1
|
Hillen B, Andrés López D, Marzano-Felisatti JM, Sanchez-Jimenez JL, Cibrián Ortiz de Anda RM, Nägele M, Salvador-Palmer MR, Pérez-Soriano P, Schömer E, Simon P, Priego-Quesada JI. Acute physiological responses to a pyramidal exercise protocol and the associations with skin temperature variation in different body areas. J Therm Biol 2023; 115:103605. [PMID: 37329763 DOI: 10.1016/j.jtherbio.2023.103605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/08/2023] [Accepted: 05/27/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to examine the skin temperature (Tsk) variations in five regions of interest (ROI) to assess whether possible disparities between the ROI's Tsk could be associated with specific acute physiological responses during cycling. Seventeen participants performed a pyramidal load protocol on a cycling ergometer. We synchronously measured Tsk in five ROI with three infrared cameras. We assessed internal load, sweat rate, and core temperature. Reported perceived exertion and calves' Tsk showed the highest correlation (r = -0.588; p < 0.01). Mixed regression models revealed that the heart rate and reported perceived exertion were inversely related to calves' Tsk. The exercise duration was directly associated with the nose tip and calf Tsk but inversely related to the forehead and forearm Tsk. The sweat rate was directly related to forehead and forearm Tsk. The association of Tsk with thermoregulatory or exercise load parameters depends on the ROI. The parallel observation of the face and calf Tsk could indicate simultaneously the observation of acute thermoregulatory needs and individual internal load. The separate Tsk analyses of individual ROI appear more suitable to examine specific physiological response than a mean Tsk of several ROI during cycling.
Collapse
Affiliation(s)
- Barlo Hillen
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Institute of Sports Science, Johannes Gutenberg University of Mainz, Germany.
| | - Daniel Andrés López
- Research Group of Computational Geometry, Institute of Computer Science, Johannes Gutenberg University of Mainz, Germany
| | - Joaquín Martín Marzano-Felisatti
- Department of Physical Education and Sports, Faculty of Physical Activity and Sports Sciences, GIBD (Research Group in Sports Biomechanics), University of Valencia, Spain
| | - José Luis Sanchez-Jimenez
- Department of Physical Education and Sports, Faculty of Physical Activity and Sports Sciences, GIBD (Research Group in Sports Biomechanics), University of Valencia, Spain
| | - Rosa Maria Cibrián Ortiz de Anda
- Department of Physiology. Faculty of Medicine and Odontology, GIFIME (Biophysics and Medical Physics Group), University of Valencia, Spain
| | | | - Maria Rosario Salvador-Palmer
- Department of Physiology. Faculty of Medicine and Odontology, GIFIME (Biophysics and Medical Physics Group), University of Valencia, Spain
| | - Pedro Pérez-Soriano
- Department of Physical Education and Sports, Faculty of Physical Activity and Sports Sciences, GIBD (Research Group in Sports Biomechanics), University of Valencia, Spain
| | - Elmar Schömer
- Research Group of Computational Geometry, Institute of Computer Science, Johannes Gutenberg University of Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, Disease Prevention and Rehabilitation, Institute of Sports Science, Johannes Gutenberg University of Mainz, Germany
| | - Jose Ignacio Priego-Quesada
- Department of Physical Education and Sports, Faculty of Physical Activity and Sports Sciences, GIBD (Research Group in Sports Biomechanics), University of Valencia, Spain; Department of Physiology. Faculty of Medicine and Odontology, GIFIME (Biophysics and Medical Physics Group), University of Valencia, Spain.
| |
Collapse
|
2
|
Meade RD, Notley SR, Akerman AP, McCormick JJ, King KE, Sigal RJ, Kenny GP. Efficacy of Cooling Centers for Mitigating Physiological Strain in Older Adults during Daylong Heat Exposure: A Laboratory-Based Heat Wave Simulation. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:67003. [PMID: 37262028 DOI: 10.1289/ehp11651] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND Health agencies, including the U.S. Centers for Disease Control and Prevention and the World Health Organization, recommend that heat-vulnerable older adults without home air-conditioning should visit cooling centers or other air-conditioned locations (e.g., a shopping mall) during heat waves. However, experimental evidence supporting the effectiveness of brief air-conditioning is lacking. OBJECTIVE We evaluated whether brief exposure to an air-conditioned environment, as experienced in a cooling center, was effective for limiting physiological strain in older adults during a daylong laboratory-based heat wave simulation. METHODS Forty adults 64-79 years of age underwent a 9-h simulated heat wave (heat index: 37°C) with (cooling group, n=20) or without (control group, n=20) a cooling intervention consisting of 2-h rest in an air-conditioned room (∼23°C, hours 5-6). Core and skin temperatures, whole-body heat exchange and storage, cardiovascular function, and circulating markers of acute inflammation were assessed. RESULTS Core temperature was 0.8°C (95% CI: 0.6, 0.9) lower in the cooling group compared with the control group at the end of the cooling intervention (p<0.001; hour 6), and it remained 0.3°C (95% CI: 0.2, 0.4) lower an hour after returning to the heat (p<0.001; hour 7). Despite this, core temperatures in each group were statistically equivalent at hours 8 and 9, within ±0.3°C (p≤0.005). Cooling also acutely reduced demand on the heart and improved indices of cardiovascular autonomic function (p≤0.021); however, these outcomes were not different between groups at the end of exposure (p≥0.58). DISCUSSION Brief air-conditioning exposure during a simulated heat wave caused a robust but transient reduction in core temperature and cardiovascular strain. These findings provide important experimental support for national and international guidance that cooling centers are effective for limiting physiological strain during heat waves. However, they also show that the physiological impacts of brief cooling are temporary, a factor that has not been considered in guidance issued by health agencies. https://doi.org/10.1289/EHP11651.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Cramer MN, Gagnon D, Laitano O, Crandall CG. Human temperature regulation under heat stress in health, disease, and injury. Physiol Rev 2022; 102:1907-1989. [PMID: 35679471 PMCID: PMC9394784 DOI: 10.1152/physrev.00047.2021] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022] Open
Abstract
The human body constantly exchanges heat with the environment. Temperature regulation is a homeostatic feedback control system that ensures deep body temperature is maintained within narrow limits despite wide variations in environmental conditions and activity-related elevations in metabolic heat production. Extensive research has been performed to study the physiological regulation of deep body temperature. This review focuses on healthy and disordered human temperature regulation during heat stress. Central to this discussion is the notion that various morphological features, intrinsic factors, diseases, and injuries independently and interactively influence deep body temperature during exercise and/or exposure to hot ambient temperatures. The first sections review fundamental aspects of the human heat stress response, including the biophysical principles governing heat balance and the autonomic control of heat loss thermoeffectors. Next, we discuss the effects of different intrinsic factors (morphology, heat adaptation, biological sex, and age), diseases (neurological, cardiovascular, metabolic, and genetic), and injuries (spinal cord injury, deep burns, and heat stroke), with emphasis on the mechanisms by which these factors enhance or disturb the regulation of deep body temperature during heat stress. We conclude with key unanswered questions in this field of research.
Collapse
Affiliation(s)
- Matthew N Cramer
- Defence Research and Development Canada-Toronto Research Centre, Toronto, Ontario, Canada
| | - Daniel Gagnon
- Montreal Heart Institute and School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Quebec, Canada
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
4
|
Notley SR, Flouris AD, Kenny GP. Occupational heat stress management: Does one size fit all? Am J Ind Med 2019; 62:1017-1023. [PMID: 30791115 DOI: 10.1002/ajim.22961] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 01/20/2023]
Abstract
Heat stress is a deadly occupational hazard that is projected to increase in severity with global warming. While upper limits for heat stress designed to protect all workers have been recommended by occupational safety institutes for some time, heat stress continues to compromise health and productivity. In our view, this is largely explained by the inability of existing guidelines to consider the inter-individual (age, sex, disease, others) and intra-individual (medication use, fitness, hydration, others) factors that cause extensive variability in physiological tolerance to a given heat stress. In conditions that do not exceed the recommended limits, this 'one size fits all' approach to heat stress management can lead to reductions in productivity in more heat-tolerant workers, while compromising safety in less heat-tolerant workers who may develop heat-related illness, even in temperate conditions. Herein, we discuss future directions in occupational heat stress management that consider this individual variability.
Collapse
Affiliation(s)
- Sean R. Notley
- Human and Environmental Physiology Research UnitSchool of Human Kinetics, University of Ottawa OttawaCanada
| | - Andreas D. Flouris
- Human and Environmental Physiology Research UnitSchool of Human Kinetics, University of Ottawa OttawaCanada
- FAME LaboratoryDepartment of Exercise Science, University of Thessaly TrikalaGreece
| | - Glen P. Kenny
- Human and Environmental Physiology Research UnitSchool of Human Kinetics, University of Ottawa OttawaCanada
| |
Collapse
|
5
|
Meade RD, Notley SR, Kenny GP. Aging and human heat dissipation during exercise-heat stress: an update and future directions. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Metabolism, bioenergetics and thermal physiology: influences of the human intestinal microbiota. Nutr Res Rev 2019; 32:205-217. [PMID: 31258100 DOI: 10.1017/s0954422419000076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The micro-organisms which inhabit the human gut (i.e. the intestinal microbiota) influence numerous human biochemical pathways and physiological functions. The present review focuses on two questions, 'Are intestinal microbiota effects measurable and meaningful?' and 'What research methods and variables are influenced by intestinal microbiota effects?'. These questions are considered with respect to doubly labelled water measurements of energy expenditure, heat balance calculations and models, measurements of RMR via indirect calorimetry, and diet-induced energy expenditure. Several lines of evidence suggest that the intestinal microbiota introduces measurement variability and measurement errors which have been overlooked in research studies involving nutrition, bioenergetics, physiology and temperature regulation. Therefore, we recommend that present conceptual models and research techniques be updated via future experiments, to account for the metabolic processes and regulatory influences of the intestinal microbiota.
Collapse
|
7
|
Notley SR, Lamarche DT, Meade RD, Flouris AD, Kenny GP. Revisiting the influence of individual factors on heat exchange during exercise in dry heat using direct calorimetry. Exp Physiol 2019; 104:1038-1050. [DOI: 10.1113/ep087666] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/17/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Sean R. Notley
- Human and Environmental Physiology Research UnitSchool of Human KineticsUniversity of Ottawa Ottawa ON Canada
| | - Dallon T. Lamarche
- Human and Environmental Physiology Research UnitSchool of Human KineticsUniversity of Ottawa Ottawa ON Canada
| | - Robert D. Meade
- Human and Environmental Physiology Research UnitSchool of Human KineticsUniversity of Ottawa Ottawa ON Canada
| | - Andreas D. Flouris
- Human and Environmental Physiology Research UnitSchool of Human KineticsUniversity of Ottawa Ottawa ON Canada
- FAME LaboratoryDepartment of Exercise ScienceUniversity of Thessaly Trikala Greece
| | - Glen P. Kenny
- Human and Environmental Physiology Research UnitSchool of Human KineticsUniversity of Ottawa Ottawa ON Canada
| |
Collapse
|
8
|
Meade RD, Notley SR, D’Souza AW, Dervis S, Boulay P, Sigal RJ, Kenny GP. Interactive effects of age and hydration state on human thermoregulatory function during exercise in hot-dry conditions. Acta Physiol (Oxf) 2019; 226:e13226. [PMID: 30480873 DOI: 10.1111/apha.13226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 12/29/2022]
Abstract
AIM Ageing and hypohydration independently attenuate heat dissipation during exercise; however, the interactive effects of these factors remain unclear. We assessed the hypothesis that ageing suppresses hypohydration-induced reductions in whole-body heat loss during exercise in the heat. METHODS On two occasions, eight young (mean [SD]: 24 [4] years) and eight middle-aged (59 [5] years) men performed 30-minute bouts of light (heat production of 175 W m-2 ) and moderate (275 W m-2 ) cycling (separated by 15-minute rest) in the heat (40°C, 15% relative humidity) when euhydrated and hypohydrated (~4% reduction in body mass). Heat production and whole-body net heat exchange (evaporative heat loss + dry heat gain) were measured via indirect and direct calorimetry (respectively) and heat storage was calculated via their temporal summation. RESULTS Net heat exchange was reduced, while heat storage was elevated, in the middle-aged men during moderate exercise when euhydrated (both P ≤ 0.01). In the young, evaporative heat loss was attenuated in the hypohydrated vs euhydrated condition during light (199 ± 6 vs 211 ± 10 W m-2 ; P ≤ 0.01) and moderate (287 ± 15 vs 307 ± 13 W m-2 ; P ≤ 0.01) exercise, but was similar in the middle-aged men, averaging 223 ± 6 and 299 ± 15 W m-2 , respectively, across conditions (both P ≥ 0.32). Heat storage was thereby exacerbated by hypohydration in the young (both P < 0.01) but not the middle-aged (both P ≥ 0.32) during both exercise bouts and, as a result, was similar between groups when hypohydrated (both P ≥ 0.50). CONCLUSION Hypohydration attenuates heat loss via sweating in young but not middle-aged men, indicating that ageing impairs one's ability to mitigate further sweat-induced fluid loss during hypohydration.
Collapse
Affiliation(s)
- Robert D. Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics University of Ottawa Ottawa Ontario Canada
| | - Sean R. Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics University of Ottawa Ottawa Ontario Canada
| | - Andrew W. D’Souza
- Human and Environmental Physiology Research Unit, School of Human Kinetics University of Ottawa Ottawa Ontario Canada
| | - Sheila Dervis
- Human and Environmental Physiology Research Unit, School of Human Kinetics University of Ottawa Ottawa Ontario Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences University of Sherbrooke Sherbrooke Quebec Canada
| | - Ronald J. Sigal
- Human and Environmental Physiology Research Unit, School of Human Kinetics University of Ottawa Ottawa Ontario Canada
- Departments of Medicine, Cardiac Sciences and Community Health Sciences, Faculties of Medicine and Kinesiology University of Calgary Calgary Alberta Canada
- Clinical Epidemiology Program Ottawa Hospital Research Institute Ottawa Ontario Canada
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics University of Ottawa Ottawa Ontario Canada
- Clinical Epidemiology Program Ottawa Hospital Research Institute Ottawa Ontario Canada
| |
Collapse
|
9
|
Meade RD, Fujii N, McGarr GW, Alexander LM, Boulay P, Sigal RJ, Kenny GP. Local arginase inhibition does not modulate cutaneous vasodilation or sweating in young and older men during exercise. J Appl Physiol (1985) 2019; 126:1129-1137. [PMID: 30653418 PMCID: PMC6485684 DOI: 10.1152/japplphysiol.00657.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/19/2023] Open
Abstract
Age-related impairments in cutaneous vascular conductance (CVC) and sweat rate (SR) during exercise may result from increased arginase activity, which can attenuate endogenous nitric oxide (NO) production. We therefore evaluated whether arginase inhibition modulates these heat-loss responses in young (n = 9, 23 ± 3 yr) and older (n = 9, 66 ± 6 yr) men during two 30-min bouts of moderate-intensity cycling (Ex1 and Ex2) in the heat (35°C). CVC and SR were measured at forearm skin sites perfused with 1) lactated Ringer's (control), 2) NG-nitro-L-arginine methyl ester (L-NAME; NO synthase-inhibited), or 3) Nω-hydroxy-nor-arginine and S-(2-boronoethyl)-l-cysteine (Nor-NOHA + BEC; arginase-inhibited). In both groups, CVC was reduced at L-NAME relative to control and Nor-NOHA + BEC (both P < 0.01). Likewise, SR was attenuated with L-NAME compared with control and Nor-NOHA + BEC during each exercise bout in the young men (all P ≤ 0.05); however, no influence of treatment on SR in the older men was observed (P = 0.14). Based on these findings, we then evaluated responses in 7 older men (64 ± 7 yr) during passively induced elevations in esophageal temperature (∆Tes) equal to those in Ex1 (0.6°C) and Ex2 (0.8°C). L-NAME reduced CVC by 18 ± 20% CVCmax at a ∆Tes of 0.8°C (P = 0.03) compared with control, whereas Nor-NOHA + BEC augmented CVC by 20 ± 18% CVCmax, on average, throughout heating (both P ≤ 0.03). SR was not influenced by either treatment (P = 0.80) Thus, arginase inhibition does not modulate CVC or SR during exercise in the heat but, consistent with previous findings, does augment CVC in older men during passive heating. NEW & NOTEWORTHY In the current study, we demonstrate that local arginase inhibition does not influence forearm cutaneous vasodilatory and sweating responses in young or older men during exercise-heat stress. Consistent with previous findings, however, we observed augmented cutaneous blood flow with arginase inhibition during whole-body passive heat stress. Thus, arginase differentially affects cutaneous vasodilation depending on the mode of heat stress but does not influence sweating during exercise or passive heating.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, ON , Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, ON , Canada
- Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba City , Japan
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, ON , Canada
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, Pennsylvania State University , University Park, Pennsylvania
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke , Sherbrooke, QC , Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, ON , Canada
- Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary , Calgary, AB , Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute , Ottawa, ON , Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa, ON , Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute , Ottawa, ON , Canada
| |
Collapse
|
10
|
Meade RD, Crandall CG, Gagnon D, Kenny GP. Greater fluid loss does not fully explain the divergent hemodynamic balance mediating postexercise hypotension in endurance-trained men. J Appl Physiol (1985) 2018; 124:1264-1273. [PMID: 29389247 PMCID: PMC6008076 DOI: 10.1152/japplphysiol.00988.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/16/2018] [Accepted: 01/25/2018] [Indexed: 11/22/2022] Open
Abstract
Following exercise, mean arterial pressure (MAP) is reduced ~5-10 mmHg from preexercise baseline. In nonendurance-trained males, postexercise hypotension results from peripheral vasodilation not offset by increased cardiac output (CO). By contrast, postexercise hypotension occurs through a reduction in CO from preexercise baseline in endurance-trained males. The reason(s) explaining these divergent responses remain unknown. Exercise at fixed percentage of peak oxygen consumption (V̇o2peak) is associated with a greater rate of metabolic heat production in trained individuals and therefore elevated sweat rates, both when compared with untrained individuals. We hypothesized that greater fluid loss would explain the postexercise reduction in CO of endurance-trained males. Twelve endurance-trained males (Trained: V̇o2peak, 64 ± 5 ml O2·kg-1·min-1) cycled for 60 min at 60% V̇o2peak (Trained60%). On separate days, 12 nonendurance trained males (Untrained: V̇o2peak, 49 ± 3 ml O2·kg-1·min-1) cycled at 1) 60% V̇o2peak (Untrained60%), and 2) a rate of heat production equivalent to that achieved by the Trained group (UntrainedMatched). Fluid loss was similar between Trained60% (-1.32 ± 0.20 kg) and UntrainedMatched (-1.32 ± 0.23 kg; P = 0.99) but was greater in these conditions relative to Untrained60% (-0.95 ± 0.11 kg; both P < 0.01). During the final 30 min of postexercise supine recovery, MAP was similarly reduced by 5 ± 2 mmHg in all three conditions ( P = 0.91). The reduction in MAP was mediated by a 0.5 ± 0.3 l/min reduction in CO from baseline in Trained60% ( P = 0.01). In contrast, CO returned to baseline following exercise during UntrainedMatched and Untrained60% (both P ≥ 0.30). These data demonstrate that greater fluid loss does not fully explain the divergent postexercise hemodynamic responses observed in trained relative to untrained males. NEW & NOTEWORTHY Even when matched for exercise-induced fluid loss, cardiac output was decreased in trained males but returned to baseline following exercise in their untrained counterparts. However, as per our hypothesis, reductions in stroke volume were similar between groups. This suggests that exercise-induced fluid loss is an important determinant of the stroke volume response during recovery but factors affecting heart rate such as exercise intensity and/or heat stress are also important determinants of postexercise hemodynamics.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, University of Ottawa , Ottawa , Canada
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center , Dallas, Texas
| | - Daniel Gagnon
- Cardiovascular Prevention and Rehabilitation Centre, Montreal Heart Institute , Montréal, Quebec , Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal , Montréal, Quebec , Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa , Ottawa , Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute , Ottawa, Ontario , Canada
| |
Collapse
|
11
|
Meade RD, Fujii N, Poirier MP, Boulay P, Sigal RJ, Kenny GP. Oxidative stress does not influence local sweat rate during high-intensity exercise. Exp Physiol 2017; 103:172-178. [PMID: 29152797 DOI: 10.1113/ep086746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/14/2017] [Indexed: 01/13/2023]
Abstract
NEW FINDINGS What is the central question of this study? We evaluated whether oxidative stress attenuates the contribution of nitric oxide to sweating during high-intensity exercise. What is the main finding and its importance? In contrast to our previous report of an oxidative stress-mediated reduction in nitric oxide-dependent cutaneous vasodilatation in this cohort during intense exercise, we demonstrated no influence of local ascorbate administration on the sweating response during moderate- (∼51% peak oxygen uptake) or high-intensity exercise (∼72% peak oxygen uptake). These new findings provide important mechanistic insight into how exercise-induced oxidative stress impacts sudomotor activity. Nitric oxide (NO)-dependent sweating is diminished during high- but not moderate-intensity exercise. We evaluated whether this impairment stems from increased oxidative stress during high-intensity exercise. On two separate days, 11 young (24 ± 4 years) men cycled in the heat (35°C) at a moderate [500 W; 52 ± 6% peak oxygen uptake (V̇O2 peak )] or high (700 W; 71 ± 5% V̇O2 peak ) rate of metabolic heat production. Each session included two 30 min exercise bouts separated by a 20 min recovery period. Local sweat rate was monitored at four forearm skin sites continuously perfused via intradermal microdialysis with the following: (i) lactated Ringer solution (Control); (ii) 10 mm ascorbate (Ascorbate; non-selective antioxidant); (iii) 10 mm NG -nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor); or (iv) 10 mm ascorbate plus 10 mm l-NAME (Ascorbate + l-NAME). During moderate exercise, sweat rate was attenuated at the l-NAME and Ascorbate + l-NAME sites (both ∼1.0 mg min-1 cm-2 ; all P < 0.05) but not at the Ascorbate site (∼1.1 mg min-1 cm-2 ; both P ≥ 0.28) in comparison to the Control site (∼1.1 mg min-1 cm-2 ). However, no differences were observed between treatment sites (∼1.4 mg min-1 cm-2 ; P = 0.75) during high-intensity exercise. We conclude that diminished NO-dependent sweating during intense exercise occurs independent of oxidative stress.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Martin P Poirier
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Departments of Medicine, Cardiac Sciences and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
McNeely BD, Meade RD, Fujii N, Seely AJE, Sigal RJ, Kenny GP. Fluid replacement modulates oxidative stress- but not nitric oxide-mediated cutaneous vasodilation and sweating during prolonged exercise in the heat. Am J Physiol Regul Integr Comp Physiol 2017; 313:R730-R739. [PMID: 28931548 PMCID: PMC5814697 DOI: 10.1152/ajpregu.00284.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 01/29/2023]
Abstract
The roles of nitric oxide synthase (NOS), reactive oxygen species (ROS), and angiotensin II type 1 receptor (AT1R) activation in regulating cutaneous vasodilation and sweating during prolonged (≥60 min) exercise are currently unclear. Moreover, it remains to be determined whether fluid replacement (FR) modulates the above thermoeffector responses. To investigate, 11 young men completed 90 min of continuous moderate intensity (46% V̇o2peak) cycling performed at a fixed rate of metabolic heat production of 600 W (No FR condition). On a separate day, participants completed a second session of the same protocol while receiving FR to offset sweat losses (FR condition). Cutaneous vascular conductance (CVC) and local sweat rate (LSR) were measured at four intradermal microdialysis forearm sites perfused with: 1) lactated Ringer (Control); 2) 10 mM NG-nitro-l-arginine methyl ester (l-NAME, NOS inhibition); 3) 10 mM ascorbate (nonselective antioxidant); or 4) 4.34 nM losartan (AT1R inhibition). Relative to Control (71% CVCmax at both time points), CVC with ascorbate (80% and 83% CVCmax) was elevated at 60 and 90 min of exercise during FR (both P < 0.02) but not at any time during No FR (all P > 0.31). In both conditions, CVC was reduced at end exercise with l-NAME (60% CVCmax; both P < 0.02) but was not different relative to Control at the losartan site (76% CVCmax; both P > 0.19). LSR did not differ between sites in either condition (all P > 0.10). We conclude that NOS regulates cutaneous vasodilation, but not sweating, irrespective of FR, and that ROS influence cutaneous vasodilation during prolonged exercise with FR.
Collapse
Affiliation(s)
- Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
- Faculty of Health and Sports Science, University of Tsukuba, Tsukuba, Japan
| | - Andrew J E Seely
- Thoracic Surgery and Critical Care Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; and
- Departments of Medicine, Cardiac Sciences and Community Health Sciences, Faculties of Medicine and Kinesiology University of Calgary, Calgary, Alberta, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada;
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; and
| |
Collapse
|