1
|
Kostrakiewicz-Gierałt K. Plant-Based Proteins, Peptides and Amino Acids in Food Products Dedicated for Sportspeople-A Narrative Review of the Literature. Nutrients 2024; 16:1706. [PMID: 38892638 PMCID: PMC11175001 DOI: 10.3390/nu16111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Plant proteins are increasingly seen as critical nutrient sources for both amateur and professional athletes. The aim of the presented study was to review the inventions and experimental articles referring to the application of plant-based proteins, peptides and amino acids in food products dedicated to sportspeople and published in the period 2014-2023. The literature search was conducted according to PRISMA statementsacross several key databases, including Scopus and ISI Web of Science. Altogether, 106 patents and 35 original articles were found. The survey of patents and inventions described in the articles showed the use of 52 taxa (mainly annual herbaceous plants), creating edible seeds and representing mainly the families Fabaceae and Poaceae. The majority of inventions were developed by research teams numbering from two to five scientists, affiliated in China, The United States of America and Japan. The greatest number of inventions applied plant-based proteins (especially protein isolates), declared the nutritional activity and were prepared in liquid or solid consistency. According to the reviewed studies, the intake of soybean and potato proteins might provide better results than animal-based protein (excluding resistance training), whereas the consumption of pea and rice protein does not possess any unique anabolic properties over whey protein. The analysis of other investigations demonstrated the varied acceptability and consumption of food products, while the high rating of the tested food products presented in four articles seems to be an effect of their sensual values, as well as other elements, such as production method, health benefits and cost-effectiveness. Considering the great potential of useful plant species, it might be concluded that future investigations focusing on searching for novel plant protein sources, suitable for the preparation of food products dedicated to amateur and professional sportspeople, remain of interest.
Collapse
Affiliation(s)
- Kinga Kostrakiewicz-Gierałt
- Department of Tourism Geography and Ecology, Institute of Tourism, Faculty of Tourism and Recreation, University of Physical Education in Kraków, Jana Pawła II 78, 31-571 Kraków, Poland
| |
Collapse
|
2
|
Zare R, Devrim-Lanpir A, Guazzotti S, Ali Redha A, Prokopidis K, Spadaccini D, Cannataro R, Cione E, Henselmans M, Aragon AA. Effect of Soy Protein Supplementation on Muscle Adaptations, Metabolic and Antioxidant Status, Hormonal Response, and Exercise Performance of Active Individuals and Athletes: A Systematic Review of Randomised Controlled Trials. Sports Med 2023; 53:2417-2446. [PMID: 37603200 PMCID: PMC10687132 DOI: 10.1007/s40279-023-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Protein supplements are important to maintain optimum health and physical performance, particularly in athletes and active individuals to repair and rebuild their skeletal muscles and connective tissues. Soy protein (SP) has gained popularity in recent years as an alternative to animal proteins. OBJECTIVES This systematic review evaluates the evidence from randomised controlled clinical trials of the effects of SP supplementation in active individuals and athletes in terms of muscle adaptations, metabolic and antioxidant status, hormonal response and exercise performance. It also explores the differences in SP supplementation effects in comparison to whey protein. METHODS A systematic search was conducted in PubMed, Embase and Web of Science, as well as a manual search in Google Scholar and EBSCO, on 27 June 2023. Randomised controlled trials that evaluated the applications of SPs supplementation on sports and athletic-related outcomes that are linked with exercise performance, adaptations and biomarkers in athletes and physically active adolescents and young adults (14 to 39 years old) were included, otherwise, studies were excluded. The risk of bias was assessed according to Cochrane's revised risk of bias tool. RESULTS A total of 19 eligible original research articles were included that investigated the effect of SP supplementation on muscle adaptations (n = 9), metabolic and antioxidant status (n = 6), hormonal response (n = 6) and exercise performance (n = 6). Some studies investigated more than one effect. SP was found to provide identical increases in lean mass compared to whey in some studies. SP consumption promoted the reduction of exercise-induced metabolic/blood circulating biomarkers such as triglycerides, uric acid and lactate. Better antioxidant capacity against oxidative stress has been seen with respect to whey protein in long-term studies. Some studies reported testosterone and cortisol fluctuations related to SP; however, more research is required. All studies on SP and endurance performance suggested the potential beneficial effects of SP supplementation (10-53.3 g) on exercise performance by improving high-intensity and high-speed running performance, enhancing maximal cardiac output, delaying fatigue and improving isometric muscle strength, improving endurance in recreational cyclists, increasing running velocity and decreasing accumulated lactate levels; however, studies determining the efficacy of soy protein on VO2max provided conflicted results. CONCLUSION It is possible to recommend SP to athletes and active individuals in place of conventional protein supplements by assessing their dosage and effectiveness in relation to different types of training. SP may enhance lean mass compared with other protein sources, enhance the antioxidant status, and reduce oxidative stress. SP supplementation had an inconsistent effect on testosterone and cortisol levels. SP supplementation may be beneficial, especially after muscle damage, high-intensity/high-speed or repeated bouts of strenuous exercise.
Collapse
Affiliation(s)
- Reza Zare
- Meshkat Sports Complex, Karaj, Alborz Province, Iran
- Arses Sports Complex, Karaj, Alborz Province, Iran
| | - Asli Devrim-Lanpir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medeniyet University, Istanbul, Turkey
- School of Health and Human Performance, Dublin City University, Dublin 9, D09 V209, Ireland
| | - Silvia Guazzotti
- Department of Translational Medicine (DiMeT), Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, University of Piemonte Orientale, 28100, Novara, Italy
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, UK.
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- Society of Meta-Research and Biomedical Innovation, London, UK
| | - Daniele Spadaccini
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
- GalaScreen Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
- GalaScreen Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Menno Henselmans
- The International Scientific Research Foundation for Fitness and Nutrition, David Blesstraat 28HS, 1073 LC, Amsterdam, The Netherlands
| | - Alan A Aragon
- Department of Family and Consumer Sciences, California State University, Northridge, CA, USA
| |
Collapse
|
3
|
Noh KW, Park S. Effects of resistance training and protein supplementation interventions on muscle volume and muscle function: sex differences in humans. Phys Act Nutr 2023; 27:15-25. [PMID: 38297472 PMCID: PMC10847829 DOI: 10.20463/pan.2023.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/24/2023] [Indexed: 02/02/2024] Open
Abstract
PURPOSE This review aimed to identify differences in the effects of co-intervention with resistance training (RT) and protein supplementation according to sex and provide meaningful information for future research on the development of exercise programs to improve muscle volume and muscle function. METHODS PubMed, Science Direct, and Google Scholar were searched to identify clinical and nonclinical studies that assessed the effects of RT in older adults with sarcopenia; these studies were published between 1990 and 2023. Cross-sectional and double-blind studies (randomized controlled trials, RCTs) were examined in this review. RESULTS The effects of parallel intervention with RT and protein supplementation on muscle volume and physical function were found to differ according to sex. Both males and females had improvements in muscle strength, muscle mass, and physical function after RT and protein supplementation; however, many studies found a greater increase in muscle volume and function in males than in females. Such difference may be due to differences in physiological characteristics between males and females. CONCLUSION Based on the findings of this review, the effects of combined intervention with RT and protein supplementation on muscle strength, muscle mass, and physical function to differ according to sex. Owing to these sex differences in the response and physiological characteristics caused by the parallel intervention of RT and protein supplementation, such differences must be considered to maximize the effects of RT and protein supplementation.
Collapse
Affiliation(s)
- Ki-Woong Noh
- Institute of Sports Medicine & Nutrition, Kwangwoon University, Seoul, Republic of Korea
| | - Sok Park
- Institute of Sports Medicine & Nutrition, Kwangwoon University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
5
|
Sandoval C, Villagrán F, Recabarren B, Schulz M, Souza-Mello V. Effectiveness of supplementation to potentiate lean mass gain during resistance training: A systematic review. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Lilja M, Moberg M, Apró W, Martínez-Aranda LM, Rundqvist H, Langlet B, Gustafsson T, Lundberg TR. Limited effect of over-the-counter doses of ibuprofen on mechanisms regulating muscle hypertrophy during resistance training in young adults. J Appl Physiol (1985) 2023; 134:753-765. [PMID: 36794689 DOI: 10.1152/japplphysiol.00698.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
We have previously shown that maximal over-the-counter doses of ibuprofen, compared with low doses of acetylsalicylic acid, reduce muscle hypertrophy in young individuals after 8 wk of resistance training. Because the mechanism behind this effect has not been fully elucidated, we here investigated skeletal muscle molecular responses and myofiber adaptations in response to acute and chronic resistance training with concomitant drug intake. Thirty-one young (aged 18-35 yr) healthy men (n = 17) and women (n = 14) were randomized to receive either ibuprofen (IBU; 1,200 mg daily; n = 15) or acetylsalicylic acid (ASA; 75 mg daily; n = 16) while undergoing 8 wk of knee extension training. Muscle biopsies from the vastus lateralis were obtained before, at week 4 after an acute exercise session, and after 8 wk of resistance training and analyzed for mRNA markers and mTOR signaling, as well as quantification of total RNA content (marker of ribosome biogenesis) and immunohistochemical analysis of muscle fiber size, satellite cell content, myonuclear accretion, and capillarization. There were only two treatment × time interaction in selected molecular markers after acute exercise (atrogin-1 and MuRF1 mRNA), but several exercise effects. Muscle fiber size, satellite cell and myonuclear accretion, and capillarization were not affected by chronic training or drug intake. RNA content increased comparably (∼14%) in both groups. Collectively, these data suggest that established acute and chronic hypertrophy regulators (including mTOR signaling, ribosome biogenesis, satellite cell content, myonuclear accretion, and angiogenesis) were not differentially affected between groups and therefore do not explain the deleterious effects of ibuprofen on muscle hypertrophy in young adults.NEW & NOTEWORTHY Here we show that mTOR signaling, fiber size, ribosome biogenesis, satellite cell content, myonuclear accretion, and angiogenesis were not differentially affected between groups undergoing 8 wk of resistance training with concomitant anti-inflammatory medication (ibuprofen versus low-dose aspirin). Atrogin-1 and MuRF-1 mRNA were more downregulated after acute exercise in the low-dose aspirin group than in the ibuprofen group. Taken together it appears that these established hypertrophy regulators do not explain the previously reported deleterious effects of high doses of ibuprofen on muscle hypertrophy in young adults.
Collapse
Affiliation(s)
- Mats Lilja
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Luis Manuel Martínez-Aranda
- Movement Analysis Laboratory for Sport and Health (MALab), Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| | - Håkan Rundqvist
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Billy Langlet
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy R Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Moesgaard L, Jessen S, Mackey AL, Hostrup M. Myonuclear addition is associated with sex-specific fiber hypertrophy and occurs in relation to fiber perimeter not cross-sectional area. J Appl Physiol (1985) 2022; 133:732-741. [PMID: 35952346 DOI: 10.1152/japplphysiol.00235.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is unclear whether resistance training-induced myofiber hypertrophy is affected by sex, and whether myonuclear addition occurs in relation to the myonuclear domain and can contribute to explaining a potential sex-specific hypertrophic response. This study investigated the effect of 8 weeks of resistance training on myofiber hypertrophy and myonuclear addition in 12 males (28±7 years; mean±SD) and 12 females (27±7 years). Muscle biopsies were collected from m. vastus lateralis before and after the training intervention and analyzed by immunohistochemistry for fiber type and size, satellite cells, and myonuclei. Hypertrophy of type I fibers was greater in males than females (P<0.05), whereas hypertrophy of type II fibers was similar between sexes (P=0.158‒0.419). Expansion of the satellite cell pool (P=0.132‒0.667) and myonuclear addition (P=0.064‒0.228) did not differ significantly between sexes, irrespective of myofiber type. However, when individual responses to resistance training were assessed, myonuclear addition was strongly correlated with fiber hypertrophy (r=0.68‒0.85, P<0.001). While myofiber hypertrophy was accompanied by an increase in myonuclear domain (P<0.05), fiber perimeter per myonucleus remained constant throughout the study (P=0.096‒0.666). These findings indicate that myonuclear addition occurs in relation to the fiber perimeter per myonucleus, not the myonuclear domain, and has a substantial role in muscle hypertrophy, but does not fully explain greater hypertrophy of type I fibers in males than females.
Collapse
Affiliation(s)
- Lukas Moesgaard
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Søren Jessen
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Beaudry KM, Binet ER, Collao N, De Lisio M. Nutritional Regulation of Muscle Stem Cells in Exercise and Disease: The Role of Protein and Amino Acid Dietary Supplementation. Front Physiol 2022; 13:915390. [PMID: 35874517 PMCID: PMC9301335 DOI: 10.3389/fphys.2022.915390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Human skeletal muscle is a remarkedly plastic tissue that has a high capacity to adapt in response to various stimuli. These adaptations are due in part to the function of muscle-resident stem/progenitor cells. Skeletal muscle regeneration and adaptation is facilitated by the activation and expansion of muscle stem cells (MuSCs). MuSC fate is regulated by signals released from cells in their niche, such as fibro-adipogenic progenitors (FAPs), as well as a variety of non-cellular niche components. Sufficient dietary protein consumption is critical for maximizing skeletal muscle adaptation to exercise and maintaining skeletal muscle in disease; however, the role of dietary protein in altering MuSC and FAP responses to exercise in healthy populations and skeletal muscle disease states requires more research. The present review provides an overview of this emerging field and suggestions for future directions. The current literature suggests that in response to resistance exercise, protein supplementation has been shown to increase MuSC content and the MuSC response to acute exercise. Similarly, protein supplementation augments the increase in MuSC content following resistance training. Endurance exercise, conversely, is an area of research that is sparse with respect to the interaction of protein supplementation and exercise on muscle stem/progenitor cell fate. Initial evidence suggests that protein supplementation augments the early myogenic response to acute endurance exercise but does not enhance the MuSC response to endurance training. Resistance training increases the number of proliferating FAPs with no additional effect of protein supplementation. Future research should continue to focus on the nutritional regulation of skeletal muscle stem/progenitor cell fate paired with studies examining the effects of exercise on a variety of human populations.
Collapse
Affiliation(s)
| | | | - Nicolás Collao
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
Nunes EA, Colenso‐Semple L, McKellar SR, Yau T, Ali MU, Fitzpatrick‐Lewis D, Sherifali D, Gaudichon C, Tomé D, Atherton PJ, Robles MC, Naranjo‐Modad S, Braun M, Landi F, Phillips SM. Systematic review and meta-analysis of protein intake to support muscle mass and function in healthy adults. J Cachexia Sarcopenia Muscle 2022; 13:795-810. [PMID: 35187864 PMCID: PMC8978023 DOI: 10.1002/jcsm.12922] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
We performed a systematic review, meta-analysis, and meta-regression to determine if increasing daily protein ingestion contributes to gaining lean body mass (LBM), muscle strength, and physical/functional test performance in healthy subjects. A protocol for the present study was registered (PROSPERO, CRD42020159001), and a systematic search of Medline, Embase, CINAHL, and Web of Sciences databases was undertaken. Only randomized controlled trials (RCT) where participants increased their daily protein intake and were healthy and non-obese adults were included. Research questions focused on the main effects on the outcomes of interest and subgroup analysis, splitting the studies by participation in a resistance exercise (RE), age (<65 or ≥65 years old), and levels of daily protein ingestion. Three-level random-effects meta-analyses and meta-regressions were conducted on data from 74 RCT. Most of the selected studies tested the effects of additional protein ingestion during RE training. The evidence suggests that increasing daily protein ingestion may enhance gains in LBM in studies enrolling subjects in RE (SMD [standardized mean difference] = 0.22, 95% CI [95% confidence interval] 0.14:0.30, P < 0.01, 62 studies, moderate level of evidence). The effect on LBM was significant in subjects ≥65 years old ingesting 1.2-1.59 g of protein/kg/day and for younger subjects (<65 years old) ingesting ≥1.6 g of protein/kg/day submitted to RE. Lower-body strength gain was slightly higher by additional protein ingestion at ≥1.6 g of protein/kg/day during RE training (SMD = 0.40, 95% CI 0.09:0.35, P < 0.01, 19 studies, low level of evidence). Bench press strength is slightly increased by ingesting more protein in <65 years old subjects during RE training (SMD = 0.18, 95% CI 0.03:0.33, P = 0.01, 32 studies, low level of evidence). The effects of ingesting more protein are unclear when assessing handgrip strength and only marginal for performance in physical function tests. In conclusion, increasing daily protein ingestion results in small additional gains in LBM and lower body muscle strength gains in healthy adults enrolled in resistance exercise training. There is a slight effect on bench press strength and minimal effect performance in physical function tests. The effect on handgrip strength is unclear.
Collapse
Affiliation(s)
- Everson A. Nunes
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
- Laboratory of Investigation of Chronic Diseases, Department of Physiological SciencesFederal University of Santa CatarinaFlorianópolisBrazil
| | - Lauren Colenso‐Semple
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Sean R. McKellar
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Thomas Yau
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Muhammad Usman Ali
- McMaster Evidence Review and Synthesis CentreMcMaster UniversityHamiltonOntarioCanada
| | | | - Diana Sherifali
- School of Nursing, Faculty of Health SciencesMcMaster UniversityHamiltonOntarioCanada
| | - Claire Gaudichon
- Université Paris‐SaclayAgroParisTech, INRAE, UMR PNCAParisFrance
| | - Daniel Tomé
- Université Paris‐SaclayAgroParisTech, INRAE, UMR PNCAParisFrance
| | - Philip J. Atherton
- MRC Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research (CMAR), NIHR Biomedical Research Centre, School of MedicineUniversity of NottinghamNottinghamUK
| | | | | | - Michelle Braun
- International Flavors & FragrancesResearch and DevelopmentSt. LouisMOUSA
| | - Francesco Landi
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Stuart M. Phillips
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
10
|
Lysenko EA, Vinogradova OL, Popov DV. The Mechanisms of Muscle Mass and Strength Increase during Strength Training. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Shamim B, Camera DM, Whitfield J. Myofibre Hypertrophy in the Absence of Changes to Satellite Cell Content Following Concurrent Exercise Training in Young Healthy Men. Front Physiol 2021; 12:625044. [PMID: 34149439 PMCID: PMC8213074 DOI: 10.3389/fphys.2021.625044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Concurrent exercise training has been suggested to create an ‘interference effect,’ attenuating resistance training-based skeletal muscle adaptations, including myofibre hypertrophy. Satellite cells support myofibre hypertrophy and are influenced by exercise mode. To determine whether satellite cells contribute to the ‘interference effect’ changes in satellite cell and myonuclear content were assessed following a period of training in 32 recreationally active males (age: 25 ± 5 year; body mass index: 24 ± 3 kg⋅m–2; mean ± SD) who undertook 12-week of either isolated (3 d⋅w–1) resistance (RES; n = 10), endurance (END; n = 10), or alternate day (6 d⋅w–1) concurrent (CET, n = 12) training. Skeletal muscle biopsies were obtained pre-intervention and after 2, 8, and 12 weeks of training to determine fibre type-specific cross-sectional area (CSA), satellite cell content (Pax7+DAPI+), and myonuclei (DAPI+) using immunofluorescence microscopy. After 12 weeks, myofibre CSA increased in all training conditions in type II (P = 0.0149) and mixed fibres (P = 0.0102), with no difference between conditions. Satellite cell content remained unchanged after training in both type I and type II fibres. Significant correlations were observed between increases in fibre type-specific myonuclear content and CSA of Type I (r = 0.63, P < 0.0001), Type II (r = 0.69, P < 0.0001), and mixed fibres (r = 0.72, P < 0.0001). Resistance, endurance, and concurrent training induce similar myofibre hypertrophy in the absence of satellite cell and myonuclear pool expansion. These findings suggest that myonuclear accretion via satellite cell fusion is positively correlated with hypertrophy after 12 weeks of concurrent training, and that individuals with more myonuclear content displayed greater myofibre hypertrophy.
Collapse
Affiliation(s)
- Baubak Shamim
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Donny M Camera
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Jamie Whitfield
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Comparison of the effect of soya protein and whey protein on body composition: a meta-analysis of randomised clinical trials. Br J Nutr 2021; 127:885-895. [PMID: 33971994 DOI: 10.1017/s0007114521001550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Essential amino acids (EAA) promote the process of regulating muscle synthesis. Thus, whey protein that contains higher amounts of EAA can have a considerable effect on modifying muscle synthesis. However, there is insufficient evidence regarding the effect of soya and whey protein supplementation on body composition. Thus, we sought to perform a meta-analysis of published randomised clinical trials that examined the effect of whey protein supplementation and soya protein supplementation on body composition (lean body mass, fat mass, body mass and body fat percentage) in adults. We searched PubMed, Scopus and Google Scholar, up to August 2020, for all relevant published articles assessing soya protein supplementation and whey protein supplementation on body composition parameters. We included all randomised clinical trials that investigated the effect of whey protein supplementation and soya protein supplementation on body composition in adults. Pooled means and standard deviations were calculated using random effects models. Subgroup analysis was applied to discern possible sources of heterogeneity. After excluding non-relevant articles, ten studies, with 596 participants, remained in this study. We found a significant increase in lean body mass after whey protein supplementation (weighted mean difference (WMD: 0·91; 95 % CI 0·15, 1·67; P = 0·019). We observed no significant change between whey protein supplementation and body mass, fat mass and body fat percentage. We found no significant change between soya protein supplementation and body composition parameters. Whey protein supplementation significantly improved body composition via increases in lean body mass, without influencing fat mass, body mass and body fat percentage.
Collapse
|
13
|
Master PBZ, Macedo RCO. Effects of dietary supplementation in sport and exercise: a review of evidence on milk proteins and amino acids. Crit Rev Food Sci Nutr 2020; 61:1225-1239. [PMID: 32363897 DOI: 10.1080/10408398.2020.1756216] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dietary supplements, especially protein, are used by athletes to achieve the exercise and training daily demands, and have been receiving research focus on their role regarding recovery and performance. Protein supplements are preferred over traditional protein sources because of their ease of availability and use. In addition to consuming a complete protein supplement, such as whey protein, the ingestion of a supplement containing only amino acids has been of interest for promoting skeletal muscle anabolism and high-quality weight loss. The aim of this study was to review the existing evidence on the effects of protein and amino acid supplementation on exercise. The preponderance of evidence suggests that protein supplementation, especially milk proteins, potentiate muscle protein synthesis, lean mass and exercise recovery. Unlike proteins, amino acids supplementation (branched-chain amino acids, glutamine or leucine) results from research are equivocal and are not warranted.
Collapse
|
14
|
Moro T, Brightwell CR, Volpi E, Rasmussen BB, Fry CS. Resistance exercise training promotes fiber type-specific myonuclear adaptations in older adults. J Appl Physiol (1985) 2020; 128:795-804. [PMID: 32134710 DOI: 10.1152/japplphysiol.00723.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aging induces physiological decline in human skeletal muscle function and morphology, including type II fiber atrophy and an increase in type I fiber frequency. Resistance exercise training (RET) is an effective strategy to overcome muscle mass loss and improve strength, with a stronger effect on type II fibers. In the present study, we sought to determine the effect of a 12-wk progressive RET program on the fiber type-specific skeletal muscle hypertrophic response in older adults. Nineteen subjects [10 men and 9 women (71.1 ± 4.3 yr)] were studied before and after the 12-wk program. Immunohistochemical analysis was used to quantify myosin heavy chain (MyHC) isoform expression, cross-sectional area (CSA), satellite cell abundance, myonuclear content, and lipid droplet density. RET induced an increase in MyHC type II fiber frequency and a concomitant decrease in MyHC type I fiber frequency. Mean CSA increased significantly only in MyHC type II fibers (+23.3%, P < 0.05), but myonuclear content increased only in MyHC type I fibers (P < 0.05), with no change in MyHC type II fibers. Satellite cell content increased ~40% in both fiber types (P > 0.05). RET induced adaptations to the capillary supply to satellite cells, with the distance between satellite cells and the nearest capillary increasing in type I fibers and decreasing in type II fibers. Both fiber types showed similar decrements in intramuscular lipid density with training (P < 0.05). Our data provide intriguing evidence for a fiber type-specific response to RET in older adults and suggest flexibility in the myonuclear domain of type II fibers during a hypertrophic stimulus.NEW & NOTEWORTHY In older adults, progressive resistance exercise training (RET) increased skeletal muscle fiber volume and cross-sectional area independently of myonuclear accretion, leading to an expansion of the myonuclear domain. Fiber type-specific analyses illuminated differential adaptation; type II fibers underwent hypertrophy and exhibited myonuclear domain plasticity, whereas myonuclear accretion occurred in type I fibers in the absence of a robust hypertrophic response. RET also augmented satellite cell-capillary interaction and reduced intramyocellular lipid density to improve muscle quality.
Collapse
Affiliation(s)
- Tatiana Moro
- Department of Nutrition and Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, Texas.,Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas.,Center for Recovery, Physical Activity, and Nutrition, University of Texas Medical Branch, Galveston, Texas
| | - Camille R Brightwell
- Cell Biology Graduate Program, University of Texas Medical Branch, Galveston, Texas.,Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Elena Volpi
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas.,Department of Internal Medicine/Geriatrics, University of Texas Medical Branch, Galveston, Texas
| | - Blake B Rasmussen
- Department of Nutrition and Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, Texas.,Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas.,Center for Recovery, Physical Activity, and Nutrition, University of Texas Medical Branch, Galveston, Texas
| | - Christopher S Fry
- Department of Nutrition and Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, Texas.,Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
15
|
Low-load blood flow restriction elicits greater concentric strength than non-blood flow restriction resistance training but similar isometric strength and muscle size. Eur J Appl Physiol 2019; 120:425-441. [DOI: 10.1007/s00421-019-04287-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
|
16
|
Haun CT, Vann CG, Osburn SC, Mumford PW, Roberson PA, Romero MA, Fox CD, Johnson CA, Parry HA, Kavazis AN, Moon JR, Badisa VLD, Mwashote BM, Ibeanusi V, Young KC, Roberts MD. Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. PLoS One 2019; 14:e0215267. [PMID: 31166954 PMCID: PMC6550381 DOI: 10.1371/journal.pone.0215267] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/22/2019] [Indexed: 01/10/2023] Open
Abstract
Cellular adaptations that occur during skeletal muscle hypertrophy in response to high-volume resistance training are not well-characterized. Therefore, we sought to explore how actin, myosin, sarcoplasmic protein, mitochondrial, and glycogen concentrations were altered in individuals that exhibited mean skeletal muscle fiber cross-sectional area (fCSA) hypertrophy following 6 weeks of high-volume resistance training. Thirty previously resistance-trained, college-aged males (mean ± standard deviation: 21±2 years, 5±3 training years) had vastus lateralis (VL) muscle biopsies obtained prior to training (PRE), at week 3 (W3), and at week 6 (W6). Muscle tissue from 15 subjects exhibiting PRE to W6 VL mean fCSA increases ranging from 320–1600 μm2 was further interrogated using various biochemical and histological assays as well as proteomic analysis. Seven of these individuals donated a VL biopsy after refraining from training 8 days following the last training session (W7) to determine how deloading affected biomarkers. The 15 fCSA hypertrophic responders experienced a +23% increase in mean fCSA from PRE to W6 (p<0.001) and, while muscle glycogen concentrations remained unaltered, citrate synthase activity levels decreased by 24% (p<0.001) suggesting mitochondrial volume decreased. Interestingly, repeated measures ANOVAs indicated that p-values approached statistical significance for both myosin and actin (p = 0.052 and p = 0.055, respectively), and forced post hoc tests indicated concentrations for both proteins decreased ~30% from PRE to W6 (p<0.05 for each target). Phalloidin-actin staining similarly revealed actin concentrations per fiber decreased from PRE to W6. Proteomic analysis of the sarcoplasmic fraction from PRE to W6 indicated 40 proteins were up-regulated (p<0.05), KEGG analysis indicated that the glycolysis/gluconeogenesis pathway was upregulated (FDR sig. <0.001), and DAVID indicated that the following functionally-annotated pathways were upregulated (FDR value <0.05): a) glycolysis (8 proteins), b) acetylation (23 proteins), c) gluconeogenesis (5 proteins) and d) cytoplasm (20 proteins). At W7, sarcoplasmic protein concentrations remained higher than PRE (+66%, p<0.05), and both actin and myosin concentrations remained lower than PRE (~-50%, p<0.05). These data suggest that short-term high-volume resistance training may: a) reduce muscle fiber actin and myosin protein concentrations in spite of increasing fCSA, and b) promote sarcoplasmic expansion coincident with a coordinated up-regulation of sarcoplasmic proteins involved in glycolysis and other metabolic processes related to ATP generation. Interestingly, these effects seem to persist up to 8 days following training.
Collapse
Affiliation(s)
- Cody T. Haun
- Department of Exercise Science, LaGrange College, LaGrange, GA, United States of America
| | - Christopher G. Vann
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Shelby C. Osburn
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Petey W. Mumford
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Paul A. Roberson
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Matthew A. Romero
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Carlton D. Fox
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Christopher A. Johnson
- School of Medicine, University of Alabama Birmingham, Birmingham, AL, United States of America
| | - Hailey A. Parry
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Andreas N. Kavazis
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | | | - Veera L. D. Badisa
- School of the Environment, Florida A&M University, Tallahassee, FL, United States of America
| | - Benjamin M. Mwashote
- School of the Environment, Florida A&M University, Tallahassee, FL, United States of America
| | - Victor Ibeanusi
- School of the Environment, Florida A&M University, Tallahassee, FL, United States of America
| | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine—Auburn Campus, Auburn, AL, United States of America
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine—Auburn Campus, Auburn, AL, United States of America
- * E-mail:
| |
Collapse
|
17
|
Reidy PT, Yonemura NM, Madsen JH, McKenzie AI, Mahmassani ZS, Rondina MT, Lin YK, Kaput K, Drummond MJ. An accumulation of muscle macrophages is accompanied by altered insulin sensitivity after reduced activity and recovery. Acta Physiol (Oxf) 2019; 226:e13251. [PMID: 30632274 DOI: 10.1111/apha.13251] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mechanisms underlying physical inactivity-induced insulin resistance are not well understood. In addition to a role in muscle repair, immune cell populations such as macrophages may regulate insulin sensitivity. AIM The aim of this study was to examine if the dynamic changes in insulin sensitivity during and after recovery from reduced physical activity corresponded to changes in skeletal muscle macrophages. METHODS In this prospective clinical study, we collected muscle biopsies from healthy older adults (70 ± 2 years, n = 12) before and during a hyperinsulinaemic-euglycaemic clamp and this occurred before (PRE) and after 2-week reduced physical activity (RA), and following 2-week of recovery (REC). Insulin sensitivity (hyperinsulinaemic-euglycaemic clamp), skeletal muscle mRNA expression of inflammatory markers, and immunofluorescent quantification of skeletal muscle macrophages, myofibre-specific satellite cell and capillary content were assessed. RESULTS Insulin sensitivity was decreased following reduced activity and rebounded following recovery above PRE levels. We observed an increase (P < 0.01) in muscle macrophages (CD68+ CD206+ : 190 [55, 324]; CD11b+ CD206+ : 117 [28, 205]% change from PRE) and CD68 (2.4 [1.4, 3.4]-fold) and CCL2 (1.9 [1.3, 2.5]-fold) mRNA following RA concurrent with increased (P < 0.03) satellite cells (55 [6, 104]%) in slow-twitch myofibres. Moreover, the distance of satellite cells to the nearest capillary was increased 7.7 (1.7, 13.7) µm in fast-twitch myofibres at RA (P = 0.007). Changes in macrophages were positively associated with increased insulin sensitivity following RA (R > 0.57, P < 0.05). CONCLUSION These findings suggested that a dynamic response of skeletal muscle macrophages following acute changes in physical activity in healthy older adults is related to insulin sensitivity.
Collapse
Affiliation(s)
- Paul T. Reidy
- Departments of Physical Therapy and Athletic Training University of Utah Salt Lake City Utah
| | - Nikol M. Yonemura
- Departments of Physical Therapy and Athletic Training University of Utah Salt Lake City Utah
| | | | - Alec I. McKenzie
- Departments of Physical Therapy and Athletic Training University of Utah Salt Lake City Utah
| | - Ziad S. Mahmassani
- Departments of Physical Therapy and Athletic Training University of Utah Salt Lake City Utah
| | - Matthew T. Rondina
- Department of Internal Medicine University of Utah School of Medicine Salt Lake City Utah
| | - Yu Kuei Lin
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine University of Utah School of Medicine Salt Lake City Utah
| | - Katie Kaput
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine University of Utah School of Medicine Salt Lake City Utah
| | - Micah J. Drummond
- Departments of Physical Therapy and Athletic Training University of Utah Salt Lake City Utah
| |
Collapse
|
18
|
Psilander N, Eftestøl E, Cumming KT, Juvkam I, Ekblom MM, Sunding K, Wernbom M, Holmberg HC, Ekblom B, Bruusgaard JC, Raastad T, Gundersen K. Effects of training, detraining, and retraining on strength, hypertrophy, and myonuclear number in human skeletal muscle. J Appl Physiol (1985) 2019; 126:1636-1645. [PMID: 30991013 DOI: 10.1152/japplphysiol.00917.2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previously trained mouse muscles acquire strength and volume faster than naïve muscles; it has been suggested that this is related to increased myonuclear density. The present study aimed to determine whether a previously strength-trained leg (mem-leg) would respond better to a period of strength training than a previously untrained leg (con-leg). Nine men and 10 women performed unilateral strength training (T1) for 10 wk, followed by 20 wk of detraining (DT) and a 5-wk bilateral retraining period (T2). Muscle biopsies were taken before and after each training period and analyzed for myonuclear number, fiber volume, and cross-sectional area (CSA). Ultrasound and one repetition of maximum leg extension were performed to determine muscle thickness (MT) and strength. CSA (~17%), MT (~10%), and strength (~20%) increased during T1 in the mem-leg. However, the myonuclear number and fiber volume did not change. MT and CSA returned to baseline values during DT, but strength remained elevated (~60%), supporting previous findings of a long-lasting motor learning effect. MT and strength increased similarly in the mem-leg and con-leg during T2, whereas CSA, fiber volume, and myonuclear number remained unaffected. In conclusion, training response during T2 did not differ between the mem-leg and con-leg. However, this does not discount the existence of human muscle memory, since no increase in the number of myonuclei was detected during T1 and no clear detraining effect was observed for cell size during DT; thus, the present data did not allow for a rigorous test of the muscle memory hypothesis. NEW & NOTEWORTHY If a long-lasting intramuscular memory exists in humans, this will affect strength-training advice for both athletes and the public. Based on animal experiments, we hypothesized that such a memory exists and that it is related to the myonuclear number. However, a period of unilateral strength training, followed by detraining, did not increase the myonuclear number. The training response, during a subsequent bilateral retraining period, was not enhanced in the previously trained leg.
Collapse
Affiliation(s)
- Niklas Psilander
- Department of Sport Performance and Training, The Swedish School of Sport and Health Sciences , Stockholm , Sweden
| | - Einar Eftestøl
- Department of Biosciences, University of Oslo , Oslo , Norway
| | | | - Inga Juvkam
- Department of Biosciences, University of Oslo , Oslo , Norway
| | - Maria M Ekblom
- Department of Sport Performance and Training, The Swedish School of Sport and Health Sciences , Stockholm , Sweden
| | - Kerstin Sunding
- Stockholm Sport Trauma Research Center, Karolinska Institutet , Stockholm , Sweden
| | - Mathias Wernbom
- Department of Food and Nutrition and Sport Science, Center for Health and Performance, University of Gothenburg , Gothenburg , Sweden
| | - Hans-Christer Holmberg
- Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| | - Björn Ekblom
- Department of Sport Performance and Training, The Swedish School of Sport and Health Sciences , Stockholm , Sweden
| | - Jo C Bruusgaard
- Department of Biosciences, University of Oslo , Oslo , Norway.,Department of Health Sciences, Kristiania University College , Oslo , Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences , Oslo , Norway
| | | |
Collapse
|
19
|
Haun CT, Vann CG, Roberts BM, Vigotsky AD, Schoenfeld BJ, Roberts MD. A Critical Evaluation of the Biological Construct Skeletal Muscle Hypertrophy: Size Matters but So Does the Measurement. Front Physiol 2019; 10:247. [PMID: 30930796 PMCID: PMC6423469 DOI: 10.3389/fphys.2019.00247] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is highly adaptable and has consistently been shown to morphologically respond to exercise training. Skeletal muscle growth during periods of resistance training has traditionally been referred to as skeletal muscle hypertrophy, and this manifests as increases in muscle mass, muscle thickness, muscle area, muscle volume, and muscle fiber cross-sectional area (fCSA). Delicate electron microscopy and biochemical techniques have also been used to demonstrate that resistance exercise promotes ultrastructural adaptations within muscle fibers. Decades of research in this area of exercise physiology have promulgated a widespread hypothetical model of training-induced skeletal muscle hypertrophy; specifically, fCSA increases are accompanied by proportional increases in myofibrillar protein, leading to an expansion in the number of sarcomeres in parallel and/or an increase in myofibril number. However, there is ample evidence to suggest that myofibrillar protein concentration may be diluted through sarcoplasmic expansion as fCSA increases occur. Furthermore, and perhaps more problematic, are numerous investigations reporting that pre-to-post training change scores in macroscopic, microscopic, and molecular variables supporting this model are often poorly associated with one another. The current review first provides a brief description of skeletal muscle composition and structure. We then provide a historical overview of muscle hypertrophy assessment. Next, current-day methods commonly used to assess skeletal muscle hypertrophy at the biochemical, ultramicroscopic, microscopic, macroscopic, and whole-body levels in response to training are examined. Data from our laboratory, and others, demonstrating correlations (or the lack thereof) between these variables are also presented, and reasons for comparative discrepancies are discussed with particular attention directed to studies reporting ultrastructural and muscle protein concentration alterations. Finally, we critically evaluate the biological construct of skeletal muscle hypertrophy, propose potential operational definitions, and provide suggestions for consideration in hopes of guiding future research in this area.
Collapse
Affiliation(s)
- Cody T Haun
- Department of Exercise Science, LaGrange College, LaGrange, GA, United States
| | | | - Brandon M Roberts
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew D Vigotsky
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, United States
| | | |
Collapse
|
20
|
Naclerio F, Larumbe-Zabala E, Seijo M, Ashrafi N, Nielsen BV, Earnest CP. Effects of Protein Versus Carbohydrate Supplementation on Markers of Immune Response in Master Triathletes: A Randomized Controlled Trial. J Am Coll Nutr 2018; 38:395-404. [PMID: 30398957 DOI: 10.1080/07315724.2018.1528906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: This study examines the long-term effects of ingesting hydrolyzed beef protein versus carbohydrate on indirect markers of immunity during 10 weeks of endurance training in master-aged triathletes (n = 16, age 35-60 years). Methods: Participants were randomly assigned to either a hydrolyzed beef protein (PRO, n = 8) or nonprotein isoenergetic carbohydrate (CHO, n = 8) condition, which consisted of ingesting 20 g of each supplement, mixed with water, once a day immediately post workout, or before breakfast on nontraining days. Salivary human neutrophil peptides (HNP1-3) were measured before and after performing an incremental endurance test to volitional exhaustion at both pre and post intervention. Additionally, baseline levels of platelets, neutrophils, eosinophil basophils, monocytes, and lymphocytes were determined at pre and post intervention. Results: No significant changes in baseline concentration and secretion rate of salivary HNP1-3 were observed for either treatment. The CHO group showed a nonsignificant decrease in resting HNP1-3 concentrations following the intervention (p = 0.052, effect size d = 0.53). Protein supplementation demonstrated a significant reduction in lymphocyte counts pre to post intervention (mean [SD]: 2.30 [0.57] vs. 1.93 [0.45] 103/mm3, p = 0.046, d = 0.77), along with a moderate but not statistically significant increase (d = 0.75, p = 0.051) of the neutrophil-to-lymphocyte ratio. Conclusions: In master-aged triathletes, postworkout ingestion of only protein, with no carbohydrate, may not be as effective as carbohydrate alone to attenuate negative long-term changes of some salivary and cellular immunological markers. Future studies should consider the co-ingestion of both macronutrients.
Collapse
Affiliation(s)
- Fernando Naclerio
- a Department of Life and Sport Science, Faculty of Engineering and Science , University of Greenwich , London , United Kingdom
| | - Eneko Larumbe-Zabala
- b Clinical Research Institute, Texas Tech University Health Sciences Center , Lubbock , Texas , USA
| | - Marcos Seijo
- a Department of Life and Sport Science, Faculty of Engineering and Science , University of Greenwich , London , United Kingdom
| | - Nadia Ashrafi
- a Department of Life and Sport Science, Faculty of Engineering and Science , University of Greenwich , London , United Kingdom
| | - Birthe V Nielsen
- a Department of Life and Sport Science, Faculty of Engineering and Science , University of Greenwich , London , United Kingdom
| | - Conrad P Earnest
- c Exercise Science and Nutrition Laboratory , Texas A&M University , College Station , Texas , USA
| |
Collapse
|
21
|
Roberts MD, Haun CT, Mobley CB, Mumford PW, Romero MA, Roberson PA, Vann CG, McCarthy JJ. Physiological Differences Between Low Versus High Skeletal Muscle Hypertrophic Responders to Resistance Exercise Training: Current Perspectives and Future Research Directions. Front Physiol 2018; 9:834. [PMID: 30022953 PMCID: PMC6039846 DOI: 10.3389/fphys.2018.00834] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
Numerous reports suggest there are low and high skeletal muscle hypertrophic responders following weeks to months of structured resistance exercise training (referred to as low and high responders herein). Specifically, divergent alterations in muscle fiber cross sectional area (fCSA), vastus lateralis thickness, and whole body lean tissue mass have been shown to occur in high versus low responders. Differential responses in ribosome biogenesis and subsequent protein synthetic rates during training seemingly explain some of this individual variation in humans, and mechanistic in vitro and rodent studies provide further evidence that ribosome biogenesis is critical for muscle hypertrophy. High responders may experience a greater increase in satellite cell proliferation during training versus low responders. This phenomenon could serve to maintain an adequate myonuclear domain size or assist in extracellular remodeling to support myofiber growth. High responders may also express a muscle microRNA profile during training that enhances insulin-like growth factor-1 (IGF-1) mRNA expression, although more studies are needed to better validate this mechanism. Higher intramuscular androgen receptor protein content has been reported in high versus low responders following training, and this mechanism may enhance the hypertrophic effects of testosterone during training. While high responders likely possess “good genetics,” such evidence has been confined to single gene candidates which typically share marginal variance with hypertrophic outcomes following training (e.g., different myostatin and IGF-1 alleles). Limited evidence also suggests pre-training muscle fiber type composition and self-reported dietary habits (e.g., calorie and protein intake) do not differ between high versus low responders. Only a handful of studies have examined muscle biomarkers that are differentially expressed between low versus high responders. Thus, other molecular and physiological variables which could potentially affect the skeletal muscle hypertrophic response to resistance exercise training are also discussed including rDNA copy number, extracellular matrix and connective tissue properties, the inflammatory response to training, and mitochondrial as well as vascular characteristics.
Collapse
Affiliation(s)
| | - Cody T Haun
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Petey W Mumford
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Matthew A Romero
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Paul A Roberson
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - John J McCarthy
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
22
|
CONCEIÇÃO MIGUELS, VECHIN FELIPEC, LIXANDRÃO MANOEL, DAMAS FELIPE, LIBARDI CLEITONA, TRICOLI VALMOR, ROSCHEL HAMILTON, CAMERA DONNY, UGRINOWITSCH CARLOS. Muscle Fiber Hypertrophy and Myonuclei Addition: A Systematic Review and Meta-analysis. Med Sci Sports Exerc 2018; 50:1385-1393. [DOI: 10.1249/mss.0000000000001593] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Lim CH, Gil JH, Quan H, Viet DH, Kim CK. Effect of 8-week leucine supplementation and resistance exercise training on muscle hypertrophy and satellite cell activation in rats. Physiol Rep 2018; 6:e13725. [PMID: 29952091 PMCID: PMC6021278 DOI: 10.14814/phy2.13725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/30/2022] Open
Abstract
We investigated the effects of regular leucine intake and/or resistance exercise training on skeletal muscle hypertrophy and satellite cell activity after the administration of different doses of leucine. Ten-week-old Sprague-Dawley rats were assigned to six groups (n = 7 per group): a control group (Con), two groups receiving either 10% (0.135 g/kg.wt) (Leu10) or 50% (0.675 g/kg.wt) (Leu50) leucine supplementation, and three exercise groups receiving 0% (Ex), 10% (Leu10Ex), and 50% (Leu50Ex) leucine supplementation. The rats performed ladder climbing exercises thrice per week for 8 weeks, and received leucine supplements at the same time daily. Muscle phenotypes were assessed by immunohistochemistry. MyoD, myogenin, and IGF1 protein levels were determined by western blot. The Leu50Ex group displayed significantly higher numbers of positive embryonic myosin fibers (0.35 ± 0.08, 250%) and myonuclei (3.29 ± 0.3, 118.7%) than all other groups. And exercise training groups increased the cross-sectional area, the number of satellite cells and protein expression of MyoD, myogenin, and IGF1alpha relative to the Control group (P < 0.05). However, Only leucine supplementation group did not increase skeletal muscle hypertrophy and satellite cell activity, regardless of the dose (P > 0.05). Leucine intake accompanied by regular exercise training may increase satellite cell activation in skeletal muscles, and improve muscle quality more effectively than continuous leucine ingestion alone.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Combined Modality Therapy
- Dietary Supplements
- Dose-Response Relationship, Drug
- Hypertrophy/metabolism
- Hypertrophy/pathology
- Hypertrophy/prevention & control
- Leucine/administration & dosage
- Leucine/pharmacology
- Leucine/therapeutic use
- Male
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscle Proteins/metabolism
- Muscle Strength/physiology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Physical Conditioning, Animal/physiology
- Rats, Sprague-Dawley
- Resistance Training/methods
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/pathology
- Weight Gain/drug effects
- Weight Gain/physiology
- Weight-Bearing/physiology
Collapse
Affiliation(s)
- Chang Hyun Lim
- Human physiology, KoreaNational Sport UniversitySeoulKorea
- Exercise and Metabolism Research CenterZhejiang Normal UniversityJinhuaChina
| | - Ju Hyun Gil
- Human physiology, KoreaNational Sport UniversitySeoulKorea
| | - Helong Quan
- Exercise and Metabolism Research CenterZhejiang Normal UniversityJinhuaChina
- College of Physical Education and Health ScienceZhejiang Normal UniversityJinhuaChina
| | - Dang Ha Viet
- Sport Science and Technology InstituteHochiminh City University of SportHochiminh CityVietnam
| | - Chang Keun Kim
- Human physiology, KoreaNational Sport UniversitySeoulKorea
- Exercise and Metabolism Research CenterZhejiang Normal UniversityJinhuaChina
| |
Collapse
|
24
|
Post-Game High Protein Intake May Improve Recovery of Football-Specific Performance during a Congested Game Fixture: Results from the PRO-FOOTBALL Study. Nutrients 2018; 10:nu10040494. [PMID: 29659539 PMCID: PMC5946279 DOI: 10.3390/nu10040494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 01/04/2023] Open
Abstract
The effects of protein supplementation on performance recovery and inflammatory responses during a simulated one-week in-season microcycle with two games (G1, G2) performed three days apart were examined. Twenty football players participated in two trials, receiving either milk protein concentrate (1.15 and 0.26 g/kg on game and training days, respectively) (PRO) or an energy-matched placebo (1.37 and 0.31 g/kg of carbohydrate on game and training days, respectively) (PLA) according to a randomized, repeated-measures, crossover, double-blind design. Each trial included two games and four daily practices. Speed, jump height, isokinetic peak torque, and muscle soreness of knee flexors (KF) and extensors (KE) were measured before G1 and daily thereafter for six days. Blood was drawn before G1 and daily thereafter. Football-specific locomotor activity and heart rate were monitored using GPS technology during games and practices. The two games resulted in reduced speed (by 3–17%), strength of knee flexors (by 12–23%), and jumping performance (by 3–10%) throughout recovery, in both trials. Average heart rate and total distance covered during games remained unchanged in PRO but not in PLA. Moreover, PRO resulted in a change of smaller magnitude in high-intensity running at the end of G2 (75–90 min vs. 0–15 min) compared to PLA (P = 0.012). KE concentric strength demonstrated a more prolonged decline in PLA (days 1 and 2 after G1, P = 0.014–0.018; days 1, 2 and 3 after G2, P = 0.016–0.037) compared to PRO (days 1 after G1, P = 0.013; days 1 and 2 after G2, P = 0.014–0.033) following both games. KF eccentric strength decreased throughout recovery after G1 (PLA: P=0.001–0.047—PRO: P =0.004–0.22) in both trials, whereas after G2 it declined throughout recovery in PLA (P = 0.000–0.013) but only during the first two days (P = 0.000–0.014) in PRO. No treatment effect was observed for delayed onset of muscle soreness, leukocyte counts, and creatine kinase activity. PRO resulted in a faster recovery of protein and lipid peroxidation markers after both games. Reduced glutathione demonstrated a more short-lived reduction after G2 in PRO compared to PLA. In summary, these results provide evidence that protein feeding may more efficiently restore football-specific performance and strength and provide antioxidant protection during a congested game fixture.
Collapse
|
25
|
Shamim B, Hawley JA, Camera DM. Protein Availability and Satellite Cell Dynamics in Skeletal Muscle. Sports Med 2018; 48:1329-1343. [DOI: 10.1007/s40279-018-0883-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Gray SR, Mittendorfer B. Fish oil-derived n-3 polyunsaturated fatty acids for the prevention and treatment of sarcopenia. Curr Opin Clin Nutr Metab Care 2018; 21:104-109. [PMID: 29232264 DOI: 10.1097/mco.0000000000000441] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Muscle mass and function decline progressively starting in middle age, which can result in sarcopenia and affect people's mobility and independence later in life. Exercise training and increased protein intake are typically recommended to counteract the age-associated decline in muscle mass and function. However, few people comply with exercise recommendations and the effectiveness of high-protein intake to halt the decline in muscle mass and function has not been proven. This review aims to explore recent developments in the potential for fish-oil derived n-3 polyunsaturated fatty acids (n-3 PUFA) to improve muscle mass and function in older people. RECENT FINDINGS The results from several recent studies demonstrate that dietary supplementation with fish oil-derived n-3 PUFA stimulates muscle protein synthesis and improves muscle mass and function in sedentary older adults and augments the resistance exercise training-induced increase in muscle strength in older adults. The exact mechanisms by which fish oil-derived n-3 PUFAs exert their beneficial effects on muscle mass and function remain to be elucidated. SUMMARY Fish-oil supplementation has antisarcopenic effects and should be considered in the clinical care of older adults.
Collapse
Affiliation(s)
- Stuart R Gray
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Center, University of Glasgow, Glasgow, Scotland, UK
| | - Bettina Mittendorfer
- Division of Geriatrics & Nutritional Sciences, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Murach KA, Fry CS, Kirby TJ, Jackson JR, Lee JD, White SH, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Starring or Supporting Role? Satellite Cells and Skeletal Muscle Fiber Size Regulation. Physiology (Bethesda) 2018; 33:26-38. [PMID: 29212890 PMCID: PMC5866409 DOI: 10.1152/physiol.00019.2017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
Recent loss-of-function studies show that satellite cell depletion does not promote sarcopenia or unloading-induced atrophy, and does not prevent regrowth. Although overload-induced muscle fiber hypertrophy is normally associated with satellite cell-mediated myonuclear accretion, hypertrophic adaptation proceeds in the absence of satellite cells in fully grown adult mice, but not in young growing mice. Emerging evidence also indicates that satellite cells play an important role in remodeling the extracellular matrix during hypertrophy.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Christopher S Fry
- Department of Nutrition and Metabolism, School of Health Professions, University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Tyler J Kirby
- The Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York
| | - Janna R Jackson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Jonah D Lee
- Environment, Health, and Safety, University of Michigan, Ann Arbor, Michigan
| | - Sarah H White
- Department of Animal Science, Texas A&M University, College Station, Texas; and
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky;
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
28
|
Khairallah RJ, O’Shea KM, Ward CW, Butteiger DN, Mukherjea R, Krul ES. Chronic dietary supplementation with soy protein improves muscle function in rats. PLoS One 2017; 12:e0189246. [PMID: 29216301 PMCID: PMC5720789 DOI: 10.1371/journal.pone.0189246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022] Open
Abstract
Athletes as well as elderly or hospitalized patients use dietary protein supplementation to maintain or grow skeletal muscle. It is recognized that high quality protein is needed for muscle accretion, and can be obtained from both animal and plant-based sources. There is interest to understand whether these sources differ in their ability to maintain or stimulate muscle growth and function. In this study, baseline muscle performance was assessed in 50 adult Sprague-Dawley rats after which they were assigned to one of five semi-purified “Western” diets (n = 10/group) differing only in protein source, namely 19 kcal% protein from either milk protein isolate (MPI), whey protein isolate (WPI), soy protein isolate (SPI), soy protein concentrate (SPC) or enzyme-treated soy protein (SPE). The diets were fed for 8 weeks at which point muscle performance testing was repeated and tissues were collected for analysis. There was no significant difference in food consumption or body weights over time between the diet groups nor were there differences in terminal organ and muscle weights or in serum lipids, creatinine or myostatin. Compared with MPI-fed rats, rats fed WPI and SPC displayed a greater maximum rate of contraction using the in vivo measure of muscle performance (p<0.05) with increases ranging from 13.3–27.5% and 22.8–29.5%, respectively at 60, 80, 100 and 150 Hz. When the maximum force was normalized to body weight, SPC-fed rats displayed increased force compared to MPI (p<0.05), whereas when normalized to gastrocnemius weight, WPI-fed rats displayed increased force compared to MPI (p<0.05). There was no difference between groups using in situ muscle performance. In conclusion, soy protein consumption, in high-fat diet, resulted in muscle function comparable to whey protein and improved compared to milk protein. The benefits seen with soy or whey protein were independent of changes in muscle mass or fiber cross-sectional area.
Collapse
Affiliation(s)
| | | | - Christopher W. Ward
- Myologica, LLC, New Market, MD, United States of America
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | | | - Ratna Mukherjea
- DuPont Nutrition & Health, St. Louis, MO, United States of America
| | - Elaine S. Krul
- DuPont Nutrition & Health, St. Louis, MO, United States of America
| |
Collapse
|
29
|
Effects of Whey, Soy or Leucine Supplementation with 12 Weeks of Resistance Training on Strength, Body Composition, and Skeletal Muscle and Adipose Tissue Histological Attributes in College-Aged Males. Nutrients 2017; 9:nu9090972. [PMID: 28869573 PMCID: PMC5622732 DOI: 10.3390/nu9090972] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022] Open
Abstract
We sought to determine the effects of L-leucine (LEU) or different protein supplements standardized to LEU (~3.0 g/serving) on changes in body composition, strength, and histological attributes in skeletal muscle and adipose tissue. Seventy-five untrained, college-aged males (mean ± standard error of the mean (SE); age = 21 ± 1 years, body mass = 79.2 ± 0.3 kg) were randomly assigned to an isocaloric, lipid-, and organoleptically-matched maltodextrin placebo (PLA, n = 15), LEU (n = 14), whey protein concentrate (WPC, n = 17), whey protein hydrolysate (WPH, n = 14), or soy protein concentrate (SPC, n = 15) group. Participants performed whole-body resistance training three days per week for 12 weeks while consuming supplements twice daily. Skeletal muscle and subcutaneous (SQ) fat biopsies were obtained at baseline (T1) and ~72 h following the last day of training (T39). Tissue samples were analyzed for changes in type I and II fiber cross sectional area (CSA), non-fiber specific satellite cell count, and SQ adipocyte CSA. On average, all supplement groups including PLA exhibited similar training volumes and experienced statistically similar increases in total body skeletal muscle mass determined by dual X-ray absorptiometry (+2.2 kg; time p = 0.024) and type I and II fiber CSA increases (+394 μm2 and +927 μm2; time p < 0.001 and 0.024, respectively). Notably, all groups reported increasing Calorie intakes ~600–800 kcal/day from T1 to T39 (time p < 0.001), and all groups consumed at least 1.1 g/kg/day of protein at T1 and 1.3 g/kg/day at T39. There was a training, but no supplementation, effect regarding the reduction in SQ adipocyte CSA (−210 μm2; time p = 0.001). Interestingly, satellite cell counts within the WPC (p < 0.05) and WPH (p < 0.05) groups were greater at T39 relative to T1. In summary, LEU or protein supplementation (standardized to LEU content) does not provide added benefit in increasing whole-body skeletal muscle mass or strength above PLA following 3 months of training in previously untrained college-aged males that increase Calorie intakes with resistance training and consume above the recommended daily intake of protein throughout training. However, whey protein supplementation increases skeletal muscle satellite cell number in this population, and this phenomena may promote more favorable training adaptations over more prolonged periods.
Collapse
|