as individuals learned to control the robotic arm, performance improved at the fastest rate, followed by a more gradual reduction of mental workload and finally an increase in self-efficacy. These results suggest that once the performance improved, less cognitive-motor resources were recruited, leading to an attenuated mental workload. Considering that attention is a primary cognitive resource driving mental workload, it is suggested that during early learning, attentional resources are primarily allocated to address task demands and not enough are available to assess self-efficacy. However, as the performance becomes more automatic, a lower level of mental workload is attained driven by decreased recruitment of attentional resources. These available resources allow for a reliable assessment of self-efficacy resulting in a subsequent observable change. These results are also discussed in terms of the application to the training and design of assistive technologies.
Collapse
Affiliation(s)
- Isabelle M Shuggi
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Hyuk Oh
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Helena Wu
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Maria J Ayoub
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Arianna Moreno
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Emma P Shaw
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Patricia A Shewokis
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA; Nutrition Sciences Department, College of Nursing and Health Professions, Drexel University, Philadelphia, PA, USA
| | - Rodolphe J Gentili
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA; Maryland Robotics Center, University of Maryland, College Park, MD, USA.
| |
Collapse
|
18
|
Jaquess KJ, Lu Y, Iso-Ahola SE, Zhang J, Gentili RJ, Hatfield BD. Self-Controlled Practice to Achieve Neuro-Cognitive Engagement: Underlying Brain Processes to Enhance Cognitive-Motor Learning and Performance. J Mot Behav 2019; 52:544-557. [PMID: 31610750 DOI: 10.1080/00222895.2019.1651245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
While self-controlled practice has been shown to be an effective practice methodology, the neuro-cognitive correlates of its effectiveness are unclear. We investigated whether learners participating in self-controlled practice exhibit increased neuro-cognitive engagement compared to externally controlled practice. Two groups (self-controlled and yoked) of 16 participants practiced and performed a golf putting task over 3 days. Working memory engagement, central executive activity, and cortical activation were assessed via electroencephalography as indicators of neuro-cognitive engagement. The self-controlled group exhibited more consistent working memory engagement, and greater central executive activity, compared to the yoked group during practice. Relationships were also observed between neuro-cognitive engagement during self-controlled practice and performance improvement, indicating that self-controlled practice uniquely benefitted from increased neuro-cognitive engagement.
Collapse
Affiliation(s)
- Kyle J Jaquess
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Yingzhi Lu
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA.,School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Seppo E Iso-Ahola
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Jing Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD, USA
| | - Rodolphe J Gentili
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA.,Maryland Robotics Center, University of Maryland, College Park, MD, USA
| | - Bradley D Hatfield
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| |
Collapse
|
19
|
Parr JVV, Vine SJ, Wilson MR, Harrison NR, Wood G. Visual attention, EEG alpha power and T7-Fz connectivity are implicated in prosthetic hand control and can be optimized through gaze training. J Neuroeng Rehabil 2019; 16:52. [PMID: 31029174 PMCID: PMC6487034 DOI: 10.1186/s12984-019-0524-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/16/2019] [Indexed: 01/29/2023] Open
Abstract
Background Prosthetic hands impose a high cognitive burden on the user that often results in fatigue, frustration and prosthesis rejection. However, efforts to directly measure this burden are sparse and little is known about the mechanisms behind it. There is also a lack of evidence-based training interventions designed to improve prosthesis hand control and reduce the mental effort required to use them. In two experiments, we provide the first direct evaluation of this cognitive burden using measurements of EEG and eye-tracking (Experiment 1), and then explore how a novel visuomotor intervention (gaze training; GT) might alleviate it (Experiment 2). Methods In Experiment 1, able-bodied participants (n = 20) lifted and moved a jar, first using their anatomical hand and then using a myoelectric prosthetic hand simulator. In experiment 2, a GT group (n = 12) and a movement training (MT) group (n = 12) trained with the prosthetic hand simulator over three one hour sessions in a picking up coins task, before returning for retention, delayed retention and transfer tests. The GT group received instruction regarding how to use their eyes effectively, while the MT group received movement-related instruction typical in rehabilitation. Results Experiment 1 revealed that when using the prosthetic hand, participants performed worse, exhibited spatial and temporal disruptions to visual attention, and exhibited a global decrease in EEG alpha power (8-12 Hz), suggesting increased cognitive effort. Experiment 2 showed that GT was the more effective method for expediting prosthesis learning, optimising visual attention, and lowering conscious control – as indexed by reduced T7-Fz connectivity. Whilst the MT group improved performance, they did not reduce hand-focused visual attention and showed increased conscious movement control. The superior benefits of GT transferred to a more complex tea-making task. Conclusions These experiments quantify the visual and cortical mechanisms relating to the cognitive burden experienced during prosthetic hand control. They also evidence the efficacy of a GT intervention that alleviated this burden and promoted better learning and transfer, compared to typical rehabilitation instructions. These findings have theoretical and practical implications for prosthesis rehabilitation, the development of emerging prosthesis technologies and for the general understanding of human-tool interactions. Electronic supplementary material The online version of this article (10.1186/s12984-019-0524-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J V V Parr
- School of Health Sciences, Liverpool Hope University, Liverpool, UK
| | - S J Vine
- College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - M R Wilson
- College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - N R Harrison
- Department of Psychology, Liverpool Hope University, Liverpool, UK
| | - G Wood
- Research Centre for Musculoskeletal Science and Sports Medicine Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
20
|
Qiu F, Pi Y, Liu K, Zhu H, Li X, Zhang J, Wu Y. Neural efficiency in basketball players is associated with bidirectional reductions in cortical activation and deactivation during multiple-object tracking task performance. Biol Psychol 2019; 144:28-36. [PMID: 30902565 DOI: 10.1016/j.biopsycho.2019.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/15/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
Although sports expertise has been shown to have transferable cognitive benefits, it is unclear how motor expertise influences brain activity during perceptual-cognitive tasks. The aim of the present study was to investigate whether improved perceptual-cognitive behavioral task performance in individuals with well-developed motor skills is associated with characteristic cortical activation and deactivation. Blood oxygenation-level dependent (BOLD) functional MRI (fMRI) was conducted in 23 athletes and 24 age- and education-matched non-athletes performing a multiple object tracking (MOT) task with graded levels of attentional load (two, three, or four targets). Compared to non-athletes, athletes had better performance in the three- and four-target conditions of the MOT task. Less activation of the left frontal eye field (FEF) and bilateral anterior intraparietal sulcus (aIPS) and less deactivation in the bilateral medial superior frontal gyrus (mSFG) were observed in athletes compared to non-athletes. Importantly, as the attentional load was increased, differences in deactivation of the left middle temporal gyrus (MTG) between athletes and non-athletes became larger. Behavioral performance in the high attentional load condition correlated negatively with activation in the left FEF and right aIPS, and correlated positively with that in the mSFG and left MTG. Better performance in elite athletes may transfer from the sport domain to a general cognitive domain owing to higher neural efficiency, which may be represented by a bidirectional reduction phenomenon encompassing both reduced activation of areas associated with task execution and reduced deactivation of areas associated with irrelevant information processing.
Collapse
Affiliation(s)
- Fanghui Qiu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yanling Pi
- Shanghai Punan Hospital of Pudong New District, Shanghai, China
| | - Ke Liu
- Shanghai Punan Hospital of Pudong New District, Shanghai, China
| | - Hua Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xuepei Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jian Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yin Wu
- School of Economics and Management, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
21
|
Gallicchio G, Ring C. Don't look, don't think, just do it! Toward an understanding of alpha gating in a discrete aiming task. Psychophysiology 2019; 56:e13298. [PMID: 30362125 PMCID: PMC6849619 DOI: 10.1111/psyp.13298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 12/31/2022]
Abstract
Prior to and during movement, oscillatory alpha activity gates cognitive resources toward motor areas of the cortex by inhibiting neuronal excitability in nonmotor areas. The present study examined the effect of manipulating target variability on this alpha gating phenomenon. Using a baseline-test-retention design, we measured EEG alpha power, performance accuracy, and task difficulty in 32 recreational golfers as they putted golf balls (20 per target) to one central target (baseline, retention) and four targets of different directions and extents (manipulation). For participants in the random group (n = 16), target location varied with each repetition in a random fashion, whereas for participants in the blocked group (n = 16), it was kept constant within blocks. Regional analyses revealed a focal pattern of lower central alpha and higher occipital and temporal alpha. This topography was specific to preparation for movement and was associated with performance: smallest performance errors were preceded by decreased central combined with increased occipital alpha. The random group performed worse than the blocked group and found the task more difficult. Importantly, left temporal alpha prior to movement onset was lower for the random group than the blocked group. No group differences were found at baseline or retention. Our study proved that alpha gating can be altered by manipulating intertrial variability and thereby demonstrated the utility of the alpha gating model. Our findings underscore the importance of inhibiting occipital and left temporal areas when performing movements and provide further evidence that alpha gating reflects neural efficiency during motor tasks.
Collapse
Affiliation(s)
- Germano Gallicchio
- School of Sport, Exercise & Rehabilitation SciencesUniversity of BirminghamEdgbastonUK
| | - Christopher Ring
- School of Sport, Exercise & Rehabilitation SciencesUniversity of BirminghamEdgbastonUK
| |
Collapse
|
22
|
Blanco AD, Ramirez R. Evaluation of a Sound Quality Visual Feedback System for Bow Learning Technique in Violin Beginners: An EEG Study. Front Psychol 2019; 10:165. [PMID: 30809163 PMCID: PMC6379259 DOI: 10.3389/fpsyg.2019.00165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/17/2019] [Indexed: 11/13/2022] Open
Abstract
Current music technologies can assist in the process of learning to play a musical instrument and provide objective measures for evaluating the improvement of music students in concrete music tasks. In this paper, we investigated the effects of a sound quality visual feedback system (SQVFS) in violin learning. In particular, we studied the EEG activity of a group of participants with no previous violin playing experience while they learned to produce a stable sound (regarding pitch, dynamics, and timbre) in order to find motor learning biomarkers in a music task. Eighteen subjects with no prior experience in violin playing were divided into two groups: participants in the first group (experimental group, N = 9) practiced with instructional videos and offline feedback from the SQVFS provided in alternation with their performance, while participants in a second group (control group, N = 9) practiced with the instructional videos only. A third group of violin experts (players with more than 6 years of experience) performed the same task for comparative purposes (N = 7). All participants were asked to perform 20 trials (4 blocks of 5 trials) consisting of a violin bowing exercise while their EEG activity and their produced sound was recorded. Significant sound quality improvements along the session were found in all participants with the exception of participants in the expert group. In addition, participants in the experimental group showed increased interest in the learning process and significant improvement after the second block not present in the control group. A significant correlation between the levels of frontal gamma band power and the sound improvement along the task was found in both the experimental and control group. This result is consistent with the temporal binding model which associates gamma band power with the role of integrating (binding) information processed in distributed cortical areas. Task complexity demands more cognitive resources, more binding and thus, gamma band power enhancement, which may be reduced as the demanded task begins to be automated as it is likely to be the case in both beginners groups.
Collapse
Affiliation(s)
- Angel David Blanco
- Music and Machine Learning Lab, Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
23
|
Rifle Shooting Performance Correlates with Electroencephalogram Beta Rhythm Network Activity during Aiming. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2018; 2018:4097561. [PMID: 30534150 PMCID: PMC6252210 DOI: 10.1155/2018/4097561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/03/2018] [Accepted: 09/16/2018] [Indexed: 12/17/2022]
Abstract
To study the relationship between brain network and shooting performance during shooting aiming, we collected electroencephalogram (EEG) signals from 40 skilled shooters during rifle shooting and calculated the EEG functional coupling, functional brain network topology, and correlation coefficients between these EEG characteristics and shooting performance. Our result shows a significant negative correlation between shooting performance and functional coupling between the prefrontal, frontal, and temporal regions of the right brain in the Beta1 and Beta2 frequency bands. Global and local brain network topology characteristics were also significantly correlated with shooting performance. These findings indicate that under these experimental conditions, shooters with higher shooting performances exhibit lower functional coupling, higher global, and lower local information integration efficiency during shooting. These conclusions may provide a theoretical basis of the EEG brain network for studying the mental status of shooters while shooting.
Collapse
|
24
|
Jaquess KJ, Lo LC, Oh H, Lu C, Ginsberg A, Tan YY, Lohse KR, Miller MW, Hatfield BD, Gentili RJ. Changes in Mental Workload and Motor Performance Throughout Multiple Practice Sessions Under Various Levels of Task Difficulty. Neuroscience 2018; 393:305-318. [PMID: 30266685 DOI: 10.1016/j.neuroscience.2018.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 11/28/2022]
Abstract
The allocation of mental workload is critical to maintain cognitive-motor performance under various demands. While mental workload has been investigated during performance, limited efforts have examined it during cognitive-motor learning, while none have concurrently manipulated task difficulty. It is reasonable to surmise that the difficulty level at which a skill is practiced would impact the rate of skill acquisition and also the rate at which mental workload is reduced during learning (relatively slowed for challenging compared to easier tasks). This study aimed to monitor mental workload by assessing cortical dynamics during a task practiced under two difficulty levels over four days while perceived task demand, performance, and electroencephalography (EEG) were collected. As expected, self-reported mental workload was reduced, greater working memory engagement via EEG theta synchrony was observed, and reduced cortical activation, as indexed by progressive EEG alpha synchrony was detected during practice. Task difficulty was positively related to the magnitude of alpha desynchrony and accompanied by elevations in the theta-alpha ratio. Counter to expectation, the absence of an interaction between task difficulty and practice days for both theta and alpha power indicates that the refinement of mental processes throughout learning occurred at a comparable rate for both levels of difficulty. Thus, the assessment of brain dynamics was sensitive to the rate of change of cognitive workload with practice, but not to the degree of difficulty. Future work should consider a broader range of task demands and additional measures of brain processes to further assess this phenomenon.
Collapse
Affiliation(s)
- Kyle J Jaquess
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Li-Chuan Lo
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Hyuk Oh
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Calvin Lu
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Andrew Ginsberg
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Ying Ying Tan
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA; Defense Science and Technology Agency, Singapore
| | - Keith R Lohse
- Department of Health, Kinesiology, and Recreation, University of Utah, Salt Lake City, UT, USA
| | | | - Bradley D Hatfield
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Rodolphe J Gentili
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA; Maryland Robotics Center, University of Maryland, College Park, MD, USA.
| |
Collapse
|
25
|
Bellomo E, Cooke A, Hardy J. Chunking, Conscious Processing, and EEG During Sequence Acquisition and Performance Pressure: A Comprehensive Test of Reinvestment Theory. JOURNAL OF SPORT & EXERCISE PSYCHOLOGY 2018; 40:135-145. [PMID: 30008239 DOI: 10.1123/jsep.2017-0308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study was designed to test the theorized link between reinvestment, motor chunks, and conscious processing, to provide a thorough examination of reinvestment theory. The authors measured electroencephalographic power and connectivity alongside self-reported conscious processing and behavioral indices of chunking in a 2 (group) × 5 (block) mixed-model design. A total of 55 individuals acquired a motor sequence (blocks A1, A2, A3, and A4) by relatively explicit (errorful) or implicit (errorless) paradigms. Then they performed in a pressure condition (block T). Results confirmed that chunking characterizes both modes of acquisition. However, explicit acquisition resulted in quicker chunking, reduced conscious processing, and increased cortical efficiency (left-temporal high-alpha power). In support of reinvestment theory, self-reported conscious processing tended to increase under pressure among explicit trainees only. In contrast to reinvestment theory, this had no adverse effect on performance. The results endorse explicit acquisition as an effective mode of training and provide a new neurophysiological explanation of this phenomenon.
Collapse
|
26
|
Effects of combat training on visuomotor performance in children aged 9 to 12 years - an eye-tracking study. BMC Pediatr 2018; 18:39. [PMID: 29415684 PMCID: PMC5803840 DOI: 10.1186/s12887-018-1038-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Data on visuomotor performance in combat training and the effects of combat training on visuomotor performance are limited. This study aimed to investigate the effects of a specially designed combat sports (CS) training program on the visuomotor performance levels of children. METHODS A pre-post comparative design was implemented. A total of 26 students aged 9-12 years underwent 40-min CS training sessions twice a week for 8 weeks during their physical education classes. The CS training program was designed by a karate coach and a motor control specialist. The other 30 students continued their regular activities and were considered as a control group. Each student's eye movement was monitored using an eye tracker, whereas the motor performance was measured using a target hitting system with a program-controlled microprocessor. The measurements were taken 8 weeks before (baseline), 1 day before (pretest), and 1 week after (posttest) the designated training program. The task used for evaluating these students was hitting or tracking random illuminated targets as rapidly as possible. A two-way analysis of variance [group(2) × time(3)] with repeated measures of time was performed for statistical analysis. RESULTS For the children who received combat training, although the eye response improvement was not significant, both the primary and secondary saccade onset latencies were significantly earlier compared to the children without combat training. Both groups of students exhibited improvement in their hit response times during the target hitting tasks. CONCLUSION The current finding supported the notion that sports training efforts essentially enhance visuomotor function in children aged 9-12 years, and combat training facilitates an earlier secondary saccade onset.
Collapse
|
27
|
Cross-Villasana F, Gröpel P, Ehrlenspiel F, Beckmann J. Central theta amplitude as a negative correlate of performance proficiency in a dynamic visuospatial task. Biol Psychol 2018; 132:37-44. [DOI: 10.1016/j.biopsycho.2017.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/12/2017] [Accepted: 10/23/2017] [Indexed: 11/25/2022]
|
28
|
Brain Dynamics and Motor Behavior: A Case for Efficiency and Refinement for Superior Performance. ACTA ACUST UNITED AC 2018. [DOI: 10.1123/kr.2017-0056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The paper presents a theoretical perspective on brain activity that characterizes expert cognitive-motor performance grounded in neural and psychomotor efficiency. Evidence for the position is derived from several different measurement tools (EEG, ERPs, fMRI, EEG coherence) based on empirical studies of (1) expert-novice contrasts, (2) changes in the brain after practice, and (3) motor performance under conditions of mental stress. The impact of mental stress on brain processes during motor performance is then discussed followed by a model of the hypothesized central neural responses to emotion-eliciting events to explain resilience to stress and the ability to “perform under pressure” as observed in high-performing athletes. An overall explanation is offered of the cascade of events that link the perception of the environment in which the performance occurs to the peripheral process of motor unit recruitment and the resultant quality of movement. This integrative perspective on human performance considers multiple levels of explanation including the psychology of sport performance, cognitive-motor neuroscience, and basic biomechanics to understand the kinematic qualities of movement and the effort cost involved.
Collapse
|
29
|
Jochumsen M, Rovsing C, Rovsing H, Cremoux S, Signal N, Allen K, Taylor D, Niazi IK. Quantification of Movement-Related EEG Correlates Associated with Motor Training: A Study on Movement-Related Cortical Potentials and Sensorimotor Rhythms. Front Hum Neurosci 2017; 11:604. [PMID: 29375337 PMCID: PMC5770657 DOI: 10.3389/fnhum.2017.00604] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
The ability to learn motor tasks is important in both healthy and pathological conditions. Measurement tools commonly used to quantify the neurophysiological changes associated with motor training such as transcranial magnetic stimulation and functional magnetic resonance imaging pose some challenges, including safety concerns, utility, and cost. EEG offers an attractive alternative as a quantification tool. Different EEG phenomena, movement-related cortical potentials (MRCPs) and sensorimotor rhythms (event-related desynchronization—ERD, and event-related synchronization—ERS), have been shown to change with motor training, but conflicting results have been reported. The aim of this study was to investigate how the EEG correlates (MRCP and ERD/ERS) from the motor cortex are modulated by short (single session in 14 subjects) and long (six sessions in 18 subjects) motor training. Ninety palmar grasps were performed before and after 1 × 45 (or 6 × 45) min of motor training with the non-dominant hand (laparoscopic surgery simulation). Four channels of EEG were recorded continuously during the experiments. The MRCP and ERD/ERS from the alpha/mu and beta bands were calculated and compared before and after the training. An increase in the MRCP amplitude was observed after a single session of training, and a decrease was observed after six sessions. For the ERD/ERS analysis, a significant change was observed only after the single training session in the beta ERD. In conclusion, the MRCP and ERD change as a result of motor training, but they are subject to a marked intra- and inter-subject variability.
Collapse
Affiliation(s)
- Mads Jochumsen
- SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Cecilie Rovsing
- SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Helene Rovsing
- SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Sylvain Cremoux
- LAMIH, UMR Centre National de la Recherche Scientifique 8201, Université de Valenciennes et du Hainaut-Cambrésis, Valenciennes, France
| | - Nada Signal
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Kathryn Allen
- Center for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | - Denise Taylor
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Imran K Niazi
- SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand.,Center for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| |
Collapse
|
30
|
Gong A, Liu J, Li F, Liu F, Jiang C, Fu Y. Correlation Between Resting-state Electroencephalographic Characteristics and Shooting Performance. Neuroscience 2017; 366:172-183. [PMID: 29079062 DOI: 10.1016/j.neuroscience.2017.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 11/30/2022]
Abstract
According to the theories of neural plasticity and neural efficiency, professional skill training improves performance by strengthening the underlying neural mechanisms. Therefore, subjects trained professionally may exhibit changes in resting-state neurophysiological characteristics closely related to performance. To test this notion, the resting-state electroencephalogram (EEG) was measured from 35 rifle shooters after the same training regimen, and resting-state EEG characteristics were analyzed for correlations with shooting performance. The results showed a significant linear correlation between shooting performance and the coherence of electrode channels C3 and T3 in the beta1 band (r = 0.74, P < 4.2 × 10-6). There was also a significant linear correlation between the characteristic path length of the resting-state theta band brain network and shooting performance (r = 0.56, P < 0.0005). This study identifies potential neural mechanisms underlying successful shooting and a new method for predicting and evaluating performance based on EEG characteristics.
Collapse
Affiliation(s)
- Anmin Gong
- School of Science, Engineering University of Chinese People's Armed Police Force, China.
| | - Jianping Liu
- School of Science, Engineering University of Chinese People's Armed Police Force, China
| | - Fangbo Li
- School of Science, Engineering University of Chinese People's Armed Police Force, China
| | - Fangyi Liu
- School of Science, Engineering University of Chinese People's Armed Police Force, China
| | - Changhao Jiang
- Key Laboratory of Sports Performance Evaluation and Technical Analysis, Capital Institute of Physical Education, China
| | - Yunfa Fu
- School of Automation and Information Engineering, Kunming University of Science and Technology, China
| |
Collapse
|
31
|
Milton J, Meyer R, Zhvanetsky M, Ridge S, Insperger T. Control at stability's edge minimizes energetic costs: expert stick balancing. J R Soc Interface 2017; 13:rsif.2016.0212. [PMID: 27278361 DOI: 10.1098/rsif.2016.0212] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/17/2016] [Indexed: 01/04/2023] Open
Abstract
Stick balancing on the fingertip is a complex voluntary motor task that requires the stabilization of an unstable system. For seated expert stick balancers, the time delay is 0.23 s, the shortest stick that can be balanced for 240 s is 0.32 m and there is a [Formula: see text]° dead zone for the estimation of the vertical displacement angle in the saggital plane. These observations motivate a switching-type, pendulum-cart model for balance control which uses an internal model to compensate for the time delay by predicting the sensory consequences of the stick's movements. Numerical simulations using the semi-discretization method suggest that the feedback gains are tuned near the edge of stability. For these choices of the feedback gains, the cost function which takes into account the position of the fingertip and the corrective forces is minimized. Thus, expert stick balancers optimize control with a combination of quick manoeuvrability and minimum energy expenditures.
Collapse
Affiliation(s)
- John Milton
- W. M. Keck Science Department, The Claremont Colleges, Claremont, CA 91711, USA
| | - Ryan Meyer
- Pomona College, Claremont, CA 91711, USA
| | | | | | - Tamás Insperger
- Department of Applied Mechanics, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| |
Collapse
|
32
|
Ghasemian M, Taheri H, Saberi Kakhki A, Ghoshuni M. Electroencephalography Pattern Variations During Motor Skill Acquisition. Percept Mot Skills 2017; 124:1069-1084. [PMID: 28840774 DOI: 10.1177/0031512517727404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study examined how motor skill acquisition affects electroencephalography patterns and compared short- and long-term electroencephalography variations. For this purpose, 17 volunteers with no history of disease, aged 18 to 22 years, attended seven training sessions every other day to practice a pursuit tracking motor skill. Electroencephalography brainwaves were recorded and analyzed on the first and last days within pre- and post-training intervals. The results showed a significant decrease in performance error and variability with practice over time. This progress slowed at the end of training, and there was no significant improvement in individual performance at the last session. In accordance with performance variations, some changes occurred in brainwaves. Specifically, θ power at Fz and α power at Cz increased on the last test day, compared with the first, while the coherence of α at Fz-T3 and Fz-Cz decreased. β Coherence between Fz-Cz was significantly reduced from pre- to posttest. Based on these results, power changes seem to be more affected by long-term training, whereas coherence changes are sensitive to both short- and long-term training. Specifically, β coherence at Fz-Cz was more influenced by short-term effects of training, whereas θ power at Fz, α power at Cz, and α coherence at Fz-T3 and Fz-Cz were affected by longer training.
Collapse
Affiliation(s)
- Mohammadreza Ghasemian
- 1 Faculty of Sport Sciences, 48440 Ferdowsi University of Mashhad , Mashhad, Iran.,2 Faculty of Physical Education and Sport Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Hamidreza Taheri
- 1 Faculty of Sport Sciences, 48440 Ferdowsi University of Mashhad , Mashhad, Iran
| | | | - Majid Ghoshuni
- 3 Department of Biomedical Engineering, Mashhad Branch, 125639 Islamic Azad University , Mashhad, Iran
| |
Collapse
|
33
|
Miao X, Huang H, Hu X, Li D, Yu Y, Ao Y. The characteristics of EEG power spectra changes after ACL rupture. PLoS One 2017; 12:e0170455. [PMID: 28182627 PMCID: PMC5300146 DOI: 10.1371/journal.pone.0170455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/05/2017] [Indexed: 11/25/2022] Open
Abstract
Background Reestablishing knee stability is the core of the treatment of ACL (Anterior Cruciate Ligament) injury. Some patients still have a feeling of instability of the knee after ACL injury treatment. This unstable feeling may be caused by central nervous system changes after ACL rupture. Methods To identify the central changes after ACL rupture, EEG spectra were recorded to compare ACL patients and healthy controls when they were walking, jogging, and landing. Results There was a significant increase in delta, theta, alpha and beta band power during walking, jogging and landing in ACL patients. We also found an asymmetry phenomenon of EEG only in the ACL patients, mainly in the frontal area and central-parietal area. The asymmetry of beta band power extended to the frontal and the central area during jogging and landing task. Conclusions There were significant differences in EEG power spectra between the ACL patients and healthy people. ACL patients showed high EEG band power activities and an asymmetry phenomenon. EEG power changes were affected by movements, the asymmetry extended when performing more complicated movements.
Collapse
Affiliation(s)
- Xin Miao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Hongshi Huang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Dai Li
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yuanyuan Yu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
- * E-mail:
| |
Collapse
|
34
|
Gallicchio G, Cooke A, Ring C. Practice Makes Efficient: Cortical Alpha Oscillations Are Associated With Improved Golf Putting Performance. SPORT, EXERCISE, AND PERFORMANCE PSYCHOLOGY 2017; 6:89-102. [PMID: 28748124 PMCID: PMC5506342 DOI: 10.1037/spy0000077] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/08/2022]
Abstract
Practice of a motor skill results in improved performance and decreased movement awareness. The psychomotor efficiency hypothesis proposes that the development of motor expertise through practice is accompanied by physiological refinements whereby irrelevant processes are suppressed and relevant processes are enhanced. The present study employed a test-retest design to evaluate the presence of greater neurophysiological efficiency with practice and mediation analyses to identify the factors accounting for performance improvements, in a golf putting task. Putting performance, movement-specific conscious processing, electroencephalographic alpha power and alpha connectivity were measured from 12 right-handed recreational golfers (age: M = 21 years; handicap: M = 23) before and after 3 practice sessions. As expected, performance improved and conscious processing decreased with training. Mediation analyses revealed that improvements in performance were partly attributable to increased regional gating of alpha power and reduced cross-regional alpha connectivity. However, changes in conscious processing were not associated with performance improvements. Increased efficiency was manifested at the neurophysiological level as selective inhibition and functional isolation of task-irrelevant cortical regions (temporal regions) and concomitant functional activation of task-relevant regions (central regions). These findings provide preliminary evidence for the development of greater psychomotor efficiency with practice in a precision aiming task.
Collapse
Affiliation(s)
- Germano Gallicchio
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham
| | - Andrew Cooke
- School of Sport, Health, and Exercise Sciences, Bangor University
| | - Christopher Ring
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham
| |
Collapse
|
35
|
The Athlete's Brain: Cross-Sectional Evidence for Neural Efficiency during Cycling Exercise. Neural Plast 2015; 2016:4583674. [PMID: 26819767 PMCID: PMC4706966 DOI: 10.1155/2016/4583674] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 11/17/2022] Open
Abstract
The “neural efficiency” hypothesis suggests that experts are characterized by a more efficient cortical function in cognitive tests. Although this hypothesis has been extended to a variety of movement-related tasks within the last years, it is unclear whether or not neural efficiency is present in cyclists performing endurance exercise. Therefore, this study examined brain cortical activity at rest and during exercise between cyclists of higher (HIGH; n = 14; 55.6 ± 2.8 mL/min/kg) and lower (LOW; n = 15; 46.4 ± 4.1 mL/min/kg) maximal oxygen consumption (VO2MAX). Male and female participants performed a graded exercise test with spirometry to assess VO2MAX. After 3 to 5 days, EEG was recorded at rest with eyes closed and during cycling at the individual anaerobic threshold over a 30 min period. Possible differences in alpha/beta ratio as well as alpha and beta power were investigated at frontal, central, and parietal sites. The statistical analysis revealed significant differences between groups (F = 12.04; p = 0.002), as the alpha/beta ratio was increased in HIGH compared to LOW in both the resting state (p ≤ 0.018) and the exercise condition (p ≤ 0.025). The present results indicate enhanced neural efficiency in subjects with high VO2MAX, possibly due to the inhibition of task-irrelevant cognitive processes.
Collapse
|
36
|
Motor skill failure or flow-experience? Functional brain asymmetry and brain connectivity in elite and amateur table tennis players. Biol Psychol 2015; 105:95-105. [DOI: 10.1016/j.biopsycho.2015.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 01/05/2023]
|
37
|
Evolution of cerebral cortico-cortical communication during visuomotor adaptation to a cognitive-motor executive challenge. Biol Psychol 2014; 105:51-65. [PMID: 25530479 DOI: 10.1016/j.biopsycho.2014.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 11/23/2022]
Abstract
Cortical dynamics were examined during a cognitive-motor adaptation task that required inhibition of a familiar motor plan. EEG coherence between the motor planning (Fz) and left hemispheric region was progressively reduced over trials (low-beta, high-beta, gamma bands) along with faster, straighter reaching movements during both planning and execution. The major reduction in coherence (delta, low/high-theta, low/high-alpha bands) between Fz and the left prefrontal region during both movement planning and execution suggests gradual disengagement of frontal executive following its initial role in the suppression of established visuomotor maps. Also, change in the directionality of phase lags (delta, high-alpha, high-beta, gamma bands) reflects a progressive shift from feedback to feedforward motor control. The reduction of cortico-cortical communication, particularly in the frontal region, and the strategic feedback/feedforward mode shift translated as higher quality motor performance. This study extends our understanding of the role of frontal executive beyond purely cognitive tasks to cognitive-motor tasks.
Collapse
|
38
|
Rietschel JC, McDonald CG, Goodman RN, Miller MW, Jones-Lush LM, Wittenberg GF, Hatfield BD. Psychophysiological support of increasing attentional reserve during the development of a motor skill. Biol Psychol 2014; 103:349-56. [PMID: 25457640 PMCID: PMC4489530 DOI: 10.1016/j.biopsycho.2014.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/16/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
The aim of this study was to determine the relationship between motor skill and attentional reserve. Participants practiced a reaching task with the dominant upper extremity, to which a distortion of the visual feedback was applied, while a control group performed the same task without distortion. Event-related brain potentials (ERPs), elicited by auditory stimuli were recorded throughout practice. Performance, as measured by initial directional error, was initially worse relative to controls and improved over trials. Analyses of the ERPs revealed that exogenous components, N1 and P2, were undifferentiated between the groups and did not change with practice. Notably, amplitude of the novelty P3 component, an index of the involuntary orienting of attention, was initially attenuated relative to controls, but progressively increased in amplitude over trials in the learning group only. The results provide psychophysiological evidence that attentional reserve increases as a function of motor skill acquisition.
Collapse
Affiliation(s)
- Jeremy C Rietschel
- Neuroscience and Cognitive Science Program, Department of Kinesiology, University of Maryland, College Park, MD, USA; Maryland Exercise and Robotics Center of Excellence, Veterans Health Administration, Baltimore, MD, USA
| | - Craig G McDonald
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Ronald N Goodman
- Maryland Exercise and Robotics Center of Excellence, Veterans Health Administration, Baltimore, MD, USA; Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Lauren M Jones-Lush
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George F Wittenberg
- Maryland Exercise and Robotics Center of Excellence, Veterans Health Administration, Baltimore, MD, USA; Veterans Affairs Geriatrics Research, Education and Clinical Center, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bradley D Hatfield
- Neuroscience and Cognitive Science Program, Department of Kinesiology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
39
|
Abstract
Ever since Stone Age men discovered that knapping flint produced sharp stone edges that could be used in combat as well as for cooking and hunting, technological advances of all kinds have been adapted and adopted by the military.The opportunities provided by modern neuroscience are proving no exception, but their application in a military context is accompanied by complex practical and ethical considerations.
Collapse
Affiliation(s)
- Irene Tracey
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain and at the Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences. University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Rod Flower
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
40
|
Taliep MS, John L. Sport expertise: the role of precise timing of verbal-analytical engagement and the ability to detect visual cues. Perception 2014; 43:316-32. [PMID: 25109020 DOI: 10.1068/p7530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study proposed that relative timing of high-alpha (10-12 Hz) left (T3) and right (T4) cortical temporal electroencephalographic (EEG) power levels would differentiate performance groups in a reactive sport such as cricket batting. The time course of EEG event-related alpha synchronisation (ERS) and desynchronisation was investigated in two groups (eight skilled and ten less skilled) of right-handed cricket batsmen whilst viewing projected video footage of a bowler delivering a randomised series of 24 deliveries repeated 10 times (total of 240 deliveries). Ball release from the bowler's hand was used as the corresponding reaction cue. Participants were instructed to press one of two buttons on a keypad to identify in-swingers or out-swingers. T3 ERS was significantly greater in skilled batsmen from approximately 1500 ms prior to ball release, but differences reduced close to ball release, reaching nonsignificance by 250 ms. There was no significant difference in T4 between the groups. This study uniquely highlights that the relative timing of the T3 high-alpha ERS state appears to differentiate batting skill groups in a reactive task.
Collapse
|
41
|
Johnson RR, Stone BT, Miranda CM, Vila B, James L, James SM, Rubio RF, Berka C. Identifying psychophysiological indices of expert vs. novice performance in deadly force judgment and decision making. Front Hum Neurosci 2014; 8:512. [PMID: 25100966 PMCID: PMC4107851 DOI: 10.3389/fnhum.2014.00512] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/25/2014] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE To demonstrate that psychophysiology may have applications for objective assessment of expertise development in deadly force judgment and decision making (DFJDM). BACKGROUND Modern training techniques focus on improving decision-making skills with participative assessment between trainees and subject matter experts primarily through subjective observation. OBJECTIVE metrics need to be developed. The current proof of concept study explored the potential for psychophysiological metrics in deadly force judgment contexts. METHOD Twenty-four participants (novice, expert) were recruited. All wore a wireless Electroencephalography (EEG) device to collect psychophysiological data during high-fidelity simulated deadly force judgment and decision-making simulations using a modified Glock firearm. Participants were exposed to 27 video scenarios, one-third of which would have justified use of deadly force. Pass/fail was determined by whether the participant used deadly force appropriately. RESULTS Experts had a significantly higher pass rate compared to novices (p < 0.05). Multiple metrics were shown to distinguish novices from experts. Hierarchical regression analyses indicate that psychophysiological variables are able to explain 72% of the variability in expert performance, but only 37% in novices. Discriminant function analysis (DFA) using psychophysiological metrics was able to discern between experts and novices with 72.6% accuracy. CONCLUSION While limited due to small sample size, the results suggest that psychophysiology may be developed for use as an objective measure of expertise in DFDJM. Specifically, discriminant function measures may have the potential to objectively identify expert skill acquisition. APPLICATION Psychophysiological metrics may create a performance model with the potential to optimize simulator-based DFJDM training. These performance models could be used for trainee feedback, and/or by the instructor to assess performance objectively.
Collapse
Affiliation(s)
- Robin R. Johnson
- Advanced Brain Monitoring, Inc.Carlsbad, CA, USA,*Correspondence: Robin R. Johnson, Advanced Brain Monitoring, Inc., 2237 Faraday Ave., Ste 100, Carlsbad, CA 92008, USA e-mail:
| | | | | | - Bryan Vila
- Department of Criminal Justice and Criminology, Washington State UniversitySpokane, WA, USA
| | - Lois James
- Department of Criminal Justice and Criminology, Washington State UniversitySpokane, WA, USA
| | - Stephen M. James
- Department of Criminal Justice and Criminology, Washington State UniversitySpokane, WA, USA
| | | | - Chris Berka
- Advanced Brain Monitoring, Inc.Carlsbad, CA, USA
| |
Collapse
|
42
|
Kim W, Woo M. An electrocortical comparison of elite shooters with and without disability during visuomotor performance. Percept Mot Skills 2014; 117:498-510. [PMID: 24611253 DOI: 10.2466/25.15.pms.117x25z1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose was to investigate differences in cortical activation during air-pistol shooting between elite shooters with and without spinal cord injury. 22 non-disabled and 12 disabled members of national air-pistol shooting teams participated in the study. The participants completed 20 self-paced 10-m air pistol shots. Analysis reveals that athletes with disability exhibited greater attentional demand during the aiming period, which is typically observed in patients with spinal cord injury during visuomotor performance, whereas brain regions responsible for visual-spatial processing seemed to be similar to those of athletes without disability. Constant and deliberate practice of this visuomotor skill may result in recovery of cortical activity. These findings are consistent with the concepts of cortical economy in elite athletes and neural plasticity in individuals with spinal cord injury.
Collapse
|
43
|
Hatfield BD, Costanzo ME, Goodman RN, Lo LC, Oh H, Rietschel JC, Saffer M, Bradberry T, Contreras-Vidal J, Haufler A. The influence of social evaluation on cerebral cortical activity and motor performance: a study of "Real-Life" competition. Int J Psychophysiol 2013; 90:240-9. [PMID: 23954302 DOI: 10.1016/j.ijpsycho.2013.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 08/04/2013] [Accepted: 08/05/2013] [Indexed: 11/19/2022]
Abstract
Motor performance in a social evaluative environment was examined in participants (N = 19) who completed a pistol shooting task under both performance-alone (PA) and competitive (C) conditions. Electroencephalographic (EEG), autonomic, and psychoendocrine activity were recorded in addition to kinematic measures of the aiming behavior. State anxiety, heart rate, and cortisol were modestly elevated during C and accompanied by relative desynchrony of high-alpha power, increased cortico-cortical communication between motor and non-motor regions, and degradation of the fluency of aiming trajectory, but maintenance of performance outcome (i.e., score). The findings reveal that performance in a complex social-evaluative environment characterized by competition results in elevated cortical activity beyond that essentially required for motor performance that translated as less efficient motor behavior.
Collapse
Affiliation(s)
- Bradley D Hatfield
- Department of Kinesiology, University of Maryland at College Park, School of Public Health, USA; Neuroscience and Cognitive Sciences Program, University of Maryland at College Park, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
A comparison of cortico-cortical communication during air-pistol shooting in elite disabled and non-disabled shooters. PERSONALITY AND INDIVIDUAL DIFFERENCES 2013. [DOI: 10.1016/j.paid.2013.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Pangelinan MM, Hatfield BD, Clark JE. Differences in movement-related cortical activation patterns underlying motor performance in children with and without developmental coordination disorder. J Neurophysiol 2013; 109:3041-50. [PMID: 23536712 DOI: 10.1152/jn.00532.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Behavioral deficits in visuomotor planning and control exhibited by children with developmental coordination disorder (DCD) have been extensively reported. Although these functional impairments are thought to result from "atypical brain development," very few studies to date have identified potential neurological mechanisms. To address this knowledge gap, electroencephalography (EEG) was recorded from 6- to 12-yr-old children with and without DCD (n = 14 and 20, respectively) during the performance of a visuomotor drawing task. With respect to motor performance, typically developing (TD) children exhibited age-related improvements in key aspects of motor planning and control. Although some children with DCD performed outside this TD landscape (i.e., age-related changes within the TD group), the group developmental trajectory of the children with DCD was similar to that of the TD children. Despite overall similarities in performance, engagement of cortical resources in the children with DCD was markedly different from that in their TD counterparts. While the patterns of activation are stable in TD children across the age range, the young children with DCD exhibited less engagement of motor cortical brain areas and the older children with DCD exhibited greater engagement of motor cortical brain areas than their TD peers. These results suggest that older children with DCD may employ a compensatory strategy in which increased engagement of relevant motor resources allows these children to perform comparably to their TD peers. Moreover, the magnitude of activation was related to several kinematic measures, particularly in children with DCD, suggesting that greater engagement in motor resources may underlie better behavioral performance.
Collapse
Affiliation(s)
- Melissa M Pangelinan
- Neuroscience and Cognitive Science Program and Department of Kinesiology, University of Maryland, College Park, MD, USA.
| | | | | |
Collapse
|
46
|
Soussou W, Rooksby M, Forty C, Weatherhead J, Marshall S. EEG and eye-tracking based measures for enhanced training. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:1623-6. [PMID: 23366217 DOI: 10.1109/embc.2012.6346256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper describes a project whose goal was to establish the feasibility of using unobtrusive cognitive assessment methodologies in order to optimize efficiency and expediency of training. QUASAR, EyeTracking, Inc. (ETI), and Safe Passage International (SPI), teamed to demonstrate correlation between EEG and eye-tracking based cognitive workload, performance assessment and subject expertise on X-Ray screening tasks. Results indicate significant correlation between cognitive workload metrics based on EEG and eye-tracking measurements recorded during a simulated baggage screening task and subject expertise and error rates in that same task. These results suggest that cognitive monitoring could be useful in improving training efficiency by enabling training paradigms that adapts to increasing expertise.
Collapse
Affiliation(s)
- Walid Soussou
- Quantum Applied Science and Research (QUASAR), CA 92121, USA.
| | | | | | | | | |
Collapse
|
47
|
Del Percio C, Infarinato F, Marzano N, Iacoboni M, Aschieri P, Lizio R, Soricelli A, Limatola C, Rossini PM, Babiloni C. Reactivity of alpha rhythms to eyes opening is lower in athletes than non-athletes: a high-resolution EEG study. Int J Psychophysiol 2011; 82:240-7. [PMID: 21945479 DOI: 10.1016/j.ijpsycho.2011.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/17/2011] [Accepted: 09/04/2011] [Indexed: 12/22/2022]
Abstract
In the present study, we tested the hypothesis that compared with non-athletes, elite athletes are characterized by a reduction of reactivity of electroencephalographic (EEG) alpha rhythms (about 8-12 Hz) to eyes opening in the condition of resting state, as a possible index of spatially selective cortical activation (i.e. "neural efficiency"). EEG data (56 channels; Eb-Neuro©) were recorded in 18 elite karate athletes and 28 non-athletes during resting state eyes-closed and eyes-open conditions. The EEG data were spatially enhanced by surface Laplacian estimation. Cortical activity was indexed by task-related power decrease (TRPD), namely the alpha power during the eyes-open referenced to the eyes-closed resting condition. Low-frequency alpha TRPD (about 8-10 Hz) was lower in the elite karate athletes than in the non-athletes in frontal (p<0.00002), central (p<0.008) and right occipital (p<0.02) areas. Similarly, high-frequency alpha TRPD (about 10-12 Hz) was lower in the elite karate athletes than in the non-athletes in frontal (p<0.00009) and central (p<0.01) areas. These results suggest that athletes' brain is characterized by reduced cortical reactivity to eyes opening in the condition of resting state, in line with the "neural efficiency" hypothesis. The present study motivates future research evaluating the extent to which this general functional brain feature is related to heritable trait or intensive visuo-motor training of elite athletes.
Collapse
|
48
|
Gobel EW, Parrish TB, Reber PJ. Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task. Neuroimage 2011; 58:1150-7. [PMID: 21771663 DOI: 10.1016/j.neuroimage.2011.06.090] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 11/30/2022] Open
Abstract
Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of the frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time.
Collapse
Affiliation(s)
- Eric W Gobel
- Interdepartmental Neuroscience Program, Northwestern University, 320 E Superior St, Searle 5-474, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
49
|
Harung HS, Travis F, Pensgaard AM, Boes R, Cook-Greuter S, Daley K. Higher psycho-physiological refinement in world-class Norwegian athletes: brain measures of performance capacity. Scand J Med Sci Sports 2011; 21:32-41. [PMID: 19883380 DOI: 10.1111/j.1600-0838.2009.01007.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study tested the hypothesis that the degree of psycho-physiological development is related to performance level in world-class athletes. We compared physiological and psychological patterns of 33 Norwegian world-class athletes to patterns in 33 average performing athletes. The subjects were matched for gender, age, and type of sport. Electroencephalography activity was recorded to measure brain integration; skin conductance was recorded to measure habituation to a loud stimulus; and paper-and-pencil tests were given to assess self-development, moral development, and frequency of peak experiences. A factor analysis (varimax rotation) reduced the eight variables to three factors that together accounted for 65.3% of the total variance: (1) physiological integration--brain integration and habituation rates, (2) self- and moral development, and (3) peak experiences. A MANOVA conducted on the factor scores showed a significant main effect for the experimental group collapsing across the three factors (P<0.0001). Individual ANOVAs showed significantly higher values for development (P=0.021) and physiological integration (P<0.0001) factor scores for the world-class athletes. The above measures can be seen as different expressions of an underlying dimension--human development. These data support the concept that higher psycho-physiological growth underlies higher performance.
Collapse
Affiliation(s)
- H S Harung
- Oslo University College, St Olavs Plass, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
50
|
Araújo F, Machado S, Paes F, Cunha M, Budde H, Cagy M, Basile LF, Arias-Carrión O, Velasques B, Piedade R, Ribeiro P. The effects of bromazepam over the temporo-parietal areas during the performance of a visuomotor task: a qEEG study. Neurosci Lett 2011; 496:116-20. [PMID: 21511002 DOI: 10.1016/j.neulet.2011.03.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
Abstract
This study investigated the effects of bromazepam on qEEG when 14 healthy subjects were asked to perform a visuomotor task (i.e., motor vehicle driving task). The subjects were exposed to two experimental conditions: the placebo (PL) and 6 mg of bromazepam (Br 6 mg), following a randomized, double-blind design on different days. Specifically, we observe absolute power extracted from qEEG data for theta band. We expected to see a decrease in absolute theta power in the temporal and parietal areas due to the influence of bromazepam for the experimental group when compared with the placebo group. We found a main effect for the condition factor for electrodes T3, T4, P3 and P4. We also observed a main effect for the period factor for electrodes P3 and P4. We observed that the ingestion of 6 mg of bromazepam induces different patterns in theta power at the temporal and parietal sites. We concluded that 6 mg of bromazepam was an important factor in the fluctuation of the activities in the temporal and parietal areas. We then hypothesize about the specific role of this drug during the execution of a visuomotor task and within the sensorimotor integration process.
Collapse
Affiliation(s)
- Fernanda Araújo
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|