1
|
Rodrigues GD, McConnell AK. The misuse of respiratory resistive loading during aerobic exercises: revisiting mechanisms of "standalone" inspiratory muscle training. Am J Physiol Lung Cell Mol Physiol 2024; 327:L815-L817. [PMID: 39316675 DOI: 10.1152/ajplung.00396.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024] Open
Abstract
Systematic reviews and meta-analyses support the benefits of inspiratory muscle training (IMT) for sports and clinical populations. A typical application of "standalone" IMT intervention consists of breathing against an inspiratory load (IRL), twice daily, for 5-7 days/wk, for 4-12 wk. However, the application of IRL during aerobic exercise is often seen in a training routine of sports and rehabilitation centers with no evidence-based guide. In this Perspective, we will revisit putative mechanisms underlying the established benefits of "standalone" IMT to support our contention that IMT need not and should not be used during aerobic exercise.
Collapse
Affiliation(s)
- Gabriel Dias Rodrigues
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Federal Fluminense University, Niteroi, Rio de Janeiro, Brazil
| | | |
Collapse
|
2
|
Beck WR, Scariot PPM, Papoti M, Pejon TMM, Polisel EEC, Manchado-Gobatto FB, Gobatto CA. Living High-Training Low on Mice Bone Parameters Analyzed through Complex Network Approach. Int J Sports Med 2024. [PMID: 39536786 DOI: 10.1055/a-2361-2840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The aim of this study was to investigate the effect of 8 weeks of hypoxic exposition and physical training on healthy mice femur outcomes analyzed through conventional statistic and complex networks. The mice were divided into four groups, subjected to physical training (T; 40 min per day at 80% of critical velocity intensity) or not (N), exposed to hypoxic environment ("Living High-Training Low" model - LHTL; 18 h per day, FIO2=19.5%; Hyp) or not (Nor). The complex network analysis performed interactions among parameters using values of critical "r" of 0.5 by Pearson correlations to edges construction, with Fruchterman-Reingold layout adopted for graph visualization. Pondered Degree, Betweenness, and Eigenvector metrics were chosen as centrality metrics. Two-way ANOVA, t-test and Pearson correlation were used with P<0.05. Femur phosphorus of T-Hyp was higher than all other groups (P<0.05) and correlated with bone density (r=0.65; P=0.042), bone mineral density (r=0.67; P=0.034) and% of mineral material (r=0.66, P=0.038). Overall, the complex network demonstrated improvements in bone volume, % of mineral material, bone density, and bone mineral density for T-Hyp over other groups. Association of physical training and hypoxia improved bone quality for healthy mice.
Collapse
Affiliation(s)
| | | | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|
3
|
Aragón-Vela J, Casuso RA, Aparisi AS, Plaza-Díaz J, Rueda-Robles A, Hidalgo-Gutiérrez A, López LC, Rodríguez-Carrillo A, Enriquez JA, Cogliati S, Huertas JR. Early heart and skeletal muscle mitochondrial response to a moderate hypobaric hypoxia environment. J Physiol 2024; 602:5631-5641. [PMID: 38630964 DOI: 10.1113/jp285516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
In eukaryotic cells, aerobic energy is produced by mitochondria through oxygen uptake. However, little is known about the early mitochondrial responses to moderate hypobaric hypoxia (MHH) in highly metabolic active tissues. Here, we describe the mitochondrial responses to acute MHH in the heart and skeletal muscle. Rats were randomly allocated into a normoxia control group (n = 10) and a hypoxia group (n = 30), divided into three groups (0, 6, and 24 h post-MHH). The normoxia situation was recapitulated at the University of Granada, at 662 m above sea level. The MHH situation was performed at the High-Performance Altitude Training Centre of Sierra Nevada located in Granada at 2320 m above sea level. We found a significant increase in mitochondrial supercomplex assembly in the heart as soon as the animals reached 2320 m above sea level and their levels are maintained 24 h post-exposure, but not in skeletal muscle. Furthermore, in skeletal muscle, at 0 and 6 h, there was increased dynamin-related protein 1 (Drp1) expression and a significant reduction in Mitofusin 2. In conclusion, mitochondria from the muscle and heart respond differently to MHH: mitochondrial supercomplexes increase in the heart, whereas, in skeletal muscle, the mitochondrial pro-fission response is trigged. Considering that skeletal muscle was not actively involved in the ascent when the heart was beating faster to compensate for the hypobaric, hypoxic conditions, we speculate that the different responses to MHH are a result of the different energetic requirements of the tissues upon MHH. KEY POINTS: The heart and the skeletal muscle showed different mitochondrial responses to moderate hypobaric hypoxia. Moderate hypobaric hypoxia increases the assembly of the electron transport chain complexes into supercomplexes in the heart. Skeletal muscle shows an early mitochondrial pro-fission response following exposure to moderate hypobaric hypoxia.
Collapse
Affiliation(s)
- Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, University of Jaen, Jaen, Spain
| | - Rafael A Casuso
- Department of Health Sciences, Universidad Loyola Andalucía, Sevilla, Spain
| | - Ana Sagrera Aparisi
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - Julio Plaza-Díaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada., Ottawa, ON, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology 'José Mataix,' Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Agustín Hidalgo-Gutiérrez
- Institute of Biotechnology, Biomedical Research Centre and Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Luis Carlos López
- Institute of Biotechnology, Biomedical Research Centre and Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Andrea Rodríguez-Carrillo
- Center for Biomedical Research (CIBM), University of Granada, Spain
- Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Granada, Spain
| | - José Antonio Enriquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES)., Madrid, Spain
| | - Sara Cogliati
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
- Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - Jesús R Huertas
- Institute of Nutrition and Food Technology 'José Mataix,' Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Tan L, Li Y, Chen H, Lanzi G, Hu X. Sleep at high altitude: A bibliometric study and visualization analysis from 1992 to 2022. Heliyon 2024; 10:e23041. [PMID: 38163230 PMCID: PMC10755286 DOI: 10.1016/j.heliyon.2023.e23041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Background As an important monitoring index for adaptation to hypoxia, sleep may reflect the adaptive state of the body at high altitudes. The literature has shown a link between altitude and sleep problems, and sleep changes have become a common problem for individuals at high altitudes, negatively impacting their physical and mental health. As research on high-altitude sleep has gained attention in recent years, the publishing volume has increased worldwide, necessitating a more comprehensive understanding of this field. This manuscript evaluates the key themes and emerging trends in high-altitude sleep over the past few decades and predicts future research directions. Methods Articles related to high-altitude sleep published from 1992 to 2022 were retrieved from the Web of Science Core Collection, and the relevant literature characteristics were extracted after the screening. Then, bibliometric analyses and visualizations were performed using Microsoft Excel, CiteSpace, VOSviewer, and an online analysis platform (http://bibliometric.com). Results A total of 1151 articles were retrieved, of which 368 were included in the analysis, indicating a gradually increasing trend. The United States, Switzerland, and China have made significant contributions in this field. Bloch KE from the University of Zurich was determined to be the most productive and academically influential author in this field. The highest-yielding journal was High Altitude Medicine & Biology. Initially, altitude training was the primary research topic. Currently, research focuses on sleep disorders and sleep apnea. In the coming years, keywords such as "sleep quality," "prevalence," and "obstructive sleep apnea" will attract more attention. Conclusion Our findings will assist scholars to better understand the intellectual structure and emerging trends in this field. Future developments in high-altitude sleep research are highly anticipated, particularly in terms of sleep quality at high altitudes and its associated prevalence. This research is also crucial for the improvement and treatment of symptoms during nocturnal sleep in patients with chronic hypoxia due to cardiopulmonary diseases at high altitudes.
Collapse
Affiliation(s)
- Lixia Tan
- Innovation Center of Nursing Research and Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
- Medical College, Tibet University, Lhasa, China
| | - Yong Li
- Innovation Center of Nursing Research and Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hongxiu Chen
- Innovation Center of Nursing Research and Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | | | - Xiuying Hu
- Innovation Center of Nursing Research and Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Bonato G, Goodman S, Tjh L. Physiological and performance effects of live high train low altitude training for elite endurance athletes: A narrative review. Curr Res Physiol 2023; 6:100113. [PMID: 38107789 PMCID: PMC10724230 DOI: 10.1016/j.crphys.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Altitude training has become an important training application for athletes due its potential for altering physiology and enhancing performance. This practice is commonly used by athletes, with a popular choice being the live high - train low approach. This model recommends that athletes live at high altitude (1250-3000 m), but train at low altitude or sea-level (0-1200 m). Exposure to altitude often leads to hypoxic stress and in turn stimulates changes in total haemoglobin mass, erythropoietin, and soluble transferrin receptors, which alter further underlying physiology. Through enhanced physiology, improved exercise performance may arise through enhancement of the oxygen transport system which is important for endurance events. Previous investigations into the effects of altitude training on exercise performance have been completed in a range of contexts, including running, cycling, swimming, and triathlon. Often following a LHTL altitude intervention, athletes realise improvements in maximal oxygen consumption capacity, time trial performance and peak power outputs. Although heterogeneity exists among LHTL methodologies, i.e., exposure durations and altitude ranges, we synthesised this data into kilometre hours, and found that the most common hypoxic doses used in LHTL interventions ranged from ∼578-687 km h. As this narrative review demonstrates, there are potential advantages to using altitude training to enhance physiology and improve performance for endurance athletes.
Collapse
Affiliation(s)
- G. Bonato
- Exercise and Sports Science, School of Science and Technology, The University of New England, Armidale, 2350, Australia
- College of Arts, Society and Education, James Cook University, Townsville, 4811, Australia
| | - S.P.J Goodman
- Exercise and Sports Science, School of Science and Technology, The University of New England, Armidale, 2350, Australia
| | - Lathlean Tjh
- Exercise and Sports Science, School of Science and Technology, The University of New England, Armidale, 2350, Australia
- The Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5000, Australia
| |
Collapse
|
6
|
Herrero-Molleda A, Álvarez-Álvarez MJ, Floría P, García-López J. Training Characteristics and Competitive Demands in Women Road Cyclists: A Systematic Review. Int J Sports Physiol Perform 2023:1-11. [PMID: 37369364 DOI: 10.1123/ijspp.2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE To identify the main training characteristics and competitive demands in women's road cycling. METHODS A systematic search was conducted on 5 databases according to PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. The articles had to be primary studies, written after 1990 with a sample of competitive women between the ages of 15 and 50. The Quality Assessment Tool for Quantitative Studies and the Oxford Levels of Evidence scales were used. RESULTS The search yielded 1713 articles, of which 20 were included. Studies on training and competitive demands (n = 5) found that both external and internal loads are higher in women than in men. Studies on strength and endurance training (n = 5) showed that both velocity-based and heavy-load strength training programs performed at least 2 days per week and including 3 to 4 lower-body exercises improved performance. Altitude-training studies (n = 3) found that "Live High-Train Low" was effective to increase performance during the first 9 days after the training camp. The 7 remaining studies focused on a range of topics. The methodological quality was strong for 12 studies and moderate for 8. In contrast, the level of evidence was high in 7 and low in the other 13. CONCLUSIONS Endurance training and competitive demands in women's road cycling are higher than those of men. Strength training is effective in women when the frequency, intensity, and number of exercises are appropriate, while altitude training should be completed a few days before competing. Further studies are warranted to better define the participants' competitive level, using a methodological design with a higher level of evidence.
Collapse
Affiliation(s)
- Alba Herrero-Molleda
- Faculty of Physical Activity and Sports Sciences, Universidad de León, León,Spain
| | | | - Pablo Floría
- Physical Performance and Sports Research, Universidad Pablo de Olavide, Sevilla,Spain
| | - Juan García-López
- Faculty of Physical Activity and Sports Sciences, Universidad de León, León,Spain
| |
Collapse
|
7
|
Kettunen O, Leppävuori A, Mikkonen R, Peltonen JE, Nummela A, Wikström B, Linnamo V. Hemoglobin mass and performance responses during 4 weeks of normobaric "live high-train low and high". Scand J Med Sci Sports 2023. [PMID: 37114394 DOI: 10.1111/sms.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE To investigate whether 4 weeks of normobaric "live high-train low and high" (LHTLH) causes different hematological, cardiorespiratory, and sea-level performance changes compared to living and training in normoxia during a preparation season. METHODS Nineteen (13 women, 6 men) cross-country skiers competing at the national or international level completed a 28-day period (∼18 h day-1 ) of LHTLH in normobaric hypoxia of ∼2400 m (LHTLH group) including two 1 h low-intensity training sessions per week in normobaric hypoxia of 2500 m while continuing their normal training program in normoxia. Hemoglobin mass (Hbmass ) was assessed using a carbon monoxide rebreathing method. Time to exhaustion (TTE) and maximal oxygen uptake (VO2max ) were measured using an incremental treadmill test. Measurements were completed at baseline and within 3 days after LHTLH. The control group skiers (CON) (seven women, eight men) performed the same tests while living and training in normoxia with ∼4 weeks between the tests. RESULTS Hbmass in LHTLH increased 4.2 ± 1.7% from 772 ± 213 g (11.7 ± 1.4 g kg-1 ) to 805 ± 226 g (12.5 ± 1.6 g kg-1 ) (p < 0.001) while it was unchanged in CON (p = 0.21). TTE improved during the study regardless of the group (3.3 ± 3.4% in LHTLH; 4.3 ± 4.8% in CON, p < 0.001). VO2max did not increase in LHTLH (61.2 ± 8.7 mL kg-1 min-1 vs. 62.1 ± 7.6 mL kg-1 min-1 , p = 0.36) while a significant increase was detected in CON (61.3 ± 8.0-64.0 ± 8.1 mL kg-1 min-1 , p < 0.001). CONCLUSIONS Four-week normobaric LHTLH was beneficial for increasing Hbmass but did not support the short-term development of maximal endurance performance and VO2max when compared to the athletes who lived and trained in normoxia.
Collapse
Affiliation(s)
- Oona Kettunen
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Antti Leppävuori
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Ritva Mikkonen
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Juha E Peltonen
- Helsinki Sports and Exercise Medicine Clinic (HULA), Foundation for Sports and Exercise Medicine, Helsinki, Finland
- Department of Sports and Exercise Medicine, Clinicum, University of Helsinki, Helsinki, Finland
| | - Ari Nummela
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| | - Bettina Wikström
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| | - Vesa Linnamo
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, Finland
| |
Collapse
|
8
|
Scariot PPM, Papoti M, Polisel EEC, Orsi JB, Van Ginkel PR, Prolla TA, Manchado-Gobatto FB, Gobatto CA. Living high - training low model applied to C57BL/6J mice: Effects on physiological parameters related to aerobic fitness and acid-base balance. Life Sci 2023; 317:121443. [PMID: 36709910 DOI: 10.1016/j.lfs.2023.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
There is a scarcity of data regarding the acclimation to high altitude (hypoxic environment) accompanied by training at low altitude (normoxic conditions), the so-called "living high-training low" (LHTL) model in rodents. We aimed to investigate the effects of aerobic training on C57BL/6J mice living in normoxic (NOR) or hypoxic (HYP) environments on several parameters, including critical velocity (CV), a parameter regarded as a measure of aerobic capacity, on monocarboxylate transporters (MCTs) in muscles and hypothalamus, as well as on hematological parameters and body temperature. In each environment, mice were divided into non-trained (N) and trained (T). Forty rodents were distributed into the following experimental groups (N-NOR; T-NOR; N-HYP and T-HYP). HYP groups were in a normobaric tent where oxygen-depleted air was pumped from a hypoxia generator set an inspired oxygen fraction [FiO2] of 14.5 %. The HYP-groups were kept (18 h per day) in a normobaric tent for consecutive 8-weeks. Training sessions were conducted in normoxic conditions ([FiO2] = 19.5 %), 5 times per week (40 min per session) at intensity equivalent to 80 % of CV. In summary, eight weeks of LHTL did not promote a greater improvement in the CV, protein expression of MCTs in different tissues when compared to the application of training alone. The LHTL model increased red blood cells count, but reduced hemoglobin per erythrocyte was found in mice exposed to LHTL. Although the LHTL did not have a major effect on thermographic records, exercise-induced hyperthermia (in the head) was attenuated in HYP groups when compared to NOR groups.
Collapse
Affiliation(s)
- Pedro Paulo Menezes Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, SP, Brazil
| | | | - Juan Bordon Orsi
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Paul R Van Ginkel
- Department of Genetics & Medical Genetics, University of Wisconsin, Madison, WI, USA
| | - Tomas A Prolla
- Department of Genetics & Medical Genetics, University of Wisconsin, Madison, WI, USA
| | | | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.
| |
Collapse
|
9
|
Van Cutsem J, Pattyn N. Primum non nocere; It's time to consider altitude training as the medical intervention it actually is! Front Psychol 2022; 13:1028294. [PMID: 36582343 PMCID: PMC9792969 DOI: 10.3389/fpsyg.2022.1028294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Sleep is one of the most important aspects of recovery, and is known to be severely affected by hypoxia. The present position paper focuses on sleep as a strong moderator of the altitude training-response. Indeed, the response to altitude training is highly variable, it is not a fixed and classifiable trait, rather it is a state that is determined by multiple factors (e.g., iron status, altitude dose, pre-intervention hemoglobin mass, training load, and recovery). We present an overview of evidence showing that sleep, and more specifically the prolonged negative impact of altitude on the nocturnal breathing pattern, affecting mainly deep sleep and thus the core of physiological recovery during sleep, could play an important role in intra- and interindividual variability in the altitude training-associated responses in professional and recreational athletes. We conclude our paper with a set of suggested recommendations to customize the application of altitude training to the specific needs and vulnerabilities of each athlete (i.e., primum non nocere). Several factors have been identified (e.g., sex, polymorphisms in the TASK2/KCNK5, NOTCH4 and CAT genes and pre-term birth) to predict individual vulnerabilities to hypoxia-related sleep-disordered breathing. Currently, polysomnography should be the first choice to evaluate an individual's predisposition to a decrease in deep sleep related to hypoxia. Further interventions, both pharmacological and non-pharmacological, might alleviate the effects of nocturnal hypoxia in those athletes that show most vulnerable.
Collapse
Affiliation(s)
- Jeroen Van Cutsem
- Vital Signs and Performance Monitoring (VIPER) Research Unit, Royal Military Academy, Brussels, Belgium,Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium,*Correspondence: Jeroen Van Cutsem,
| | - Nathalie Pattyn
- Vital Signs and Performance Monitoring (VIPER) Research Unit, Royal Military Academy, Brussels, Belgium,Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
10
|
Heat Acclimation with or without Normobaric Hypoxia Exposure Leads to Similar Improvements in Endurance Performance in the Heat. Sports (Basel) 2022; 10:sports10050069. [PMID: 35622478 PMCID: PMC9147627 DOI: 10.3390/sports10050069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/19/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Combining the key adaptation of plasma volume (PV) expansion with synergistic physiological effects of other acclimation interventions to maximise endurance performance in the heat has potential. The current study investigated the effects of heat acclimation alone (H), combined with normobaric hypoxia exposure (H+NH), on endurance athletic performance. Methods: Well-trained participants completed a heat-stress trial (30 °C, 80% relative humidity (RH), 20.8% fraction of inspired oxygen (FiO2)) of a 75 min steady-state cycling (fixed workload) and a subsequent 15 min cycling time trial for distance before and after intervention. Participants completed 12 consecutive indoor training days with either heat acclimation (H; 60 min·day−1, 30 °C, 80% RH; 20.8% FiO2) or heat acclimation and overnight hypoxic environment (H+NH; ~12 h, 60% RH; 16% FiO2 simulating altitude of ~2500 m). Control (CON) group trained outdoors with average maximum daily temperature of 16.5 °C and 60% RH. Results: Both H and H+NH significantly improved time trial cycling distance by ~5.5% compared to CON, with no difference between environmental exposures. PV increased (+3.8%) and decreased (−4.1%) following H and H+NH, respectively, whereas haemoglobin concentration decreased (−2%) and increased (+3%) in H and H+NH, respectively. Conclusion: Our results show that despite contrasting physiological adaptations to different environmental acclimation protocols, heat acclimation with or without hypoxic exposure demonstrated similar improvements in short-duration exercise performance in a hot environment.
Collapse
|
11
|
Siebenmann C, Dempsey JA. Hypoxic Training Is Not Beneficial in Elite Athletes. Med Sci Sports Exerc 2020; 52:519-522. [PMID: 31939915 DOI: 10.1249/mss.0000000000002141] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Jerome A Dempsey
- Department Population Health Sciences, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
12
|
Mujika I, Sharma AP, Stellingwerff T. Contemporary Periodization of Altitude Training for Elite Endurance Athletes: A Narrative Review. Sports Med 2020; 49:1651-1669. [PMID: 31452130 DOI: 10.1007/s40279-019-01165-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Since the 1960s there has been an escalation in the purposeful utilization of altitude to enhance endurance athletic performance. This has been mirrored by a parallel intensification in research pursuits to elucidate hypoxia-induced adaptive mechanisms and substantiate optimal altitude protocols (e.g., hypoxic dose, duration, timing, and confounding factors such as training load periodization, health status, individual response, and nutritional considerations). The majority of the research and the field-based rationale for altitude has focused on hematological outcomes, where hypoxia causes an increased erythropoietic response resulting in augmented hemoglobin mass. Hypoxia-induced non-hematological adaptations, such as mitochondrial gene expression and enhanced muscle buffering capacity may also impact athletic performance, but research in elite endurance athletes is limited. However, despite significant scientific progress in our understanding of hypobaric hypoxia (natural altitude) and normobaric hypoxia (simulated altitude), elite endurance athletes and coaches still tend to be trailblazers at the coal face of cutting-edge altitude application to optimize individual performance, and they already implement novel altitude training interventions and progressive periodization and monitoring approaches. Published and field-based data strongly suggest that altitude training in elite endurance athletes should follow a long- and short-term periodized approach, integrating exercise training and recovery manipulation, performance peaking, adaptation monitoring, nutritional approaches, and the use of normobaric hypoxia in conjunction with terrestrial altitude. Future research should focus on the long-term effects of accumulated altitude training through repeated exposures, the interactions between altitude and other components of a periodized approach to elite athletic preparation, and the time course of non-hematological hypoxic adaptation and de-adaptation, and the potential differences in exercise-induced altitude adaptations between different modes of exercise.
Collapse
Affiliation(s)
- Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Odontology, University of the Basque Country, Leioa, Basque Country, Spain. .,Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile.
| | - Avish P Sharma
- Griffith Sports Physiology and Performance, School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,Triathlon Australia, Burleigh Heads, QLD, Australia
| | - Trent Stellingwerff
- Canadian Sport Institute-Pacific, Victoria, BC, Canada.,Department of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
13
|
Oberholzer L, Siebenmann C, Mikkelsen CJ, Junge N, Piil JF, Morris NB, Goetze JP, Meinild Lundby AK, Nybo L, Lundby C. Hematological Adaptations to Prolonged Heat Acclimation in Endurance-Trained Males. Front Physiol 2019; 10:1379. [PMID: 31749713 PMCID: PMC6842970 DOI: 10.3389/fphys.2019.01379] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/18/2019] [Indexed: 11/13/2022] Open
Abstract
Heat acclimation is associated with plasma volume (PV) expansion that occurs within the first week of exposure. However, prolonged effects on hemoglobin mass (Hbmass) are unclear as intervention periods in previous studies have not allowed sufficient time for erythropoiesis to manifest. Therefore, Hbmass, intravascular volumes, and blood volume (BV)-regulating hormones were assessed with 5½ weeks of exercise-heat acclimation (HEAT) or matched training in cold conditions (CON) in 21 male cyclists [(mean ± SD) age: 38 ± 9 years, body weight: 80.4 ± 7.9 kg, VO2peak: 59.1 ± 5.2 ml/min/kg]. HEAT (n = 12) consisted of 1 h cycling at 60% VO2peak in 40°C for 5 days/week in addition to regular training, whereas CON (n = 9) trained exclusively in cold conditions (<15°C). Before and after the intervention, Hbmass and intravascular volumes were assessed by carbon monoxide rebreathing, while reticulocyte count and BV-regulating hormones were measured before, after 2 weeks and post intervention. Total training volume during the intervention was similar (p = 0.282) between HEAT (509 ± 173 min/week) and CON (576 ± 143 min/week). PV increased (p = 0.004) in both groups, by 303 ± 345 ml in HEAT and 188 ± 286 ml in CON. There was also a main effect of time (p = 0.038) for Hbmass with +34 ± 36 g in HEAT and +2 ± 33 g in CON and a tendency toward a higher increase in Hbmass in HEAT compared to CON (time × group interaction: p = 0.061). The Hbmass changes were weakly correlated to alterations in PV (r = 0.493, p = 0.023). Reticulocyte count and BV-regulating hormones remained unchanged for both groups. In conclusion, Hbmass was slightly increased following prolonged training in the heat and although the mechanistic link remains to be revealed, the increase could represent a compensatory response in erythropoiesis secondary to PV expansion.
Collapse
Affiliation(s)
- Laura Oberholzer
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christoph Siebenmann
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| | - C. Jacob Mikkelsen
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicklas Junge
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob F. Piil
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nathan B. Morris
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens P. Goetze
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Kristine Meinild Lundby
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lars Nybo
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Lundby
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Innland Norway University of Applied Sciences, Lillehammer, Norway
| |
Collapse
|
14
|
Oberholzer L, Siebenmann C, Mikkelsen CJ, Junge N, Piil JF, Morris NB, Goetze JP, Meinild Lundby AK, Nybo L, Lundby C. Hematological Adaptations to Prolonged Heat Acclimation in Endurance-Trained Males. Front Physiol 2019. [PMID: 31749713 DOI: 10.3389/fphys.2019.01379, 10.3389/fpls.2019.01379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Heat acclimation is associated with plasma volume (PV) expansion that occurs within the first week of exposure. However, prolonged effects on hemoglobin mass (Hbmass) are unclear as intervention periods in previous studies have not allowed sufficient time for erythropoiesis to manifest. Therefore, Hbmass, intravascular volumes, and blood volume (BV)-regulating hormones were assessed with 5½ weeks of exercise-heat acclimation (HEAT) or matched training in cold conditions (CON) in 21 male cyclists [(mean ± SD) age: 38 ± 9 years, body weight: 80.4 ± 7.9 kg, VO2peak: 59.1 ± 5.2 ml/min/kg]. HEAT (n = 12) consisted of 1 h cycling at 60% VO2peak in 40°C for 5 days/week in addition to regular training, whereas CON (n = 9) trained exclusively in cold conditions (<15°C). Before and after the intervention, Hbmass and intravascular volumes were assessed by carbon monoxide rebreathing, while reticulocyte count and BV-regulating hormones were measured before, after 2 weeks and post intervention. Total training volume during the intervention was similar (p = 0.282) between HEAT (509 ± 173 min/week) and CON (576 ± 143 min/week). PV increased (p = 0.004) in both groups, by 303 ± 345 ml in HEAT and 188 ± 286 ml in CON. There was also a main effect of time (p = 0.038) for Hbmass with +34 ± 36 g in HEAT and +2 ± 33 g in CON and a tendency toward a higher increase in Hbmass in HEAT compared to CON (time × group interaction: p = 0.061). The Hbmass changes were weakly correlated to alterations in PV (r = 0.493, p = 0.023). Reticulocyte count and BV-regulating hormones remained unchanged for both groups. In conclusion, Hbmass was slightly increased following prolonged training in the heat and although the mechanistic link remains to be revealed, the increase could represent a compensatory response in erythropoiesis secondary to PV expansion.
Collapse
Affiliation(s)
- Laura Oberholzer
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christoph Siebenmann
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| | - C Jacob Mikkelsen
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicklas Junge
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob F Piil
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nathan B Morris
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Kristine Meinild Lundby
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lars Nybo
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Lundby
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Innland Norway University of Applied Sciences, Lillehammer, Norway
| |
Collapse
|
15
|
Bejder J, Nordsborg NB. Response. Exerc Sport Sci Rev 2018; 46:272. [PMID: 30216293 DOI: 10.1249/jes.0000000000000165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Jacob Bejder
- Department of Nutrition Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
16
|
Brocherie F, Millet GP. "Live High-Train Low" Paradigm: Moving the Debate Forward. Exerc Sport Sci Rev 2018; 46:271. [PMID: 30216292 DOI: 10.1249/jes.0000000000000164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French Institute of Sport (INSEP), Paris, France Institute of Sport Sciences (ISSUL), University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|