1
|
Helton GL, Cameron KL, Goss DL, Florkiewicz E. Association Between Running Characteristics and Lower Extremity Musculoskeletal Injuries in United States Military Academy Cadets. Orthop J Sports Med 2025; 13:23259671241296148. [PMID: 39839978 PMCID: PMC11748144 DOI: 10.1177/23259671241296148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 01/23/2025] Open
Abstract
Background Running-related overuse injuries are common among recreational runners; however, there is currently little prospective research investigating the role of running characteristics on overuse injury development. Purpose To investigate the relationship between running characteristics and lower extremity musculoskeletal injury (MSKI). Study Design Cohort study; Level of evidence, 2. Methods The study included 827 incoming cadets of the class of 2020 at the United States Military Academy. Before cadet basic training, running spatiotemporal parameters (stride length, ground contact time, and cadence) were recorded for each participant, and foot-strike pattern was analyzed. Demographic data were recorded and analyzed as potential covariates. Lower extremity MSKIs sustained over the 9 weeks of cadet basic training were documented. Kaplan-Meier survival curves were estimated, with time to incident lower extremity MSKI as the primary outcome, by level of the independent predictor variables. Risk factors or potential covariates were carried forward into multivariate Cox proportional hazards regression models. Results Approximately 18.1% of participants incurred a lower extremity MSKI resulting in ≥3 days of activity limitation during cadet basic training. Univariate analysis indicated that participants with the shortest stride length (<133.0 cm) were 39% more likely to incur any lower extremity MSKI and 45% more likely to incur an overuse MSKI than those with the longest stride length (>158.5 cm), and that participants with the longest ground contact time (>0.42 seconds) were twice as likely to incur any MSKI than those with the shortest contact time (<0.28 seconds). After adjusting for sex, weekly distance running 3 months before cadet basic training, and history of injury, multivariate regression analysis indicated that participants with the longest contact times were significantly more likely to incur overuse lower extremity MSKI than those with the shortest contact times (hazard ratio, 2.15; 95% CI, 1.06-4.37). There was no significant difference in risk of MSKI associated with foot-strike pattern or cadence. Conclusion Study participants running with the longest ground contact times were 2.15 times more likely to incur an overuse lower extremity MSKI during cadet basic training than those with the shortest contact times. Also, study participants with the shortest stride length were 45% more likely to incur an overuse MSKI than those with the longest stride length.
Collapse
Affiliation(s)
- Gary L. Helton
- Moncrief Army Health Clinic, Fort Jackson, South Carolina, USA
| | - Kenneth L. Cameron
- Keller Army Hospital, United States Military Academy, West Point, New York, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Donald L. Goss
- Department of Physical Therapy, High Point University, High Point, North Carolina, USA
| | - Erin Florkiewicz
- Rocky Mountain University of Health Professions, Provo, Utah, USA
| |
Collapse
|
2
|
Chabot M, Thibault-Piedboeuf A, Nault ML, Roy JS, Dixon PC, Simoneau M. Influence of Sudden Changes in Foot Strikes on Loading Rate Variability in Runners. SENSORS (BASEL, SWITZERLAND) 2024; 24:8163. [PMID: 39771897 PMCID: PMC11679124 DOI: 10.3390/s24248163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Foot strike patterns influence vertical loading rates during running. Running retraining interventions often include switching to a new foot strike pattern. Sudden changes in the foot strike pattern may be uncomfortable and may lead to higher step-to-step variability. This study evaluated the effects of running with an imposed and usual foot strike on vertical loading rate variability and amplitude. Twenty-seven participants (16 men and 11 women; age range: 18-30 years) ran on an instrumented treadmill with their usual foot strike for 10 min. Then, the participants were instructed to run with an unusual foot strike for 6 min. We calculated the vertical instantaneous and vertical average loading rates and their variances over 200 steps to quantify vertical loading rate variability. We also calculated the amplitude and variability of the shank acceleration peak using an inertial measurement unit. The vertical loading rate and shank acceleration peak amplitudes were higher when running with a rearfoot strike, regardless of the foot strike conditions (i.e., usual or imposed). The vertical loading rate and shank acceleration peak variability were higher when running with an imposed rearfoot strike than when running with a usual forefoot strike. No differences were found in the vertical loading rate and shank acceleration peak variabilities between the imposed forefoot strike and usual rearfoot strike conditions. This study offers compelling evidence that adopting an imposed (i.e., unusual) rearfoot strike amplifies loading rate and shank acceleration peak variabilities.
Collapse
Affiliation(s)
- Maxime Chabot
- Faculty of Medicine, Department of Kinesiology, Université Laval, Quebec City, QC G1V OA6, Canada; (M.C.)
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, QC G1M 2S8, Canada
| | - Alexandre Thibault-Piedboeuf
- Faculty of Medicine, Department of Kinesiology, Université Laval, Quebec City, QC G1V OA6, Canada; (M.C.)
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, QC G1M 2S8, Canada
| | - Marie-Lyne Nault
- Azrieli Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Jean-Sébastien Roy
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, QC G1M 2S8, Canada
- Faculty of Medicine, School of Rehabilitation Sciences, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Philippe C. Dixon
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Martin Simoneau
- Faculty of Medicine, Department of Kinesiology, Université Laval, Quebec City, QC G1V OA6, Canada; (M.C.)
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec City, QC G1M 2S8, Canada
| |
Collapse
|
3
|
Martinez E, Hoogkamer W, Powell DW, Paquette MR. The Influence of "Super-Shoes" and Foot Strike Pattern on Metabolic Cost and Joint Mechanics in Competitive Female Runners. Med Sci Sports Exerc 2024; 56:1337-1344. [PMID: 38376997 DOI: 10.1249/mss.0000000000003411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
PURPOSE The objective of this study is to assess the influence of "super-shoes" on metabolic cost and joint mechanics in competitive female runners and to understand how foot strike pattern may influence the footwear effects. METHODS Eighteen competitive female runners ran four 5-min bouts on a force instrumented treadmill at 12.9 km·h -1 in 1) Nike Vaporfly Next% 2™ (SUPER) and 2) Nike Pegasus 38™ (CON) in a randomized and mirrored order. RESULTS Metabolic power was improved by 4.2% ( P < 0.001; d = 0.43) and metatarsophalangeal (MTP) negative work ( P < 0.001; d = 1.22), ankle negative work ( P = 0.001; d = 0.67), and ankle positive work ( P < 0.001; d = 0.97) were all smaller when running in SUPER compared with CON. There was no correlation between foot strike pattern and the between-shoe (CON to SUPER) percentage change for metabolic power ( r = 0.093, P = 0.715). CONCLUSIONS Metabolic power improved by 4.2% in "super-shoes" (but only by ~3.2% if controlling for shoe mass differences) in this cohort of competitive female runners, which is a smaller improvement than previously observed in men. The reduced mechanical demand at the MTP and ankle in "super-shoes" are consistent with previous literature and may explain or contribute to the metabolic improvements observed in "super-shoes"; however, foot strike pattern was not a moderating factor for the metabolic improvements of "super-shoes." Future studies should directly compare the metabolic response among different types of "super-shoes" between men and women.
Collapse
Affiliation(s)
| | - Wouter Hoogkamer
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA
| | | | - Max R Paquette
- College of Health Sciences, University of Memphis, Memphis, TN
| |
Collapse
|
4
|
Gunterstockman BM, Carmel J, Bechard L, Yoder A, Farrokhi S. Rearfoot Strike Run Retraining for Achilles Tendon Pain: A Two-patient Case Series. Mil Med 2024; 189:e942-e947. [PMID: 37975221 DOI: 10.1093/milmed/usad436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Running-related injuries are prevalent in the military and are often related to physical fitness test training. Non-rearfoot striking while running is known to increase the risk of Achilles tendon injuries because of the high eccentric energy absorption by the elastic components of the planarflexor muscle-tendon complex. However, there is limited evidence to suggest benefits of converting runners with Achilles tendon pain to use a rearfoot strike. METHODS This is a case series of two active-duty Service members with chronic, running-related Achilles tendon pain that utilized a natural non-rearfoot strike pattern. Both patients were trained to utilize a rearfoot strike while running through the use of real-time visual feedback from wearable sensors. RESULTS The trained rearfoot strike pattern was retained for over one month after the intervention, and both patients reported improvements in pain and self-reported function. CONCLUSIONS This case series demonstrated the clinical utility of converting two non-rearfoot strike runners to a rearfoot strike pattern to decrease eccentric demands on the plantarflexors and reduce Achilles tendon pain while running.
Collapse
Affiliation(s)
| | | | - Laura Bechard
- Naval Medical Center San Diego, San Diego, CA 92134, USA
- Henry Jackson Foundation, Bethesda, MD 20817, USA
| | - Adam Yoder
- Henry Jackson Foundation, Bethesda, MD 20817, USA
- DoD-VA Extremity Trauma and Amputation Center of Excellence, San Diego, CA 92134, USA
| | - Shawn Farrokhi
- Naval Medical Center San Diego, San Diego, CA 92134, USA
- DoD-VA Extremity Trauma and Amputation Center of Excellence, San Diego, CA 92134, USA
- Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
5
|
Wager JC, Challis JH. Mechanics of the foot and ankle joints during running using a multi-segment foot model compared with a single-segment model. PLoS One 2024; 19:e0294691. [PMID: 38349945 PMCID: PMC10863889 DOI: 10.1371/journal.pone.0294691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/07/2023] [Indexed: 02/15/2024] Open
Abstract
The primary purpose of this study was to compare the ankle joint mechanics, during the stance phase of running, computed with a multi-segment foot model (MULTI; three segments) with a traditional single segment foot model (SINGLE). Traditional ankle joint models define all bones between the ankle and metatarsophalangeal joints as a single rigid segment (SINGLE). However, this contrasts with the more complex structure and mobility of the human foot, recent studies of walking using more multiple-segment models of the human foot have highlighted the errors arising in ankle kinematics and kinetics by using an oversimplified model of the foot. This study sought to compare whether ankle joint kinematics and kinetics during running are similar when using a single segment foot model (SINGLE) and a multi-segment foot model (MULTI). Seven participants ran at 3.1 m/s while the positions of markers on the shank and foot were tracked and ground reaction forces were measured. Ankle joint kinematics, resultant joint moments, joint work, and instantaneous joint power were determined using both the SINGLE and MULTI models. Differences between the two models across the entire stance phase were tested using statistical parametric mapping. During the stance phase, MULTI produced ankle joint angles that were typically closer to neutral and angular velocities that were reduced compared with SINGLE. Instantaneous joint power (p<0.001) and joint work (p<0.001) during late stance were also reduced in MULTI compared with SINGLE demonstrating the importance of foot model topology in analyses of the ankle joint during running. This study has highlighted that considering the foot as a rigid segment from ankle to MTP joint produces poor estimates of the ankle joint kinematics and kinetics, which has important implications for understanding the role of the ankle joint in running.
Collapse
Affiliation(s)
- Justin C. Wager
- Department of Physical Therapy and Human Movement Science, Sacred Heart University, Fairfield, Connecticut, United States of America
| | - John H. Challis
- Biomechanics Laboratory, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
6
|
Wei Z, Hou X, Qi Y, Wang L. Influence of foot strike patterns and cadences on patellofemoral joint stress in male runners with patellofemoral pain. Phys Ther Sport 2024; 65:1-6. [PMID: 37976905 DOI: 10.1016/j.ptsp.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES This study aimed to determine the effect of foot strike patterns and cadences in male runners with patellofemoral pain (PFP). DESIGN Cross-sectional study. SETTING Biomechanics lab. METHODS 20 male runners with PFP were instructed to randomly complete six running conditions (three cadence conditions in rearfoot strike pattern (RFS) or forefoot strike (FFS)) under a preferred running speed. MAIN OUTCOME MEASURES The primary outcomes were peak knee joint and moment, and secondary outcomes were patellofemoral joint stress. RESULTS Running with increased cadence has a lower flexion angle (P = 0.027, η2 = 0.45), lower extension moment (P = 0.011, η2 = 0.29), lower internal rotation moment (P = 0.040, η2 = 0.17), lower patellofemoral stress (P = 0.029, η2 = 0.52) than preferred cadence. FFS running performed significantly lower flexion angle (P = 0.003, η2 = 0.39), lower extension moment (P < 0.001, η2 = 0.91), lower adduction moment (P = 0.020, η2 = 0.25) lower patellofemoral stress (P < 0.001, η2 = 0.81) than RFS running for all cadence. CONCLUSIONS Preliminary findings provide new perspectives for male runners with PFP to unload patellofemoral joint stress in managing PFP through the combination of the FFS pattern and increased cadence.
Collapse
Affiliation(s)
- Zhen Wei
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Shanghai, 200438, China.
| | - Xihe Hou
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Shanghai, 200438, China; School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| | - Yujie Qi
- Shanghai Nanxiang Community Health Service Center, Shanghai, China.
| | - Lin Wang
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
7
|
Kearns ZC, DeVita P, Paquette MR. Gender differences on the age-related distal-to-proximal shift in joint kinetics during running. Scand J Med Sci Sports 2024; 34:e14552. [PMID: 38116683 DOI: 10.1111/sms.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/10/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
The increased running participation in women and men over 40 years has contributed to scientific interest on the age-related and gender differences in running performance and biomechanics over the last decade. Gender differences in running biomechanics have been studied extensively in young runners, with inconsistent results. Understanding how gender influences the age-related differences in running mechanics could help develop population-specific training interventions or footwear to address any potential different mechanical demands. The purpose of this study was to assess gender and age effects on lower limb joint mechanics while running. Middle-aged men (57 ± 5 years) and women (57 ± 8 years) and young men (28 ± 6 years) and women (30 ± 6 years) completed five overground running trials at a set speed of 2.7 m/s while lower limb kinematics and ground reaction forces were collected. Lower limb joint kinetics were computed, normalized to body mass and compared between age and gender groups using two-factor analyses of variance. Women reported slower average running paces than men and middle-aged runners reported slower running paces than young runners. We confirmed that young runners run with more ankle, but less hip positive work and peak positive power compared to middle-aged runners (i.e., age-related distal-to-proximal shift in joint kinetics). We also present a novel finding that women run with more ankle, but less hip peak positive power compared to men suggesting an ankle dominant strategy in women at a preferred and comfortable running pace. However, the age-related distal-to-proximal shift in joint kinetics was not different between genders.
Collapse
Affiliation(s)
- Zoey C Kearns
- College of Health Sciences, University of Memphis, Memphis, Tennessee, USA
| | - Paul DeVita
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, USA
| | - Max R Paquette
- College of Health Sciences, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
8
|
Beltran RT, Powell DW, Greenwood D, Paquette MR. The Influence of Footwear Longitudinal Bending Stiffness on Running Economy and Biomechanics in Older Runners. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:1062-1072. [PMID: 36094795 DOI: 10.1080/02701367.2022.2114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Purpose: This study assessed the effects of footwear longitudinal bending stiffness on running economy and biomechanics of rearfoot striking older runners. Methods: Nine runners over 60 years of age completed two running bouts at their preferred running pace in each of three footwear conditions: low (4.4 ± 1.8 N·m-1), moderate (5.7 ± 1.7 N·m-1), and high (6.4 ± 1.6 N·m-1) bending stiffness. Testing order was randomized and a mirror protocol was used (i.e., A,B,C,C,B,A). Expired gases, lower limb kinematics, and ground reaction forces were collected simultaneously and lower limb joint kinetics, running economy (i.e., VO2), leg stiffness, and spatio-temporal variables were calculated. Results: Running economy was not different among stiffness conditions (p = 0.60, p = 0.53 [mass adjusted]). Greater footwear stiffness reduced step length (p = 0.046) and increased peak vertical ground reaction force (p = 0.019) but did not change peak ankle plantarflexor torque (p = 0.65), peak positive ankle power (p = 0.48), ankle positive work (p = 0.86), propulsive force (p = 0.081), and leg stiffness (p = 0.46). Moderate footwear stiffness yielded greater peak negative knee power compared to low (p = 0.04) and high (p = 0.03) stiffness. Conclusions: These novel findings demonstrate that increasing footwear longitudinal bending stiffness using flat carbon fiber inserts does not improve running economy and generally does not alter lower limb joint mechanics of rearfoot strike runners over 60 years. Future studies should investigate how other footwear characteristics (e.g., midsole material, plate location, and sole curvature) influence economy and biomechanics in this population.
Collapse
|
9
|
McNally T, Edwards S, Halaki M, O'Dwyer N, Pizzari T, Blyton S. Quantifying demands on the hamstrings during high-speed running: A systematic review and meta-analysis. Scand J Med Sci Sports 2023; 33:2423-2443. [PMID: 37668346 DOI: 10.1111/sms.14478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Hamstring strain injury (HSI) remains a performance, economic, and player availability burden in sport. High-speed running (HSR) is cited as a common mechanism for HSI. While evidence exists regarding the high physical demands on the hamstring muscles in HSR, meta-analytical synthesis of related activation and kinetic variables is lacking. METHODS A systematic search of Medline, Embase, Scopus, CINAHL, SportDiscus, and Cochrane library databases was conducted in accordance with the PRISMA 2020 guidelines. Studies reporting hamstring activation (electromyographic [EMG]) or hamstring muscle/related joint kinetics were included where healthy adult participants ran at or beyond 60% of maximum speed (activation studies) or 4 m per second (m/s) (kinetic studies). RESULTS A total of 96 studies met the inclusion criteria. Run intensities were categorized as "slow," "moderate," or "fast" in both activation and kinetic based studies with appropriate relative, and raw measures, respectively. Meta-analysis revealed pooled mean lateral hamstring muscle activation levels of 108.1% (95% CI: 84.4%-131.7%) of maximal voluntary isometric contraction (MVIC) during "fast" running. Meta-analysis found swing phase peak knee flexion internal moment and power at 2.2 Newton meters/kilogram (Nm/kg) (95% CI: 1.9-2.5) and 40.3 Watts/kilogram (W/kg) (95% CI: 31.4-49.2), respectively. Hip extension peak moment and power was estimated as 4.8 Nm/kg (95% CI: 3.9-5.7) and 33.1 W/kg (95% CI: 17.4-48.9), respectively. CONCLUSIONS As run intensity/speed increases, so do the activation and kinetic demands on the hamstrings. The presented data will enable clinicians to incorporate more objective measures into the design of injury prevention and return-to-play decision-making strategies.
Collapse
Affiliation(s)
- Timothy McNally
- Faculty of Medicine & Health, Sydney School of Health Sciences, Discipline of Exercise & Sport Science, Sydney, New South Wales, Australia
| | - Suzi Edwards
- Faculty of Medicine & Health, Sydney School of Health Sciences, Discipline of Exercise & Sport Science, Sydney, New South Wales, Australia
| | - Mark Halaki
- Faculty of Medicine & Health, Sydney School of Health Sciences, Discipline of Exercise & Sport Science, Sydney, New South Wales, Australia
| | - Nicholas O'Dwyer
- Faculty of Medicine & Health, Sydney School of Health Sciences, Discipline of Exercise & Sport Science, Sydney, New South Wales, Australia
| | - Tania Pizzari
- School of Allied Health, La Trobe University, Melbourne, Victoria, Australia
| | - Sarah Blyton
- School of Health Sciences (Physiotherapy), University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
10
|
Kovács B, Petridis L, Négyesi J, Sebestyén Ö, Jingyi Y, Zhang J, Gu Y, Tihanyi J. An Acute Transition from Rearfoot to Forefoot Strike does not Induce Major Changes in Plantarflexor Muscles Activation for Habitual Rearfoot Strike Runners. J Sports Sci Med 2023; 22:512-525. [PMID: 37711699 PMCID: PMC10499148 DOI: 10.52082/jssm.2023.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Footstrike pattern has received increased attention within the running community because there is a common belief that forefoot strike running (FFS) is more advantageous (i.e., improve performance and reduce running injuries) than rearfoot strike running (RFS) in distance running. Literature reports suggest greater knee joint flexion magnitude and initial knee angle during stance in FFS compared with RFS running We examined the EMG activation of the triceps surae muscles during an acute transition from RFS to FFS strike. We tested the hypothesis that due to larger knee flexion in FFS the gastrocnemius muscles possibly decrease their EMG activity because muscle fascicles operate under unfavorable conditions. Fourteen competitive healthy middle- and long-distance runners who were habitual RFS runners ran on a treadmill at three speeds: 12, 14, and 16 km·h-1. Each running speed was performed with both FFS and RFS patterns. Lower limb kinematics in the sagittal plane and normalized electromyography (EMG) activity of medial gastrocnemius proximal, middle and distal regions, lateral gastrocnemius and soleus muscles were compared between footstrike patterns and running speeds across the stride cycle. Contrary to our expectations, the knee joint range of motion was similar in FFS and RFS running. However, the sagittal plane ankle joint motion was greater (p < 0.01) while running with FFS, resulting in a significantly greater muscle-tendon unit lengthening (p < 0.01) in FFS compared with RFS running. In addition, medial and lateral gastrocnemius showed higher EMG activity in FFS compared with RFS running in the late swing and early stance but only for a small percentage of the stride cycle. However, strike patterns and running speed failed to induce region-specific activation differences within the medial gastrocnemius muscle. Overall, well-trained RFS runners are able to change to FFS running by altering only the ankle joint kinematics without remarkably changing the EMG activity pattern.
Collapse
Affiliation(s)
- Bálint Kovács
- Ningbo University, Faculty of Sport Science, Ningbo, China
- Department of Kinesiology, Hungarian University of Sport Sciences, Budapest, Hungary
| | - Leonidas Petridis
- Research Centre for Sport Physiology, Hungarian University of Sport Sciences, Hungary
| | - János Négyesi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Örs Sebestyén
- Department of Kinesiology, Hungarian University of Sport Sciences, Budapest, Hungary
| | - Ye Jingyi
- Ningbo University, Faculty of Sport Science, Ningbo, China
| | - Jingfeng Zhang
- University of Chinese Academy of Sciences, Department of Radiology, HwaMei Hospital, Ningbo, China
| | - Yaodong Gu
- Ningbo University, Faculty of Sport Science, Ningbo, China
| | - József Tihanyi
- Department of Kinesiology, Hungarian University of Sport Sciences, Budapest, Hungary
| |
Collapse
|
11
|
Powers CM, Straub RK. Quadriceps strength symmetry predicts vertical ground reaction force symmetry during running in patients who have undergone ACL reconstruction. Phys Ther Sport 2022; 57:89-94. [PMID: 35961193 DOI: 10.1016/j.ptsp.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine whether quadriceps strength symmetry can predict peak vertical ground reaction force (vGRF) running force symmetry in patients who have undergone ACL reconstruction (ACLR). We also sought to determine a cutoff for quadriceps strength symmetry to identify patients at risk for vGRF running asymmetry. DESIGN Retrospective cross-sectional. SETTING Clinical facility. METHODS Bilateral quadriceps strength and vGRF data during running were obtained from 79 patients 26-30 weeks post ACLR. Linear regression was used to determine if quadriceps strength symmetry predicted peak vGRF running force symmetry. Classification and regression tree (CART) analysis was used to determine the cutoff value for quadriceps strength symmetry to identify patients at risk for vGRF running asymmetry. RESULTS Increased quadriceps strength symmetry predicted increased vGRF running symmetry (R2 = 0.20). CART analysis revealed that patients with quadriceps strength symmetry less than or equal to 88% were at highest risk for vGRF running asymmetry (R2 = 26%). CONCLUSION Greater quadriceps strength symmetry is predictive of greater vGRF running force symmetry in patients who have undergone ACLR. This finding highlights the need for clinicians to consider the degree of quadriceps strength symmetry before initiating a return to running program.
Collapse
Affiliation(s)
- Christopher M Powers
- University of Southern California, Division of Biokinesiology & Physical Therapy, Los Angeles, CA, USA.
| | - Rachel K Straub
- University of Southern California, Division of Biokinesiology & Physical Therapy, Los Angeles, CA, USA
| |
Collapse
|
12
|
Gonsales da Cruz Filho E, Arruda Moura F, Rico Bini R. Foot tracking can be an alternative to determine foot strike and take-off during vertical jumps. Sports Biomech 2022:1-10. [PMID: 35949053 DOI: 10.1080/14763141.2022.2109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Determining foot strike and take-off during vertical jumps is essential to calculate a range of performance measures, which normally requires the use of expensive equipment such as force platforms. This study evaluated whether tracking the foot centre of mass(CoM) and hallux could be suitable alternatives to determine foot strike and take-off during jumps. Thirteen recreational runners performed six unilateral jumps. Foot strike and take-off instants were observed using three algorithms from foot CoM, pelvis CoM and the hallux marker and results were compared with data determined by the force platform. Bland-Altman method and Cohen effect sizes were used to assess the differences between methods. For foot strike, the difference between the foot CoM and the force platform (12 ms, d < 0.01) was smaller than using the pelvis CoM (46 ms, d < 0.01) and similar to the hallux (16 ms, d < 0.01). For the take-off, the foot CoM produced the smallest difference (i.e., 4 ms, d < 0.01; pelvis = 22 ms, d < 0.01 and hallux = 18 ms, d < 0.01). The foot CoM seems to yield the closest agreement with the force platform when determining foot strike and take-off during vertical jumps. However, the hallux marker can be used as an alternative to the foot CoM once corrected for mean bias.
Collapse
Affiliation(s)
| | - Felipe Arruda Moura
- Laboratory of Applied Biomechanics, State University of Londrina, Londrina, Brazil
| | - Rodrigo Rico Bini
- La Trobe Rural Health School, La Trobe University, Bendigo, Australia
| |
Collapse
|
13
|
Derie R, Van den Berghe P, Gerlo J, Bonnaerens S, Caekenberghe IV, Fiers P, De Clercq D, Segers V. Biomechanical adaptations following a music-based biofeedback gait retraining program to reduce peak tibial accelerations. Scand J Med Sci Sports 2022; 32:1142-1152. [PMID: 35398908 DOI: 10.1111/sms.14162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE The present study aimed to determine whether runners can reduce impact measures after a six-session in-the-field gait retraining program with real-time musical biofeedback on axial peak tibial acceleration (PTAa ) and identify the associated biomechanical adaptations. METHODS Twenty trained high-impact runners were assigned to either the biofeedback or the music-only condition. The biofeedback group received real-time feedback on the PTAa during the gait retraining program, whereas the music-only condition received a sham treatment. Three-dimensional gait analysis was conducted in the laboratory before (PRE) and within one week after completing the gait retraining program (POST). Subjects were instructed to replicate the running style from the last gait retraining session without receiving feedback while running overground at a constant speed of 2.9 m∙s-1 . RESULTS Only the biofeedback group showed significant reductions in both PTAa (∆x̅ = -26.9%, p = 0.006) and vertical instantaneous loading rate (∆x̅ = -29.2%, p = 0.003) from PRE to POST. In terms of biomechanical adaptations, two strategies were identified. Two subjects transitioned toward a more forefoot strike. The remaining eight subjects used a pronounced rearfoot strike and posteriorly inclined shank at initial contact combined with less knee extension at toe-off while reducing vertical excursion of the center of mass. CONCLUSIONS After completing a music-based biofeedback gait retraining program, runners can reduce impact while running overground in a laboratory. We identified two distinct self-selected strategies used by the participants to achieve reductions in impact.
Collapse
Affiliation(s)
- Rud Derie
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Pieter Van den Berghe
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Joeri Gerlo
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Senne Bonnaerens
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Ine Van Caekenberghe
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Pieter Fiers
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Dirk De Clercq
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Veerle Segers
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Gindre C, Breine B, Patoz A, Hébert-Losier K, Thouvenot A, Mourot L, Lussiana T. PIMP Your Stride: Preferred Running Form to Guide Individualized Injury Rehabilitation. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:880483. [PMID: 36188949 PMCID: PMC9397892 DOI: 10.3389/fresc.2022.880483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022]
Abstract
Despite the wealth of research on injury prevention and biomechanical risk factors for running related injuries, their incidence remains high. It was suggested that injury prevention and reconditioning strategies should consider spontaneous running forms in a more holistic view and not only the injury location or specific biomechanical patterns. Therefore, we propose an approach using the preferred running form assessed through the Volodalen® method to guide injury prevention, rehabilitation, and retraining exercise prescription. This approach follows three steps encapsulated by the PIMP acronym. The first step (P) refers to the preferred running form assessment. The second step (I) is the identification of inefficiency in the vertical load management. The third step (MP) refers to the movement plan individualization. The answers to these three questions are guidelines to create individualized exercise pathways based on our clinical experience, biomechanical data, strength conditioning knowledge, and empirical findings in uninjured and injured runners. Nevertheless, we acknowledge that further scientific justifications with appropriate clinical trials and mechanistic research are required to substantiate the approach.
Collapse
Affiliation(s)
- Cyrille Gindre
- Research and Development Department, Volodalen Swiss Sportlab, Aigle, Switzerland
| | - Bastiaan Breine
- Research and Development Department, Volodalen Swiss Sportlab, Aigle, Switzerland
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Aurélien Patoz
- Research and Development Department, Volodalen Swiss Sportlab, Aigle, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Kim Hébert-Losier
- Department of Sports Science, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
- Faculty of Health, Sport and Human Performance, University of Waikato, Adams Centre for High Performance, Tauranga, New Zealand
| | - Adrien Thouvenot
- Research and Development Department, Volodalen Swiss Sportlab, Aigle, Switzerland
- Research Unit EA3920 Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation Platform, University of Bourgogne Franche-Comté, Besançon, France
| | - Laurent Mourot
- Research Unit EA3920 Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation Platform, University of Bourgogne Franche-Comté, Besançon, France
- Division for Physical Education, Tomsk Polytechnic University, Tomsk, Russia
| | - Thibault Lussiana
- Research and Development Department, Volodalen Swiss Sportlab, Aigle, Switzerland
- Research Unit EA3920 Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation Platform, University of Bourgogne Franche-Comté, Besançon, France
- *Correspondence: Thibault Lussiana
| |
Collapse
|
15
|
Van den Berghe P, Breine B, Haeck E, De Clercq D. One hundred marathons in 100 days: Unique biomechanical signature and the evolution of force characteristics and bone density. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:347-357. [PMID: 33775883 PMCID: PMC9189712 DOI: 10.1016/j.jshs.2021.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/14/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND An extraordinary long-term running performance may benefit from low dynamic loads and a high load-bearing tolerance. An extraordinary runner (age = 55 years, height = 1.81 m, mass = 92 kg) scheduled a marathon a day for 100 consecutive days. His running biomechanics and bone density were investigated to better understand successful long-term running in the master athlete. METHODS Overground running gait analysis and bone densitometry were conducted before the marathon-a-day challenge and near its completion. The case's running biomechanics were compared pre-challenge to 31 runners who were matched by a similar foot strike pattern. RESULTS The case's peak vertical loading rate (Δx̄ = -61.9 body weight (BW)/s or -57%), peak vertical ground reaction force (Δx̄ = -0.38 BW or -15%), and peak braking force (Δx̄ = -0.118 BW or -31%) were remarkably lower (p < 0.05) than the control group at ∼3.3 m/s. The relatively low loading-related magnitudes were attributed to a remarkably high duty factor (0.41) at the evaluated speed. The foot strike angle of the marathoner (29.5°) was greater than that of the control group, affecting the peak vertical loading rate. Muscle powers in the lower extremity were also remarkably low in the case vs. controls: peak power of knee absorption (Δx̄ = -9.16 watt/kg or -48%) and ankle generation (Δx̄ = -3.17 watt/kg or -30%). The bone mineral density increased to 1.245 g/cm² (+2.98%) near completion of the challenge, whereas the force characteristics showed no statistically significant change. CONCLUSION The remarkable pattern of the high-mileage runner may be useful in developing or evaluating load-shifting strategies in distance running.
Collapse
Affiliation(s)
| | - Bastiaan Breine
- Department of Movement and Sports Sciences, Ghent University, Ghent 9000, Belgium
| | - Ella Haeck
- Department of Movement and Sports Sciences, Ghent University, Ghent 9000, Belgium
| | - Dirk De Clercq
- Department of Movement and Sports Sciences, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
16
|
Optimizing Whole-Body Kinematics During Single-Leg Jump Landing to Reduce Peak Abduction/Adduction and Internal Rotation Knee Moments: Implications for Anterior Cruciate Ligament Injury Risk. J Appl Biomech 2021; 37:432-439. [PMID: 34504045 DOI: 10.1123/jab.2020-0407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022]
Abstract
Knee abduction/adduction moment and knee internal rotation moment are known surrogate measures of anterior cruciate ligament (ACL) load during tasks like sidestepping and single-leg landing. Previous experimental literature has shown that a variety of kinematic strategies are associated or correlated with ACL injury risk; however, the optimal kinematic strategies needed to reduce peak knee moments and ACL injury are not well understood. To understand the complex, multifaceted kinematic factors underpinning ACL injury risk and to optimize kinematics to prevent the ACL injury, a musculoskeletal modeling and simulation experimental design was used. A 14-segment, 37-degree-of-freedom, dynamically consistent skeletal model driven by force/torque actuators was used to simulate whole-body single-leg jump landing kinematics. Using the residual reduction algorithm in OpenSim, whole-body kinematics were optimized to reduce the peak knee abduction/adduction and internal/external rotation moments simultaneously. This optimization was repeated across 30 single-leg jump landing trials from 10 participants. The general optimal kinematic strategy was to bring the knee to a more neutral alignment in the transverse plane and frontal plane (featured by reduced hip adduction angle and increased knee adduction angle). This optimized whole-body kinematic strategy significantly reduced the peak knee abduction/adduction and internal rotation moments, transferring most of the knee load to the hip.
Collapse
|
17
|
McSweeney SC, Grävare Silbernagel K, Gruber AH, Heiderscheit BC, Krabak BJ, Rauh MJ, Tenforde AS, Wearing SC, Zech A, Hollander K. Adolescent Running Biomechanics - Implications for Injury Prevention and Rehabilitation. Front Sports Act Living 2021; 3:689846. [PMID: 34514384 PMCID: PMC8432296 DOI: 10.3389/fspor.2021.689846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Global participation in running continues to increase, especially amongst adolescents. Consequently, the number of running-related injuries (RRI) in adolescents is rising. Emerging evidence now suggests that overuse type injuries involving growing bone (e.g., bone stress injuries) and soft tissues (e.g., tendinopathies) predominate in adolescents that participate in running-related sports. Associations between running biomechanics and overuse injuries have been widely studied in adults, however, relatively little research has comparatively targeted running biomechanics in adolescents. Moreover, available literature on injury prevention and rehabilitation for adolescent runners is limited, and there is a tendency to generalize adult literature to adolescent populations despite pertinent considerations regarding growth-related changes unique to these athletes. This perspective article provides commentary and expert opinion surrounding the state of knowledge and future directions for research in adolescent running biomechanics, injury prevention and supplemental training.
Collapse
Affiliation(s)
- Simon C. McSweeney
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Allison H. Gruber
- Department of Kinesiology, School of Public Health – Bloomington, Indiana University, Bloomington, IN, United States
| | - Bryan C. Heiderscheit
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI, United States
| | - Brian J. Krabak
- Department of Rehabilitation, Orthopedics and Sports Medicine, University of Washington and Seattle Childrens Hospital, Seattle, WA, United States
| | - Mitchell J. Rauh
- Doctor of Physical Therapy Program, San Diego State University, San Diego, CA, United States
| | - Adam S. Tenforde
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Scott C. Wearing
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Astrid Zech
- Department of Human Movement Science and Exercise Physiology, Institute of Sport Science, Friedrich Schiller University Jena, Jena, Germany
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, Faculty of Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
18
|
Au I, Ng L, Davey P, So M, Chan B, Li P, Wong W, Althorpe T, Stearne S, Cheung R. Comparison of foot strike sound between rearfoot, midfoot and forefoot strike runners. J Athl Train 2021; 56:1362-1366. [PMID: 34129668 DOI: 10.4085/1062-6050-0708.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT There are three common foot strike techniques in runners. Whether these techniques generate different sounds at the point of impact with the ground may influence lower limb kinetics. No previous studies have determined whether such relationships exist. OBJECTIVES To determine foot-ground impact sound characteristics and to compare the impact sound characteristics across foot strike techniques and the relationships between impact sound characteristics and vertical loading rates. DESIGN Cross-sectional study Setting: Gait analysis laboratory Patients or Other Participants: Thirty runners (50% female, age=23.5±4.0 yrs, mass=58.1±8.2kg, height=1.67±0.1m) completed overground running trials with rearfoot strike (RFS), midfoot strike (MFS) and forefoot strike (FFS) techniques in a gait analysis laboratory. MAIN OUTCOME MEASURE(S) Impact sound was measured by a shotgun microphone and the peak sound amplitude, median frequency and sound duration were analysed. Separate linear regression, clustering participants repeated measures were used to compare the sound parameters across foot strike techniques. Kinetic data was collected from a force plate and the vertical loading rates were calculated. Pearson's correlation was used to determine relationship between sound characteristic and kinetics. RESULTS Landing with a MFS or FFS resulted in greater peak sound amplitude (ps<0.001) and shorter sound duration (ps<0.001) than RFS. MFS exhibited the highest median frequency among the three foot strike patterns, followed by FFS (ps<0.001). We did not find a significant relationship between vertical loading rates and any impact sound parameters (ps>0.115). CONCLUSIONS The results suggest that impact sound characteristics may be used to differentiate foot strike patterns in runners. However, this did not relate to lower limb kinetics. Therefore, clinicians should not solely rely on impact sound to infer impact loading.
Collapse
Affiliation(s)
- Ivan Au
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Leo Ng
- School of Physiotherapy and Exercise Science, Curtin University, Perth, WA, Australia
| | - Paul Davey
- School of Physiotherapy and Exercise Science, Curtin University, Perth, WA, Australia
| | - Marco So
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Brian Chan
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Pinky Li
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Will Wong
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Tania Althorpe
- School of Physiotherapy and Exercise Science, Curtin University, Perth, WA, Australia.,West Coast Physiotherapy, City Beach, WA, Australia
| | - Sarah Stearne
- School of Physiotherapy and Exercise Science, Curtin University, Perth, WA, Australia
| | - Roy Cheung
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong.,School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
19
|
SWINNEN WANNES, MYLLE INE, HOOGKAMER WOUTER, DE GROOTE FRIEDL, VANWANSEELE BENEDICTE. Changing Stride Frequency Alters Average Joint Power and Power Distributions during Ground Contact and Leg Swing in Running. Med Sci Sports Exerc 2021; 53:2111-2118. [PMID: 33935233 DOI: 10.1249/mss.0000000000002692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Runners naturally adopt a stride frequency closely corresponding with the stride frequency that minimizes energy consumption. Although the concept of self-optimization is well recognized, we lack mechanistic insight into the association between stride frequency and energy consumption. Altering stride frequency affects lower extremity joint power; however, these alterations are different between joints, possibly with counteracting effects on the energy consumption during ground contact and swing. Here, we investigated the effects of changing stride frequency from a joint-level perspective. METHODS Seventeen experienced runners performed six running trials at five different stride frequencies (preferred stride frequency (PSF) twice, PSF ± 8%, PSF ± 15%) at 12 km·h-1. During each trial, we measured metabolic energy consumption and muscle activation, and collected kinematic and kinetic data, which allowed us to calculate average positive joint power using inverse dynamics. RESULTS With decreasing stride frequency, average positive ankle and knee power during ground contact increased (P < 0.01), whereas average positive hip power during leg swing decreased (P < 0.01). Average soleus muscle activation during ground contact also decreased with increasing stride frequency (P < 0.01). In addition, the relative contribution of positive ankle power to the total positive joint power during ground contact decreased (P = 0.01) with decreasing stride frequency, whereas the relative contribution of the hip during the full stride increased (P < 0.01) with increasing stride frequency. CONCLUSIONS Our results provide evidence for the hypothesis that the optimal stride frequency represents a trade-off between minimizing the energy consumption during ground contact, associated with higher stride frequencies, without excessively increasing the cost of leg swing or reducing the time available to produce the necessary forces.
Collapse
|
20
|
What are the Benefits and Risks Associated with Changing Foot Strike Pattern During Running? A Systematic Review and Meta-analysis of Injury, Running Economy, and Biomechanics. Sports Med 2021; 50:885-917. [PMID: 31823338 DOI: 10.1007/s40279-019-01238-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Running participation continues to increase. The ideal strike pattern during running is a controversial topic. Many coaches and therapists promote non-rearfoot strike (NRFS) running with a belief that it can treat and prevent injury, and improve running economy. OBJECTIVE The aims of this review were to synthesise the evidence comparing NRFS with rearfoot strike (RFS) running patterns in relation to injury and running economy (primary aim), and biomechanics (secondary aim). DESIGN Systematic review and meta-analysis. Consideration was given to within participant, between participant, retrospective, and prospective study designs. DATA SOURCES MEDLINE, EMBASE, CINAHL, and SPORTDiscus. RESULTS Fifty-three studies were included. Limited evidence indicated that NRFS running is retrospectively associated with lower reported rates of mild (standard mean difference (SMD), 95% CI 3.25, 2.37-4.12), moderate (3.65, 2.71-4.59) and severe (0.93, 0.32-1.55) repetitive stress injury. Studies prospectively comparing injury risk between strike patterns are lacking. Limited evidence indicated that running economy did not differ between habitual RFS and habitual NRFS runners at slow (10.8-11.0 km/h), moderate (12.6-13.5 km/h), and fast (14.0-15.0 km/h) speeds, and was reduced in the immediate term when an NRFS-running pattern was imposed on habitual RFS runners at slow (10.8 km/h; SMD = - 1.67, - 2.82 to - 0.52) and moderate (12.6 km/h; - 1.26, - 2.42 to - 0.10) speeds. Key biomechanical findings, consistently including both comparison between habitual strike patterns and following immediate transition from RFS to NRFS running, indicated that NRFS running was associated with lower average and peak vertical loading rate (limited-moderate evidence; SMDs = 0.72-2.15); lower knee flexion range of motion (moderate-strong evidence; SMDs = 0.76-0.88); reduced patellofemoral joint stress (limited evidence; SMDs = 0.63-0.68); and greater peak internal ankle plantar flexor moment (limited evidence; SMDs = 0.73-1.33). CONCLUSION The relationship between strike pattern and injury risk could not be determined, as current evidence is limited to retrospective findings. Considering the lack of evidence to support any improvements in running economy, combined with the associated shift in loading profile (i.e., greater ankle and plantarflexor loading) found in this review, changing strike pattern cannot be recommended for an uninjured RFS runner. PROSPERO REGISTRATION CRD42015024523.
Collapse
|
21
|
Muscle-Tendon Behavior and Kinetics in Gastrocnemius Medialis During Forefoot and Rearfoot Strike Running. J Appl Biomech 2021; 37:240-247. [PMID: 33771942 DOI: 10.1123/jab.2020-0229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022]
Abstract
The present study aimed to clarify the effect of the foot strike pattern on muscle-tendon behavior and kinetics of the gastrocnemius medialis during treadmill running. Seven male participants ran with 2 different foot strike patterns (forefoot strike [FFS] and rearfoot strike [RFS]), with a step frequency of 2.50 Hz and at a speed of 2.38 m/s for 45 seconds on a treadmill with an instrumented force platform. The fascicle behavior of gastrocnemius medialis was captured using a B-mode ultrasound system with a sampling rate of 75 Hz, and the mechanical work done and power exerted by the fascicle and tendon were calculated. At the initial contact, the fascicle length was significantly shorter in the FFS than in the RFS (P = .001). However, the fascicular velocity did not differ between strike patterns. Higher tendon stretch and recoil were observed in the FFS (P < .001 and P = .017, respectively) compared with the RFS. The fascicle in the positive phase performed the same mechanical work in both the FFS and RFS; however, the fascicle in the negative phase performed significantly greater work in the FFS than in the RFS (P = .001). RFS may be advantageous for requiring less muscular work and elastic energy in the series elastic element compared with the FFS.
Collapse
|
22
|
Kotsifaki A, Whiteley R, Van Rossom S, Korakakis V, Bahr R, Sideris V, Graham-Smith P, Jonkers I. Single leg hop for distance symmetry masks lower limb biomechanics: time to discuss hop distance as decision criterion for return to sport after ACL reconstruction? Br J Sports Med 2021; 56:249-256. [DOI: 10.1136/bjsports-2020-103677] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2021] [Indexed: 12/20/2022]
Abstract
BackgroundWe evaluated the lower limb status of athletes after anterior cruciate ligament reconstruction (ACLR) during the propulsion and landing phases of a single leg hop for distance (SLHD) task after they had been cleared to return to sport. We wanted to evaluate the biomechanical components of the involved (operated) and uninvolved legs of athletes with ACLR and compare these legs with those of uninjured athletes (controls).MethodsWe captured standard video-based three-dimensional motion and electromyography (EMG) in 26 athletes after ACLR and 23 healthy controls during SLHD and calculated lower limb and trunk kinematics. We calculated lower limb joint moments and work using inverse dynamics and computed lower limb muscle forces using an EMG-constrained musculoskeletal modelling approach. Between-limb (within ACLR athletes) and between-group differences (between ACLR athletes and controls) were evaluated using paired and independent sample t-tests, respectively.ResultsSignificant differences in kinematics (effect sizes ranging from 0.42 to 1.56), moments (0.39 to 1.08), and joint work contribution (0.55 to 1.04) were seen between the involved and uninvolved legs, as well as between groups. Athletes after ACLR achieved a 97%±4% limb symmetry index in hop distance but the symmetry in work done by the knee during propulsion was only 69%. During landing, the involved knee absorbed less work than the uninvolved, while the uninvolved knee absorbed more work than the control group. Athletes after ACLR compensated for lower knee work with greater hip work contribution and by landing with more hip flexion, anterior pelvis tilt, and trunk flexion.ConclusionSymmetry in performance on a SLHD test does not ensure symmetry in lower limb biomechanics. The distance hopped is a poor measure of knee function, and largely reflects hip and ankle function. Male athletes after ACLR selectively unload the involved limb but outperform controls on the uninvolved knee.
Collapse
|
23
|
Relationships Between Arch Height Flexibility and Medial-Lateral Ground Reaction Forces in Rearfoot and Forefoot Strike Runners. J Appl Biomech 2020; 37:118-121. [PMID: 33361488 DOI: 10.1123/jab.2020-0205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022]
Abstract
Higher medial-lateral forces have been reported in individuals with stiffer foot arches. However, this was in a small sample of military personnel who ran with a rearfoot strike pattern. Therefore, our purpose was to investigate whether runners, both rearfoot and forefoot strikers, show different associations between medial-lateral forces and arch stiffness. A group of 118 runners (80 rearfoot strikers and 38 forefoot strikers) were recruited. Ground reaction force data were collected during running on an instrumented treadmill. Arch flexibility was assessed as the difference in arch height from sitting to standing positions, and participants were classified into stiff/flexible groups. Group comparisons were performed for the ratio of medial:vertical and lateral:vertical impulses. In rearfoot strikers, runners with stiff arches demonstrated significantly higher medial:vertical impulse ratios (P = .036). Forefoot strikers also demonstrated higher proportions of medial forces; however, the mean difference did not reach statistical significance (P = .084). No differences were detected in the proportion of lateral forces between arch flexibility groups. Consistent with previous findings in military personnel, our results indicate that recreational runners with stiffer arches have a higher proportion of medial forces. Therefore, increasing foot flexibility may increase the ability to attenuate medial forces.
Collapse
|
24
|
Donelon TA, Dos'Santos T, Pitchers G, Brown M, Jones PA. Biomechanical Determinants of Knee Joint Loads Associated with Increased Anterior Cruciate Ligament Loading During Cutting: A Systematic Review and Technical Framework. SPORTS MEDICINE-OPEN 2020; 6:53. [PMID: 33136207 PMCID: PMC7606399 DOI: 10.1186/s40798-020-00276-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/02/2020] [Indexed: 01/13/2023]
Abstract
Background Cutting actions are associated with non-contact ACL injuries in multidirectional sports due to the propensity to generate large multiplanar knee joint loads (KJLs) that have the capacity to increase ACL loading and strain. Numerous studies have investigated the biomechanical determinants of KJLs in cutting tasks. The aim of this systematic review was to comprehensively review the literature regarding biomechanical determinants of KJLs during cutting, in order to develop a cutting technical framework alongside training recommendations for practitioners regarding KJL mitigation. Methods Databases (SPORTDiscus, Web of Science and PubMed) were systematically searched using a combination of the following terms: “Biomechanical determinants”, or “Knee abduction moment”, or “Technical determinants”, or “Knee loading”, or “Knee loads”, or “Mechanical determinants”, or “ACL strain”, or “Knee adduction moment”, or “Anterior tibial shear”, or “Knee internal rotation moment”, or “Knee valgus moment” AND “Change of direction”, or “Cutting manoeuvre”, or “Run and cut”, or “Run-and-cut”, or “Sidestepping”, or “Side-stepping”, or “Shuttle run”. Inclusion criteria were as follows: studies examining a cutting task < 110° with a preceding approach run that examined biomechanical determinants of KJLs using three-dimensional motion analysis. Results The search returned 6404 possibly eligible articles, and 6 identified through other sources. Following duplicate removal, 4421 titles and abstracts were screened, leaving 246 full texts to be screened for inclusion. Twenty-three full texts were deemed eligible for inclusion and identified numerous determinants of KJLs; 11 trunk, 11 hip, 7 knee, 3 multiplanar KJLs, 5 foot/ankle and 7 identifying ground reaction forces (GRFs) as determinants of KJLs. Conclusion Using the framework developed from the results, cutting KJLs can be mitigated through the following: reducing lateral foot-plant distances, thus lowering hip abduction and orientating the foot closer to neutral with a mid-foot or forefoot placement strategy; minimising knee valgus and hip internal rotation angles and motion at initial contact (IC) and weight acceptance (WA); avoiding and limiting lateral trunk flexion and attempt to maintain an upright trunk position or trunk lean into the intended direction; and finally, reducing GRF magnitude during WA, potentially by attenuation through increased knee flexion and emphasising a greater proportion of braking during the penultimate foot contact (PFC).
Collapse
Affiliation(s)
- Thomas A Donelon
- Room Af87, Section of Sport and Exercise Sciences, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1QU, UK.
| | - Thomas Dos'Santos
- Department of Sport and Exercise Science, Manchester Metropolitan University, Bonsall Street, Manchester, M15 6GX, UK
| | - Guy Pitchers
- Room Af87, Section of Sport and Exercise Sciences, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1QU, UK
| | - Mathew Brown
- Room Af87, Section of Sport and Exercise Sciences, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1QU, UK
| | - Paul A Jones
- School of Health Sciences, University of Salford, C702 Allerton Building, Salford, M6 6PU, UK
| |
Collapse
|
25
|
Lower leg muscle-tendon unit characteristics are related to marathon running performance. Sci Rep 2020; 10:17870. [PMID: 33087749 PMCID: PMC7578824 DOI: 10.1038/s41598-020-73742-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/15/2020] [Indexed: 01/10/2023] Open
Abstract
The human ankle joint and plantar flexor muscle–tendon unit play an important role in endurance running. It has been assumed that muscle and tendon interactions and their biomechanical behaviours depend on their morphological and architectural characteristics. We aimed to study how plantar flexor muscle characteristics influence marathon running performance and to determine whether there is any difference in the role of the soleus and gastrocnemii. The right lower leg of ten male distance runners was scanned with magnetic resonance imagining. The cross-sectional areas of the Achilles tendon, soleus, and lateral and medial gastrocnemius were measured, and the muscle volumes were calculated. Additional ultrasound scanning was used to estimate the fascicle length of each muscle to calculate the physiological cross-sectional area. Correlations were found between marathon running performance and soleus volume (r = 0.55, p = 0.048), soleus cross-sectional area (r = 0.57, p = 0.04), soleus physiological cross-sectional area (PCSA-IAAF r = 0.77, p < 0.01, CI± 0.28 to 0.94), Achilles tendon thickness (r = 0.65, p < 0.01), and soleus muscle-to-tendon ratio (r = 0.68, p = 0.03). None of the gastrocnemius characteristics were associated with marathon performance. We concluded that a larger soleus muscle with a thicker Achilles tendon is associated with better marathon performance. Based on these results, it can be concluded the morphological characteristics of the lower leg muscle–tendon unit correlate with running performance.
Collapse
|
26
|
Pirscoveanu CI, Dam P, Brandi A, Bilgram M, Oliveira AS. Fatigue-related changes in vertical impact properties during normal and silent running. J Sports Sci 2020; 39:421-429. [PMID: 32951516 DOI: 10.1080/02640414.2020.1824340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Running while minimizing sound volume can reduce vertical impact loading, potentially reducing injury risks. Fatigue can increase the vertical loading rate during running, but it is unknown whether fatigue influences silent running similarly. This study aimed to explore the differences in vertical impact properties during normal and silent running following a fatiguing task. Seventeen participants performed overground running (normal and silent) before and after a fatiguing running protocol. Running footfall sounds were collected using four microphones surrounding a force platform on the track. Peak impact sound, vertical impact peak force (IPF), instantaneous (VILR), and average vertical loading rate (VALR) were compared from Pre- to Post-fatigue. Peak impact sounds were significantly greater for fatigued runners during normal running when compared to silent running (p < 0.005), without changes in force parameters. Moreover, peak impact sounds, IPF, VILR, and VALR from normal running were greater when compared to silent running (p < 0.001), both fresh or fatigued. Our results suggest that fatigue may not compromise silent running technique, which may be relevant to reduce early vertical impact loading. Therefore, runners seeking to modify running style towards the reduction of impact loading may benefit from including silent running drills in their training sessions.
Collapse
Affiliation(s)
| | - Peter Dam
- Department of Health Science and Technology, Aalborg University , Aalborg, Denmark
| | - August Brandi
- Department of Health Science and Technology, Aalborg University , Aalborg, Denmark
| | - Malthe Bilgram
- Department of Health Science and Technology, Aalborg University , Aalborg, Denmark
| | | |
Collapse
|
27
|
Xu Y, Yuan P, Wang R, Wang D, Liu J, Zhou H. Effects of Foot Strike Techniques on Running Biomechanics: A Systematic Review and Meta-analysis. Sports Health 2020; 13:71-77. [PMID: 32813597 DOI: 10.1177/1941738120934715] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CONTENT Distance running is one of the most popular physical activities, and running-related injuries (RRIs) are also common. Foot strike patterns have been suggested to affect biomechanical variables related to RRI risks. OBJECTIVE To determine the effects of foot strike techniques on running biomechanics. DATA SOURCES The databases of Web of Science, PubMed, EMBASE, and EBSCO were searched from database inception through November 2018. STUDY SELECTION The initial electronic search found 723 studies. Of these, 26 studies with a total of 472 participants were eligible for inclusion in this meta-analysis. STUDY DESIGN Systematic review and meta-analysis. LEVEL OF EVIDENCE Level 4. DATA EXTRACTION Means, standard deviations, and sample sizes were extracted from the eligible studies, and the standard mean differences (SMDs) were obtained for biomechanical variables between forefoot strike (FFS) and rearfoot strike (RFS) groups using a random-effects model. RESULTS FFS showed significantly smaller magnitude (SMD, -1.84; 95% CI, -2.29 to -1.38; P < 0.001) and loading rate (mean: SMD, -2.1; 95% CI, -3.18 to -1.01; P < 0.001; peak: SMD, -1.77; 95% CI, -2.21 to -1.33; P < 0.001) of impact force, ankle stiffness (SMD, -1.69; 95% CI, -2.46 to -0.92; P < 0.001), knee extension moment (SMD, -0.64; 95% CI, -0.98 to -0.3; P < 0.001), knee eccentric power (SMD, -2.03; 95% CI, -2.51 to -1.54; P < 0.001), knee negative work (SMD, -1.56; 95% CI, -2.11 to -1.00; P < 0.001), and patellofemoral joint stress (peak: SMD, -0.71; 95% CI, -1.28 to -0.14; P = 0.01; integral: SMD, -0.63; 95% CI, -1.11 to -0.15; P = 0.01) compared with RFS. However, FFS significantly increased ankle plantarflexion moment (SMD, 1.31; 95% CI, 0.66 to 1.96; P < 0.001), eccentric power (SMD, 1.63; 95% CI, 1.18 to 2.08;P < 0.001), negative work (SMD, 2.60; 95% CI, 1.02 to 4.18; P = 0.001), and axial contact force (SMD, 1.26; 95% CI, 0.93 to 1.6; P < 0.001) compared with RFS. CONCLUSION Running with RFS imposed higher biomechanical loads on overall ground impact and knee and patellofemoral joints, whereas FFS imposed higher biomechanical loads on the ankle joint and Achilles tendon. The modification of strike techniques may affect the specific biomechanical loads experienced on relevant structures or tissues during running.
Collapse
Affiliation(s)
- Yilin Xu
- Sports Biomechanics Laboratory, Jiangsu Research Institute of Sports Science, Nanjing, Jiangsu, China
| | - Peng Yuan
- Sports Biomechanics Laboratory, Jiangsu Research Institute of Sports Science, Nanjing, Jiangsu, China
| | - Ran Wang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Dan Wang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Jia Liu
- Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Hui Zhou
- School of Automation, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Melaro JA, Gruber AH, Paquette MR. Joint work is not shifted proximally after a long run in rearfoot strike runners. J Sports Sci 2020; 39:78-83. [PMID: 32787647 DOI: 10.1080/02640414.2020.1804807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Distal-to-proximal redistribution of joint work occurs following exhaustive running in recreational but not competitive runners but the influence of a submaximal run on joint work is unknown. The purpose of this study was to assess if a long submaximal run produces a distal-to-proximal redistribution of positive joint work in well-trained runners. Thirteen rearfoot striking male runners (weekly distance: 72.6 ± 21.2 km) completed five running trials while three-dimensional kinematic and ground reaction force data were collected before and after a long submaximal treadmill run (19 ± 6 km). Joint kinetics were calculated from these data and percent contributions of joint work relative to total lower limb joint work were computed. Moderate reductions in absolute negative ankle work (p = 0.045, Cohen's d = 0.31), peak plantarflexor torque (p = 0.004, d = 0.34) and, peak negative ankle power (p = 0.005, d = 0.32) were observed following the long run. Positive ankle, knee and hip joint work were unchanged (p < 0.05) following the long run. These findings suggest no proximal shift in positive joint work in well-trained runners after a prolonged run. Runner population, running pace, distance, and relative intensity should be considered when examining changes in joint work following prolonged running.
Collapse
Affiliation(s)
- Jake A Melaro
- School of Health Studies, University of Memphis , Memphis, Tennessee, USA
| | - Allison H Gruber
- Department of Kinesiology, School of Public Health, Indiana University , Bloomington, Indiana, USA
| | - Max R Paquette
- School of Health Studies, University of Memphis , Memphis, Tennessee, USA
| |
Collapse
|
29
|
Biological system energy algorithm reflected in sub-system joint work distribution movement strategies: influence of strength and eccentric loading. Sci Rep 2020; 10:12052. [PMID: 32694565 PMCID: PMC7374631 DOI: 10.1038/s41598-020-68714-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/25/2020] [Indexed: 11/18/2022] Open
Abstract
To better understand and define energy algorithms during physical activity as it relates to strength and movement strategy of the hip, knee and ankle, a model of increasing eccentric load was implemented in the current investigation utilizing a countermovement jump and a series of drop jumps from different heights (15, 30, 45, 60, 75 cm). Twenty-one participants were grouped by sex (men, n = 9; women, n = 12) and muscle strength (higher strength, n = 7; moderate strength, n = 7; lower strength, n = 7) as determined by a maximal squat test. Force plates and 3D motion capture were utilized to calculate work for the center of mass (COM) of the whole body and individually for the hip, knee and ankle joints. Statistically significant lower net work of the COM was observed in women and lower strength participants in comparison to men and moderate strength and higher strength participants respectively (p ≤ 0.05). This was primarily due to higher negative to positive work ratios of the COM in women and lower strength participants during all jumps. Furthermore, the COM negative work was primarily dissipated at the knee joint in women and in the lower strength group, particularly during the higher drop jump trials, which are representative of a demanding eccentric load task. A definitive energy algorithm was observed as a reflection of altering joint work strategy in women and lower strength individuals, indicating a possible role in knee joint injury and modulation of such by altering muscular strength.
Collapse
|
30
|
Fukusawa L, Stoddard R, Lopes AD. There is no difference in footstrike pattern distribution in recreational runners with or without anterior knee pain. Gait Posture 2020; 79:16-20. [PMID: 32311654 DOI: 10.1016/j.gaitpost.2020.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/04/2020] [Accepted: 03/31/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND There are no studies comparing footstrike pattern distribution between recreational runners with or without anterior knee pain. OBJECTIVE The aim of this study was to investigate if there was any difference in footstrike pattern between recreational runners with or without anterior knee pain. METHODS This cross-sectional study involved 62 runners without anterior knee pain and 60 runners with anterior knee pain. We recruited runners in public parks and amateur road running competitions. A 2D record was made using a high-speed camera with an acquisition frequency of 300 Hz and shutter speed of 300s-1. Also, demographic information, running characteristics, knee pain characteristics, and running biomechanics variables were collected. Besides the footstrike pattern, running step length, mean velocity, footstrike angle, and ankle push-off were evaluated. RESULTS The distribution of rearfoot strike pattern was similar between groups, observed in 96.6 % of the subjects with anterior knee pain and in 93.5 % of the subjects without it. In the secondary analysis, a logistic regression was conducted, and none of the demographic information, running training characteristics, and running biomechanics variables evaluated in this study were associated with runners presenting knee pain. CONCLUSION Runners with or without anterior knee pain do not differ in regard to footstrike pattern. Both groups had predominantly rearfoot strike patterns, and none of the collected variables were associated with anterior knee pain on runners.
Collapse
Affiliation(s)
- Leandro Fukusawa
- Master and Doctoral Program of Physiotherapy of Universidade Cidade de São Paulo, Sāo Paulo, SP, Brazil.
| | - Ryan Stoddard
- Department of Physical Therapy & Kinesiology, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Alexandre Dias Lopes
- Master and Doctoral Program of Physiotherapy of Universidade Cidade de São Paulo, Sāo Paulo, SP, Brazil; Department of Physical Therapy & Kinesiology, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
31
|
Liew BX, Sullivan L, Morris S, Netto K. Mechanical work performed by distal foot-ankle and proximal knee-hip segments during anticipated and unanticipated cutting. J Biomech 2020; 106:109839. [DOI: 10.1016/j.jbiomech.2020.109839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
|
32
|
Stiffler-Joachim MR, Wille CM, Kliethermes SA, Johnston W, Heiderscheit BC. Foot Angle and Loading Rate during Running Demonstrate a Nonlinear Relationship. Med Sci Sports Exerc 2020; 51:2067-2072. [PMID: 31525170 DOI: 10.1249/mss.0000000000002023] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vertical loading rates are typically found to be lower in forefoot compared to rearfoot strikers, promoting the idea that forefoot striking is desirable and may reduce running injury risk. However, prior work using linear models has shown that foot inclination angle (FIA) at initial contact is a poor predictor of vertical loading rate, suggesting a more complex association exists. PURPOSE To determine if a nonlinear model superiorly describes the relationship between FIA and average vertical loading rate (AVLR). Secondary analyses assessed the influence of sex and sport on the association between FIA and AVLR. METHODS Whole body kinematics and vertical ground reaction forces were collected for 170 healthy National Collegiate Athletic Association Division I athletes (97 males; 81 cross-country runners) during treadmill running at 2.68, 3.35, and 4.47 m·s. Foot inclination angle and AVLR were calculated for 15 strides and averaged across strides for each limb. Polynomial mixed effects models assessed linear and nonlinear trends in the relationship between FIA and AVLR across the entire sample and accounting for sex and sport participation. RESULTS Average vertical loading rate was lowest at the extremes of FIA (i.e., -15°, 20°), whereas greater AVLR were observed between 5° and 10°. The cubic model resulted in a significantly better fit than the linear model (P < 0.001). Average vertical loading rate was also more variable among FIA associated with rearfoot and midfoot strike than forefoot strike. Adding sex to the model did not influence model fit; though, controlling for sport minimally improved model fit. CONCLUSIONS The relationship between FIA and AVLR is best represented by a cubic model. Consequently, FIA should be treated as a continuous variable. Reducing FIA into categories may misrepresent the relationship between FIA and other gait variables.
Collapse
Affiliation(s)
- Mikel R Stiffler-Joachim
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI.,Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI
| | - Christa M Wille
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI.,Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| | | | - William Johnston
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, IRELAND.,Insight Centre for Data Analytics, University College Dublin, Dublin, IRELAND
| | - Bryan C Heiderscheit
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI.,Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
33
|
Vannatta CN, Heinert BL, Kernozek TW. Biomechanical risk factors for running-related injury differ by sample population: A systematic review and meta-analysis. Clin Biomech (Bristol, Avon) 2020; 75:104991. [PMID: 32203864 DOI: 10.1016/j.clinbiomech.2020.104991] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The role of biomechanical variables of running gait in the development of running related injury has not been clearly elucidated. Several systematic reviews have examined running biomechanics and its association with particular running related injuries. However, due to retrospective designs, inferences into the cause of these injuries are limited. Although prospective studies have been completed, no quantitative analysis pooling these results has been completed. METHODS A systematic review of MEDLINE, CINAHL, and PubMed was completed. Articles included used prospective study designs, human subjects currently completing a regular running program, and a minimum 12-week follow-up period. Excluded articles had no biomechanical data reported, participants who were beginning runners or military recruits, or had an intervention provided. FINDINGS Thirteen studies met these criteria. Pooled analyses were completed if two or more studies were available with samples that investigated the same sex and competition level. A qualitative synthesis was completed when pooled analysis was not possible. Five unique running samples were identified and allowed for pooled analyses of variables in mixed-sex collegiate runners and female recreational runners. Moderate evidence exists for increased hip adduction and reduced peak rearfoot eversion as risk factors for running related injury in female recreational runners. Variables differed in other samples of runners. INTERPRETATION A runner's sex and competition level may affect the relationship between biomechanical factors and the development of running related injury. Hip adduction and rearfoot eversion may be important factors related to running related injury in female recreational runners. Further investigation of biomechanical factors in running injury is warranted.
Collapse
Affiliation(s)
- C Nathan Vannatta
- Sports Physical Therapy Department, Gundersen Health System, 3111 Gundersen Drive, Onalaska, WI 54650, USA; La Crosse Institute for Movement Science, University of Wisconsin, La Crosse, 1300 Badger Street, La Crosse, WI 54601, USA.
| | - Becky L Heinert
- Sports Physical Therapy Department, Gundersen Health System, 3111 Gundersen Drive, Onalaska, WI 54650, USA; La Crosse Institute for Movement Science, University of Wisconsin, La Crosse, 1300 Badger Street, La Crosse, WI 54601, USA
| | - Thomas W Kernozek
- La Crosse Institute for Movement Science, University of Wisconsin, La Crosse, 1300 Badger Street, La Crosse, WI 54601, USA; Health Professions Department, University of Wisconsin - La Crosse, 1300 Badger Street, La Crosse, WI 54601, USA
| |
Collapse
|
34
|
The Biomechanics of Competitive Male Runners in Three Marathon Racing Shoes: A Randomized Crossover Study. Sports Med 2020; 49:133-143. [PMID: 30460454 DOI: 10.1007/s40279-018-1024-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND We have shown that a prototype marathon racing shoe reduced the metabolic cost of running for all 18 participants in our sample by an average of 4%, compared to two well-established racing shoes. Gross measures of biomechanics showed minor differences and could not explain the metabolic savings. OBJECTIVE To explain the metabolic savings by comparing the mechanics of the shoes, leg, and foot joints during the stance phase of running. METHODS Ten male competitive runners, who habitually rearfoot strike ran three 5-min trials in prototype shoes (NP) and two established marathon shoes, the Nike Zoom Streak 6 (NS) and the adidas adizero Adios BOOST 2 (AB), at 16 km/h. We measured ground reaction forces and 3D kinematics of the lower limbs. RESULTS Hip and knee joint mechanics were similar between the shoes, but peak ankle extensor moment was smaller in NP versus AB shoes. Negative and positive work rates at the ankle were lower in NP shoes versus the other shoes. Dorsiflexion and negative work at the metatarsophalangeal (MTP) joint were reduced in the NP shoes versus the other shoes. Substantial mechanical energy was stored/returned in compressing the NP midsole foam, but not in bending the carbon-fiber plate. CONCLUSION The metabolic savings of the NP shoes appear to be due to: (1) superior energy storage in the midsole foam, (2) the clever lever effects of the carbon-fiber plate on the ankle joint mechanics, and (3) the stiffening effects of the plate on the MTP joint.
Collapse
|
35
|
Boullosa D, Esteve-Lanao J, Casado A, Peyré-Tartaruga LA, Gomes da Rosa R, Del Coso J. Factors Affecting Training and Physical Performance in Recreational Endurance Runners. Sports (Basel) 2020; 8:sports8030035. [PMID: 32183425 PMCID: PMC7183043 DOI: 10.3390/sports8030035] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 01/25/2023] Open
Abstract
Endurance running has become an immensely popular sporting activity, with millions of recreational runners around the world. Despite the great popularity of endurance running as a recreational activity during leisure time, there is no consensus on the best practice for recreational runners to effectively train to reach their individual objectives and improve physical performance in a healthy manner. Moreover, there are lots of anecdotal data without scientific support, while most scientific evidence on endurance running was developed from studies observing both recreational and professional athletes of different levels. Further, the transference of all this information to only recreational runners is difficult due to differences in the genetic predisposition for endurance running, the time available for training, and physical, psychological, and physiological characteristics. Therefore, the aim of this review is to present a selection of scientific evidence regarding endurance running to provide training guidelines to be used by recreational runners and their coaches. The review will focus on some key aspects of the training process, such as periodization, training methods and monitoring, performance prediction, running technique, and prevention and management of injuries associated with endurance running.
Collapse
Affiliation(s)
- Daniel Boullosa
- Graduate Program in Movement Sciences, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
- Correspondence: ; Tel.: +55-619-8250-2545
| | | | - Arturo Casado
- Faculty of Health Sciences, Isabel I de Castilla International University, Burgos, 09003 Castilla y León, Spain;
| | - Leonardo A. Peyré-Tartaruga
- Exercise Research Laboratory, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90690-200, Brazil; (L.A.P.-T.); (R.G.d.R.)
| | - Rodrigo Gomes da Rosa
- Exercise Research Laboratory, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90690-200, Brazil; (L.A.P.-T.); (R.G.d.R.)
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, 28943 Madrid, Spain;
| |
Collapse
|
36
|
Ogasawara I, Shimokochi Y, Mae T, Nakata K. Rearfoot strikes more frequently apply combined knee valgus and tibial internal rotation moments than forefoot strikes in females during the early phase of cutting maneuvers. Gait Posture 2020; 76:364-371. [PMID: 31901764 DOI: 10.1016/j.gaitpost.2019.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/29/2019] [Accepted: 11/13/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) injury often occurs during deceleration maneuvers in sports. Combined knee valgus and tibial internal rotation (VL + IR) moments have been recognized as a risk leading to ACL injury; however, it is unknown how the foot strike pattern (forefoot or rearfoot strike) affects the occurrence rate of the aforementioned combined knee moments during cutting maneuvers. RESEARCH QUESTION To test the hypothesis that rearfoot strikes rather than forefoot strikes show a significantly higher occurrence rate of the combined VL + IR moments during the early stance phase of a cutting maneuver. METHODS Twenty-four females performed 60° cutting maneuvers under rearfoot and forefoot strike conditions. Positional data of lower limb markers and ground reaction force (GRF) were collected. Knee varus/valgus and tibial internal/external rotation moments due to GRF were calculated and time-normalized (0-100 %) to the stance phase. The occurrence rates of combined VL + IR moments were compared between rearfoot and forefoot strike conditions throughout the stance (chi-squared test, p < 0.01). Furthermore, the time patterns of the two knee moments and the position of the GRF acting point were compared using the statistical parametric mapping paired t-test (p < 0.0125). RESULTS Rearfoot strikes more frequently produced combined VL + IR moments than forefoot strikes (maximum occurrence rates: 73.5 % vs. 27.8 %, p < 0.01) during the first 0-40 % of the stance. Both foot strikes consistently showed an increase in knee valgus moment soon after foot impact; however, rearfoot and forefoot strikes respectively applied opposite internal and external rotation moments during the first 0-7 % of stance (p < 0.0125), indicating that the GRF vector that generated knee valgus moment further applied tibial internal rotation moment when it acted posterior to the tibial rotation axis. SIGNIFICANCE The current results suggest that rearfoot strike in cuttings elevates the probability of ACL injury via combined VL + IR moments.
Collapse
Affiliation(s)
- Issei Ogasawara
- Department of Health and Sports Sciences, Graduate School of Medicine, Osaka University, 1-17 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; Department of Sports Medical Biomechanics, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Yohei Shimokochi
- Department of Health and Sport Management, Osaka University of Health and Sport Sciences, 1-1 Asashirodai, Kumatori-cho, Sennan-gun, Osaka, 590-0496, Japan.
| | - Tatsuo Mae
- Department of Sports Medical Biomechanics, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Ken Nakata
- Department of Health and Sports Sciences, Graduate School of Medicine, Osaka University, 1-17 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
37
|
Swinnen W, Hoogkamer W, De Groote F, Vanwanseele B. Habitual foot strike pattern does not affect simulated triceps surae muscle metabolic energy consumption during running. ACTA ACUST UNITED AC 2019; 222:jeb.212449. [PMID: 31704899 DOI: 10.1242/jeb.212449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/02/2019] [Indexed: 12/26/2022]
Abstract
Foot strike pattern affects ankle joint work and triceps surae muscle-tendon dynamics during running. Whether these changes in muscle-tendon dynamics also affect triceps surae muscle energy consumption is still unknown. In addition, as the triceps surae muscle accounts for a substantial amount of the whole-body metabolic energy consumption, changes in triceps surae energy consumption may affect whole-body metabolic energy consumption. However, direct measurements of muscle metabolic energy consumption during dynamic movements is difficult. Model-based approaches can be used to estimate individual muscle and whole-body metabolic energy consumption based on Hill type muscle models. In this study, we use an integrated experimental and dynamic optimization approach to compute muscle states (muscle forces, lengths, velocities, excitations and activations) of 10 habitual midfoot/forefoot striking and nine habitual rearfoot striking runners while running at 10 and 14 km h-1 The Achilles tendon stiffness of the musculoskeletal model was adapted to fit experimental ultrasound data of the gastrocnemius medialis muscle during ground contact. Next, we calculated triceps surae muscle and whole-body metabolic energy consumption using four different metabolic energy models provided in the literature. Neither triceps surae metabolic energy consumption (P>0.35) nor whole-body metabolic energy consumption (P>0.14) was different between foot strike patterns, regardless of the energy model used or running speed tested. Our results provide new evidence that midfoot/forefoot and rearfoot strike patterns are metabolically equivalent.
Collapse
Affiliation(s)
- Wannes Swinnen
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Wouter Hoogkamer
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Friedl De Groote
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Benedicte Vanwanseele
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
38
|
Baquet A, Mazzone B, Yoder A, Farrokhi S. Conversion to a rearfoot strike pattern during running for prevention of recurrent calf strains: A case report. Phys Ther Sport 2019; 41:64-70. [PMID: 31765861 DOI: 10.1016/j.ptsp.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Running-related injuries are prevalent musculoskeletal complaints in the United States military. Although, run retraining is an extensively researched method for reducing pain and improving function in runners, its clinical utility remains low. CASE DESCRIPTION The patient had a seven-year history of recurrent right calf strains. Prior conventional physical therapy failed to resolve symptoms. A biomechanical running analysis revealed a right forefoot strike during running. The patient underwent run retraining that included real-time visual feedback and a faded feedback strategy focused on converting foot strike pattern to rearfoot. Running mechanics were reassessed post-training, and at one and six months post-training. OUTCOMES Foot strike pattern was successfully converted to rearfoot strike and was maintained up to six months post-training. Reductions in peak ankle dorsiflexion moment and dorsiflexion velocity were noted up to six months post-training. Self-reported function also improved by 20-30% and no calf strains were reported up to six months post-training. DISCUSSION This case report details the clinical reasoning and evidence-informed interventions involved in treatment of a patient with chronic calf strains. The management strategy was intended to reduce eccentric calf demands, which allowed the patient to tolerate increased running frequency without any further episodes of calf strains up to six months post-training.
Collapse
Affiliation(s)
- Ari Baquet
- University of Southern California, Los Angeles, CA, USA
| | - Brittney Mazzone
- DoD-VA Extremity Trauma and Amputation Center of Excellence, USA; Naval Medical Center San Diego, San Diego, CA, USA.
| | - Adam Yoder
- DoD-VA Extremity Trauma and Amputation Center of Excellence, USA; Naval Medical Center San Diego, San Diego, CA, USA
| | - Shawn Farrokhi
- DoD-VA Extremity Trauma and Amputation Center of Excellence, USA; Naval Medical Center San Diego, San Diego, CA, USA
| |
Collapse
|
39
|
Deschamps K, Eerdekens M, Peters H, Matricali GA, Staes F. Multi-segment foot kinematics during running and its association with striking patterns. Sports Biomech 2019; 21:71-84. [DOI: 10.1080/14763141.2019.1645203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Kevin Deschamps
- Department of Rehabilitation Sciences, Musculoskeletal Rehabilitation Research Group, KU Leuven, Leuven, Belgium
- Laboratory for Clinical Motion Analysis, University Hospital Pellenberg, KU Leuven, Leuven, Belgium
- Department of Podiatry, Parnasse-International Society on Early Intervention, Bruxelles, Belgium
- Department of Podiatry, Artevelde University College Ghent, Ghent, Belgium
| | - Maarten Eerdekens
- Department of Rehabilitation Sciences, Musculoskeletal Rehabilitation Research Group, KU Leuven, Leuven, Belgium
- Laboratory for Clinical Motion Analysis, University Hospital Pellenberg, KU Leuven, Leuven, Belgium
| | - Helen Peters
- Department of Rehabilitation Sciences, Musculoskeletal Rehabilitation Research Group, KU Leuven, Leuven, Belgium
| | - Giovanni Arnoldo Matricali
- Department of Development & Regeneration, KU Leuven, Leuven, Belgium
- Department of Orthopaedics, Foot & Ankle Unit, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Filip Staes
- Department of Rehabilitation Sciences, Musculoskeletal Rehabilitation Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Yoder AJ, Mazzone BN, Miltenberger RS, Farrokhi S. Biomechanical improvements following foot strike biofeedback training for a patient using a passive dynamic ankle-foot orthosis during running. Prosthet Orthot Int 2019; 43:447-452. [PMID: 31144580 DOI: 10.1177/0309364619851935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Passive dynamic ankle-foot orthoses have potential to facilitate return to running after a lower limb trauma. However, transitioning patients to new movement patterns that enhance passive dynamic ankle-foot orthoses benefits can pose a challenge. The purpose of this case study was to report biomechanical and functional outcomes for a patient utilizing a passive dynamic ankle-foot orthoses following completion of a session-based, midfoot strike run training program. CASE DESCRIPTION AND METHODS A patient using a passive dynamic ankle-foot orthoses to run due to surgically reconstructed tibia\fibula fracture underwent eight treadmill running sessions over 2 weeks while viewing continuous visual feedback on measured foot strike. FINDINGS AND OUTCOMES After treatment, foot strike was changed from rearfoot to midfoot on the affected limb along with an 18% increase in mechanical work ratio of the ankle-foot-brace complex. Similar improvements were retained at one and five months following treatment. CONCLUSION This report provides preliminary evidence that biofeedback-based foot strike training can enhance ankle-foot mechanical performance of patients using a passive dynamic ankle-foot orthoses to run. CLINICAL RELEVANCE For patients using a passive dynamic ankle-foot orthoses to run following lower limb trauma, supplementing standard rehabilitation programs with biofeedback-based footstrike training may improve biomechanical performance and running capability.
Collapse
Affiliation(s)
- Adam J Yoder
- 1 DoD-VA Extremity Trauma and Amputation Center of Excellence, Naval Medical Center San Diego, San Diego, CA, USA.,2 Naval Medical Center San Diego, San Diego, CA, USA
| | - Brittney N Mazzone
- 1 DoD-VA Extremity Trauma and Amputation Center of Excellence, Naval Medical Center San Diego, San Diego, CA, USA.,2 Naval Medical Center San Diego, San Diego, CA, USA
| | - Richard S Miltenberger
- 2 Naval Medical Center San Diego, San Diego, CA, USA.,3 Comprehensive Combat and Complex Casualty Care Unit, San Diego, CA, USA
| | - Shawn Farrokhi
- 1 DoD-VA Extremity Trauma and Amputation Center of Excellence, Naval Medical Center San Diego, San Diego, CA, USA.,2 Naval Medical Center San Diego, San Diego, CA, USA
| |
Collapse
|
41
|
Hanley B, Bissas A, Merlino S, Gruber AH. Most marathon runners at the 2017 IAAF World Championships were rearfoot strikers, and most did not change footstrike pattern. J Biomech 2019; 92:54-60. [DOI: 10.1016/j.jbiomech.2019.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
|
42
|
Schmidtbauer KA, Russell Esposito E, Wilken JM. Ankle-foot orthosis alignment affects running mechanics in individuals with lower limb injuries. Prosthet Orthot Int 2019; 43:316-324. [PMID: 30762469 DOI: 10.1177/0309364619826386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Individuals with severe lower extremity injuries often require ankle-foot orthoses to return to normal activities. Ankle-foot orthoses alignment is a key consideration during the clinical fitting process and may be particularly important during dynamic activities such as running. OBJECTIVE To investigate how 3° changes in sagittal plane ankle-foot orthoses alignment affect running mechanics. STUDY DESIGN Controlled laboratory study. METHODS Twelve participants with unilateral lower limb injury ran overground and lower extremity running mechanics were assessed. Participants wore their passive-dynamic ankle-foot orthoses in three alignments: clinically fit neutral, 3° plantarflexed from clinically fit neutral, and 3° dorsiflexed from clinically fit neutral. RESULTS The 3° changes in sagittal alignment significantly influenced ankle mechanics during running. The plantarflexed alignment significantly decreased the peak ankle plantarflexor moment, peak knee extensor moment, and peak ankle and knee power absorption and generation compared to more dorsiflexed alignments. Alignment also altered footstrike angle, with dorsiflexed alignments associated with a more dorsiflexed footstrike pattern and plantarflexed alignments toward a more plantarflexed footstrike pattern. However, alignment did not influence loading rate. CONCLUSION Small changes in ankle-foot orthoses alignment significantly altered running mechanics, including footstrike angle, and knee extensor moments. Understanding how ankle-foot orthoses design parameters affect running mechanics may aid the development of evidence-based prescription guidelines and improve function for ankle-foot orthoses users who perform high-impact activities. CLINICAL RELEVANCE Understanding how ankle-foot orthoses alignment impacts biomechanics should be a consideration when fitting passive-dynamic devices for higher impact activities, such as running. Individual running styles, including footstrike patterns, may be affected by small changes in alignment.
Collapse
Affiliation(s)
- Kelly A Schmidtbauer
- 1 Center for the Intrepid, Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, TX, USA.,2 Extremity Trauma and Amputation Center of Excellence.,3 Department of Rehabilitation Medicine, Uniformed Services University, Bethesda, MD, USA
| | - E Russell Esposito
- 1 Center for the Intrepid, Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, TX, USA.,2 Extremity Trauma and Amputation Center of Excellence.,3 Department of Rehabilitation Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Jason M Wilken
- 1 Center for the Intrepid, Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, TX, USA.,2 Extremity Trauma and Amputation Center of Excellence
| |
Collapse
|
43
|
Swinnen W, Hoogkamer W, Delabastita T, Aeles J, De Groote F, Vanwanseele B. Effect of habitual foot-strike pattern on the gastrocnemius medialis muscle-tendon interaction and muscle force production during running. J Appl Physiol (1985) 2019; 126:708-716. [PMID: 30629477 DOI: 10.1152/japplphysiol.00768.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interaction between gastrocnemius medialis (GM) muscle and Achilles tendon, i.e., muscle-tendon unit (MTU) interaction, plays an important role in minimizing the metabolic cost of running. Foot-strike pattern (FSP) has been suggested to alter MTU interaction and subsequently the metabolic cost of running. However, metabolic data from experimental studies on FSP are inconsistent, and a comparison of MTU interaction between FSP is still lacking. We, therefore, investigated the effect of habitual rearfoot and mid-/forefoot striking on MTU interaction, ankle joint work, and plantar flexor muscle force production while running at 10 and 14 km/h. GM muscle fascicles of 9 rearfoot and 10 mid-/forefoot strikers were tracked using dynamic ultrasonography during treadmill running. We collected kinetic and kinematic data and used musculoskeletal models to determine joint angles and calculate MTU lengths. In addition, we used dynamic optimization to assess plantar flexor muscle forces. During ground contact, GM fascicle shortening ( P = 0.02) and average contraction velocity ( P = 0.01) were 40-45% greater in rearfoot strikers than mid-/forefoot strikers. Differences in contraction velocity were especially prominent during early ground contact. Moreover, GM ( P = 0.02) muscle force was greater during early ground contact in mid-/forefoot strikers than rearfoot strikers. Interestingly, we did not find differences in stretch or recoil of the series elastic element between FSP. Our results suggest that, for the GM, the reduced muscle energy cost associated with lower fascicle contraction velocity in mid-/forefoot strikers may be counteracted by greater muscle forces during early ground contact. NEW & NOTEWORTHY Kinetic and kinematic differences between foot-strike patterns during running imply (not previously reported) altered muscle-tendon interaction. Here, we studied muscle-tendon interaction using ultrasonography. We found greater fascicle contraction velocities and lower muscle forces in rearfoot compared with mid-/forefoot strikers. Our results suggest that the higher metabolic energy demand due to greater fascicle contraction velocities might offset the lower metabolic energy demand due to lower muscle forces in rearfoot compared with mid-/forefoot strikers.
Collapse
Affiliation(s)
- Wannes Swinnen
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven , Leuven , Belgium
| | - Wouter Hoogkamer
- Locomotion Laboratory, Department of Integrative Physiology, University of Colorado Boulder , Boulder, Colorado
| | - Tijs Delabastita
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven , Leuven , Belgium
| | - Jeroen Aeles
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland , Brisbane , Australia
| | - Friedl De Groote
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven , Leuven , Belgium
| | - Benedicte Vanwanseele
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven , Leuven , Belgium
| |
Collapse
|
44
|
Preece SJ, Bramah C, Mason D. The biomechanical characteristics of high-performance endurance running. Eur J Sport Sci 2018; 19:784-792. [PMID: 30556482 DOI: 10.1080/17461391.2018.1554707] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The biomechanical profile of high-level endurance runners may represent a useful model that could be used for developing training programmes designed to improve running style. This study, therefore, sought to compare the biomechanical characteristics of high-performance and recreational runners. Kinematic and kinetic measurements were taken during overground running from a cohort of 14 high-performance (8 male) and 14 recreational (8 male) runners, at four speeds ranging from 3.3 to 5.6 m s-1. Two-way ANOVA analysis was then used to explore group and speed effects and principal component analysis used to explore the interdependence of the tested variables. The data showed the high-performance runners to have a gait style characterised by an increased vertical velocity of the centre of mass and a flight time that was 11% longer than the recreational group. The high-performance group were also observed to adopt a forefoot strike pattern, to contact the ground with their foot closer to their body and to have a larger ankle moment. Importantly, although observed group differences were mostly independent of speed, the tested variables showed a high degree of interdependence suggesting an underlying unitary phenomenon. This is the first study to compare high-performance and recreational runners across a full range of kinematic and kinetic variables. The results suggest that high-performance runners maintain stride length with a prolonged aerial phase, rather than by landing with a more extended knee. These findings motivate future intervention studies that should investigate whether recreational runners could benefit from instruction to decrease shank inclination at foot contact.
Collapse
Affiliation(s)
- Stephen J Preece
- a Centre for Health Sciences Research , University of Salford , Manchester , UK
| | - Christopher Bramah
- a Centre for Health Sciences Research , University of Salford , Manchester , UK
| | - Duncan Mason
- a Centre for Health Sciences Research , University of Salford , Manchester , UK
| |
Collapse
|
45
|
Bilateral Alterations in Running Mechanics and Quadriceps Function Following Unilateral Anterior Cruciate Ligament Reconstruction. J Orthop Sports Phys Ther 2018; 48:960-967. [PMID: 30032698 DOI: 10.2519/jospt.2018.8170] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Following anterior cruciate ligament reconstruction (ACLR), individuals have quadriceps muscle impairments that influence gait mechanics and may contribute to an elevated risk of knee osteoarthritis. OBJECTIVES To compare running mechanics and quadriceps function between individuals who have undergone ACLR and those in a control group, and to evaluate the association between quadriceps function and running mechanics. METHODS In this controlled, cross-sectional laboratory study, 38 individuals who previously underwent primary unilateral ACLR (mean ± SD time since reconstruction, 48.0 ± 25.0 months) were matched to 38 control participants based on age, sex, and body mass index, and underwent assessments of quadriceps muscle performance and running biomechanics. Quadriceps muscle performance was assessed via isokinetic and isometric knee extension peak torque and rate of torque development (RTD) over 2 time frames: 0 to 100 milliseconds (RTD100) and 0 to 200 milliseconds (RTD200). Running evaluation included assessment of the knee flexion angle (KFA), knee extension moment (KEM), rate of knee extension moment (RKEM), vertical instantaneous loading rate, and vertical impact peak. RESULTS On average, there was a smaller KFA (P = .016) in the involved limb compared to the uninvolved limb in the ACLR group. Compared to limbs in the control group, involved limbs in the ACLR group had lower RTD100 (P = .015), lower peak torque at 60°/s (P = .007), lower peak torque at 180°/s (P = .016), smaller KFA (P<.001), lower KEM (P = .001), lower RKEM (P = .004), and higher vertical instantaneous loading rate (P = .016). Compared to limbs in the control group, uninvolved limbs in the ACLR group had lower RTD100 (P = .003), lower peak torque at 60°/s (P = .017), and smaller KFA (P = .01). For the involved limbs in the ACLR group, there was a low correlation between isokinetic peak torque at 180°/s and RKEM (r = 0.38, P = .01), and a negligible correlation between RTD100 and RKEM (r = 0.26, P<.05). No differences were found in isometric strength for any comparison. CONCLUSION Individuals who have undergone ACLR have bilateral alterations in running mechanics that are weakly associated with diminished quadriceps muscle performance. J Orthop Sports Phys Ther 2018;48(12):960-967. Epub 22 Jul 2018. doi:10.2519/jospt.2018.8170.
Collapse
|
46
|
Hashizume S, Hobara H, Kobayashi Y, Tada M, Mochimaru M. Inter-Individual Variability in The Joint Negative Work During Running. Sports Med Int Open 2018; 2:E157-E162. [PMID: 30539133 PMCID: PMC6277236 DOI: 10.1055/a-0669-0885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 10/29/2022] Open
Abstract
The inter-individual variability of running technique is an important factor affecting the negative work of lower extremity joints that leads to muscle damage. Our study examines the relationships between the negative work of the lower extremity joints and the associated mechanical parameters that account for inter-individual variability in the negative work. Twenty-four young male adults were asked to run on a runway at a speed of 3.0 m·s -1 . Multiple linear regression analysis was conducted to examine the relationships between the negative work and the associated mechanical parameters for each lower extremity joint. With regards to the results, 76.3% of inter-individual variability in the negative work of the hip joint was accounted for by inter-individual variabilities in the corresponding moment (25.4%) and duration (50.9%). For the knee joint, the inter-individual variabilities in the moment (40.6%), angular velocity (24.5%), and duration (23.8%) accounted for 88.9% of inter-individual variability in the negative work. The inter-individual variability in the moment of the ankle joint alone accounted for 89.3% of the inter-individual variability in the corresponding negative work. These results suggest that runners can change the negative work by adapting their running techniques to influence the relevant mechanical parameter values; however, major parameters corresponding to the change in the negative work are not the same among the lower extremity joints.
Collapse
Affiliation(s)
- Satoru Hashizume
- National Institute of Advanced Industrial Science and Technology, Human Informatics Research Institute, Tokyo, Japan
| | - Hiroaki Hobara
- National Institute of Advanced Industrial Science and Technology, Human Informatics Research Institute, Tokyo, Japan
| | - Yoshiyuki Kobayashi
- National Institute of Advanced Industrial Science and Technology, Human Informatics Research Institute, Tokyo, Japan
| | - Mitsunori Tada
- National Institute of Advanced Industrial Science and Technology, Human Informatics Research Institute, Tokyo, Japan
| | - Masaaki Mochimaru
- National Institute of Advanced Industrial Science and Technology, Human Informatics Research Institute, Tokyo, Japan
| |
Collapse
|
47
|
Harrison K, Thakkar B, Kwon YU, Crosswell G, Morgan J, Williams DSB. Kinematic predictors of loading during running differ by demographic group. Phys Ther Sport 2018; 32:221-226. [PMID: 29852457 DOI: 10.1016/j.ptsp.2018.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To investigate whether previously-determined kinematic predictors of kinetics during running differ between demographic groups. PARTICIPANTS Young male (n = 13, age = 22 (2) yrs), young female (n = 13, age = 25 (4) yrs), older male (n = 13, age = 50 (4) yrs) and older female (n = 13, age = 52 (3) yrs) runners. MAIN OUTCOME MEASURES Sagittal plane kinematics and kinetics were assessed while participants ran at their preferred pace. Linear regression models were developed to predict kinetics in each group using kinematics as independent variables. RESULTS Step length was positively associated with magnitude of at least one kinetic variable in all groups. Step position was inversely associated with vertical ground reaction force variables in all groups. Step frequency and CoM excursion were also important to all groups, however direction of the associations varied. Foot angle at initial contact was important to all groups except older females. Peak knee flexion was most important to older females, but was not important to any other groups. CONCLUSION Optimal parameters for gait analysis of runners may depend on demographics of the individual. This provides insight for clinicians into the most effective evaluation and interventions strategies for different types of runners.
Collapse
Affiliation(s)
- Kathryn Harrison
- Virginia Commonwealth University, School of Allied Health Professions, Department of Physical Therapy, 1200 East Broad Street Box 980224, Richmond, VA, 23298-0224, USA; Virginia Commonwealth University, Department of Kinesiology and Health Sciences, 500Academic Center, 1020 West Grace St., Box 843021, Richmond, VA, 23284-2020, USA.
| | - Bhushan Thakkar
- Virginia Commonwealth University, School of Allied Health Professions, Department of Physical Therapy, 1200 East Broad Street Box 980224, Richmond, VA, 23298-0224, USA; Virginia Commonwealth University, Department of Kinesiology and Health Sciences, 500Academic Center, 1020 West Grace St., Box 843021, Richmond, VA, 23284-2020, USA
| | - Yong Ung Kwon
- Virginia Commonwealth University, Department of Kinesiology and Health Sciences, 500Academic Center, 1020 West Grace St., Box 843021, Richmond, VA, 23284-2020, USA
| | - Gregory Crosswell
- Virginia Commonwealth University, School of Allied Health Professions, Department of Physical Therapy, 1200 East Broad Street Box 980224, Richmond, VA, 23298-0224, USA
| | - Jacqueline Morgan
- Virginia Commonwealth University, School of Allied Health Professions, Department of Physical Therapy, 1200 East Broad Street Box 980224, Richmond, VA, 23298-0224, USA; Virginia Commonwealth University, Department of Kinesiology and Health Sciences, 500Academic Center, 1020 West Grace St., Box 843021, Richmond, VA, 23284-2020, USA
| | - D S Blaise Williams
- Virginia Commonwealth University, School of Allied Health Professions, Department of Physical Therapy, 1200 East Broad Street Box 980224, Richmond, VA, 23298-0224, USA; Virginia Commonwealth University, Department of Kinesiology and Health Sciences, 500Academic Center, 1020 West Grace St., Box 843021, Richmond, VA, 23284-2020, USA
| |
Collapse
|
48
|
Bruening DA, Pohl MB, Takahashi KZ, Barrios JA. Midtarsal locking, the windlass mechanism, and running strike pattern: A kinematic and kinetic assessment. J Biomech 2018; 73:185-191. [PMID: 29680311 DOI: 10.1016/j.jbiomech.2018.04.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/13/2018] [Accepted: 04/01/2018] [Indexed: 11/20/2022]
Abstract
Changes in running strike pattern affect ankle and knee mechanics, but little is known about the influence of strike pattern on the joints distal to the ankle. The purpose of this study was to explore the effects of forefoot strike (FFS) and rearfoot strike (RFS) running patterns on foot kinematics and kinetics, from the perspectives of the midtarsal locking theory and the windlass mechanism. Per the midtarsal locking theory, we hypothesized that the ankle would be more inverted in early stance when using a FFS, resulting in decreased midtarsal joint excursions and increased dynamic stiffness. Associated with a more engaged windlass mechanism, we hypothesized that a FFS would elicit increased metatarsophalangeal joint excursions and negative work in late stance. Eighteen healthy female runners ran overground with both FFS and RFS patterns. Instrumented motion capture and a validated multi-segment foot model were used to analyze midtarsal and metatarsophalangeal joint kinematics and kinetics. During early stance in FFS the ankle was more inverted, with concurrently decreased midtarsal eversion (p < 0.001) and abduction excursions (p = 0.003) but increased dorsiflexion excursion (p = 0.005). Dynamic midtarsal stiffness did not differ (p = 0.761). During late stance in FFS, metatarsophalangeal extension was increased (p = 0.009), with concurrently increased negative work (p < 0.001). In addition, there was simultaneously increased midtarsal positive work (p < 0.001), suggesting enhanced power transfer in FFS. Clear evidence for the presence of midtarsal locking was not observed in either strike pattern during running. However, the windlass mechanism appeared to be engaged to a greater extent during FFS.
Collapse
|
49
|
KELLY LUKEA, FARRIS DOMINICJ, LICHTWARK GLENA, CRESSWELL ANDREWG. The Influence of Foot-Strike Technique on the Neuromechanical Function of the Foot. Med Sci Sports Exerc 2018; 50:98-108. [DOI: 10.1249/mss.0000000000001420] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Ekizos A, Santuz A, Arampatzis A. Short- and long-term effects of altered point of ground reaction force application on human running energetics. J Exp Biol 2018; 221:jeb.176719. [DOI: 10.1242/jeb.176719] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/06/2018] [Indexed: 12/27/2022]
Abstract
The current study investigates an acute and a gradual transition of the point of force application (PFA) from the rearfoot towards the fore of the foot during running, on the rate of metabolic energy consumption. The participants were randomly assigned in two experimental and one control groups: a short-term intervention group (STI, N=17; two training sessions), a long-term intervention group (LTI, N=10; 14-week gradual transition) and a control group (CG, N=11). Data were collected at two running velocities (2.5 and 3.0 m/s). The cost coefficient (i.e. energy required for a unit of vertical ground reaction force, J/N) decreased (p<0.001) after both interventions due to a more anterior PFA during running (STI:12%, LTI:11%), but led to a higher (p<0.001) rate of force generation (STI:17%, LTI:15.2%). Dynamic stability of running showed a significant (p<0.001) decrease in the STI (2.1%), but no differences (p=0.673) in the LTI. The rate of metabolic energy consumption increased in the STI (p=0.038), but remained unchanged in the LTI (p=0.660). The control group had no changes. These results demonstrate that the cost coefficient was successfully decreased following an alteration in the running technique towards a more anterior PFA. However, the energy consumption remained unchanged because of a simultaneous increase in rate of force generation due to a decreased contact time per step. The increased instability found during the short-term intervention and its neutralization after the long-term intervention indicates a role of motor control errors in the economy of running after acute alterations in habitual running execution.
Collapse
Affiliation(s)
- Antonis Ekizos
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessandro Santuz
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|