1
|
Barranco-Gil D, Alejo LB, Revuelta C, Górriz M, Pagola I, Ozcoidi LM, Lucia A, Valenzuela PL. High-dose short-term creatine supplementation without beneficial effects in professional cyclists: a randomized controlled trial. J Int Soc Sports Nutr 2024; 21:2340574. [PMID: 38606895 PMCID: PMC11018046 DOI: 10.1080/15502783.2024.2340574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Growing evidence supports the ergogenic effects of creatine supplementation on muscle power/strength, but its effects on endurance performance remain unclear. We assessed the effects of high-dose short-term creatine supplementation in professional cyclists during a training camp. METHODS The study followed a double-blind, randomized parallel design. Twenty-three professional U23 cyclists (19 ± 1 years, maximum oxygen uptake: 73.0 ± 4.6 mL/kg/min) participated in a 6-day training camp. Participants were randomized to consume daily either a recovery drink (containing carbohydrates and protein) with a 20-g creatine supplement (creatine group, n = 11) or just the recovery drink (placebo group, n = 12). Training loads and dietary intake were monitored, and indicators of fatigue/recovery (Hooper index, countermovement jump height), body composition, and performance (10-second sprint, 3-, 6-, and 12-minute time trials, respectively, as well as critical power and W') were assessed as study outcomes. RESULTS The training camp resulted in a significant (p < 0.001) increase of training loads (+50% for total training time and + 61% for training stress score, compared with the preceding month) that in turn induced an increase in fatigue indicators (significant time effect [p < 0.001] for delayed-onset muscle soreness, fatigue, and total Hooper index) and a decrease in performance (significant time effect [p = 0.020] for critical power, which decreased by -3.8%). However, no significant group-by-time interaction effect was found for any of the study outcomes (all p > 0.05). CONCLUSIONS High-dose short-term creatine supplementation seems to exert no consistent beneficial effects on recovery, body composition or performance indicators during a strenuous training period in professional cyclists.
Collapse
Affiliation(s)
| | - Lidia B. Alejo
- Universidad Europea de Madrid, Faculty of Sport Sciences, Madrid, Spain
- Research Institute of Hospital 12 de Octubre (imas12), Physical Activity and Health Research Group (PAHERG), Madrid, Spain
| | - Carlos Revuelta
- Universidad Europea de Madrid, Faculty of Sport Sciences, Madrid, Spain
| | | | - Itziar Pagola
- Universidad Europea de Madrid, Faculty of Sport Sciences, Madrid, Spain
| | | | - Alejandro Lucia
- Universidad Europea de Madrid, Faculty of Sport Sciences, Madrid, Spain
- Research Institute of Hospital 12 de Octubre (imas12), Physical Activity and Health Research Group (PAHERG), Madrid, Spain
| | - Pedro L. Valenzuela
- Research Institute of Hospital 12 de Octubre (imas12), Physical Activity and Health Research Group (PAHERG), Madrid, Spain
- University of Alcalá, Department of Systems Biology, Madrid, Spain
| |
Collapse
|
2
|
Bordoli C, Varley I, Sharpe GR, Johnson MA, Hennis PJ. Effects of Oral Lactate Supplementation on Acid-Base Balance and Prolonged High-Intensity Interval Cycling Performance. J Funct Morphol Kinesiol 2024; 9:139. [PMID: 39189224 PMCID: PMC11348031 DOI: 10.3390/jfmk9030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Lactate is an important energy intermediate and metabolic buffer, and may be ergogenic. We investigated if lactate supplementation is an effective approach to enhance the exercise performance and acid-base balance of trained cyclists during exercise devised to simulate the demands of endurance road race cycling. Sixteen endurance-trained male cyclists (V·O2max 59 ± 7 mL·kg-1·min-1) consumed 120 mg·kg-1 body mass of lactate or a placebo 70 min prior to performing an exercise performance test, comprising five repeated blocks consisting of 1 km and 4 km time trials interspersed with 10 min of moderate-intensity exercise. Blood acid-base balance (including [H+] and [HCO3-]), heart rate, perceived exertion, and gastro-intestinal tolerance were assessed. There was no effect of lactate supplementation on exercise performance (p = 0.320), despite a reduction in RPE (p = 0.012) and increases in [SID] (p = 0.026) and [HCO3-] (p = 0.041). In addition, gastro-intestinal side effects were observed, but there was no effect on heart rate. Lactate supplementation did not improve exercise performance, despite positive changes in acid-base balance and RPE. This suggests that the alkalising effects of the supplement can reduce perceived effort, but these benefits do not translate into performance improvements.
Collapse
Affiliation(s)
| | | | | | | | - Philip J. Hennis
- Sport, Health and Performance Enhancement (SHAPE) Research Centre, Nottingham Trent University, Clifton Lane, Clifton, Nottingham NG11 8NS, UK; (C.B.); (I.V.); (G.R.S.); (M.A.J.)
| |
Collapse
|
3
|
Falk Neto JH, Faulhaber M, Kennedy MD. The Characteristics of Endurance Events with a Variable Pacing Profile-Time to Embrace the Concept of "Intermittent Endurance Events"? Sports (Basel) 2024; 12:164. [PMID: 38921858 PMCID: PMC11207974 DOI: 10.3390/sports12060164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
A variable pacing profile is common in different endurance events. In these races, several factors, such as changes in elevation or race dynamics, lead participants to perform numerous surges in intensity. These surges are so frequent that certain events, such as cross-country (XC) skiing, mountain biking (MTB), triathlon, and road cycling, have been termed "intermittent endurance events". The characteristics of these surges vary depending on the sport: MTB and triathlon require athletes to perform numerous short (<10 s) bouts; XC skiing require periods of short- and moderate-(30 s to 2 min) duration efforts, while road cycling is comprised of a mix of short-, moderate-, and long-duration (>2 min) bouts. These bouts occur at intensities above the maximal metabolic steady state (MMSS), with many efforts performed at intensities above the athletes' maximal aerobic power or speed (MAP/MAS) (i.e., supramaximal intensities). Given the factors that influence the requirement to perform surges in these events, athletes must be prepared to always engage in a race with a highly stochastic pace. The aim of this review is to characterize the variable pacing profile seen in endurance events and to discuss how the performance of multiple maximal and supramaximal surges in intensity can affect how athletes fatigue during a race and influence training strategies that can lead to success in these races.
Collapse
Affiliation(s)
- Joao Henrique Falk Neto
- Athlete Health Lab., Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Martin Faulhaber
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Michael D. Kennedy
- Athlete Health Lab., Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
4
|
Bitel M, Keir DA, Grossman K, Barnes M, Murias JM, Belfry GR. The Effects of a 90-km Outdoor Cycling Ride on Performance Outcomes Derived From Ramp-Incremental and 3-Minute All-Out Tests. J Strength Cond Res 2024; 38:540-548. [PMID: 38039445 DOI: 10.1519/jsc.0000000000004650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
ABSTRACT Bitel, M, Keir, DA, Grossman, K, Barnes, M, Murias, JM, and Belfry, GR. The effects of a 90-km outdoor cycling ride on performance outcomes derived from ramp-incremental and 3-minute all-out tests. J Strength Cond Res 38(3): 540-548, 2024-The purpose of this study was to determine whether laboratory-derived exercise intensity and performance demarcations are altered after prolonged outdoor cycling. Male recreational cyclists ( n = 10; RIDE) performed an exhaustive ramp-incremental test (RAMP) and a 3-minute all-out test (3MT) on a cycle ergometer before and after a 90-km cycling ride. RAMP-derived maximal oxygen uptake (V̇O 2max ), gas exchange threshold (GET), respiratory compensation point (RCP), and associated power output (PO), as well as 3MT-derived critical power (CP) and work performed above CP, were compared before and after ∼3 hours of outdoor cycling. Six active men served as "no-exercise" healthy controls (CON), who, instead, rested for 3 hours between repeated RAMP and 3MT tests. During the 90-km ride, the duration within the moderate-intensity, heavy-intensity, and severe-intensity domains was 59 ± 24%, 40 ± 24%, and 1 ± 1%, respectively. Compared with pre-90 km, post-RAMP exhibited reductions in (a) V̇O 2max (4.04 ± 0.48 vs. 3.80 ± 0.38 L·min -1 ; p = 0.026) and associated PO (392 ± 30 W vs. 357 ± 26 W; p = 0.002); (b) the V̇O 2 and PO at RCP (3.49 ± 0.46 vs. 3.34 ± 0.43 L·min -1 ; p = 0.040 and 312 ± 40 W vs. 292 ± 24 W; p = 0.023); and (c) the PO (214 ± 32 W vs. 198 ± 25 W; p = 0.027), but not the V̇O 2 at GET (2.52 ± 0.44 vs. 2.44 ± 0.38 L·min -1 ; p = 0.388). Pre-90 km vs. post-90 km 3MT variables showed reduced W' (9.8 ± 3.4 vs. 6.8 ± 2.6 kJ; p = 0.002) and unchanged CP (304 ± 26 W and 297 ± 34 W; p = 0.275). In the CON group, there were no differences in V̇O 2max , GET, RCP, W', CP, or associated power outputs ( p > 0.05) pre-to-post 3 hours of rest. The preservation of critical power demonstrates that longer-duration maximal efforts may be sustained after long-duration cycle. However, shorter sprints and higher-intensity efforts eliciting V̇O 2max will exhibit decreased PO after 3 hours of a predominantly moderate-intensity cycle.
Collapse
Affiliation(s)
- Michael Bitel
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Daniel A Keir
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada; and
| | - Kevin Grossman
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Mikaela Barnes
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Glen R Belfry
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Liao H, Zhu S, Li Y, Huang D. The Synergistic Effect of Compound Sugar with Different Glycemic Indices Combined with Creatine on Exercise-Related Fatigue in Mice. Foods 2024; 13:489. [PMID: 38338624 PMCID: PMC10855471 DOI: 10.3390/foods13030489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, a compound sugar (CS) with different glycemic index sugars was formulated via hydrolysis characteristics and postprandial glycemic response, and the impact of CS and creatine emulsion on exercise-related fatigue in mice was investigated. Thirty-five C57BL/6 mice were randomly divided into five groups to supply different emulsions for 4 weeks: initial emulsion (Con), glucose emulsion (62 mg/10 g MW glucose; Glu), CS emulsion (62 mg/10 g MW compound sugar; CS), creatine emulsion (6 mg/10 g MW creatine; Cr), and CS and creatine emulsion (62 mg/10 g MW compound sugar, 6 mg/10 g MW creatine, CS-Cr). Then, the exhaustion time of weight-bearing swimming and forelimb grip strength were measured to evaluate the exercise capacity of mice, and some fatigue-related biochemical indexes of blood were determined. The results demonstrated that the ingestion of CS significantly reduced the peak of postprandial blood glucose levels and prolonged the energy supply of mice compared to ingesting an equal amount of glucose. Mouse exhaustion time was 1.22-fold longer in the CS group than in the glucose group. Additionally, the supplementation of CS increased the liver glycogen content and total antioxidant capacity of mice. Moreover, the combined supplementation of CS and creatine increased relative forelimb grip strength and decreased blood creatine kinase activity. The findings suggested that the intake of CS could enhance exercise capacity, and the combined supplementation of CS and creatine has a synergistic effect in improving performance.
Collapse
Affiliation(s)
- Hui Liao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yue Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| |
Collapse
|
6
|
Forbes SC, Candow DG, Neto JHF, Kennedy MD, Forbes JL, Machado M, Bustillo E, Gomez-Lopez J, Zapata A, Antonio J. Creatine supplementation and endurance performance: surges and sprints to win the race. J Int Soc Sports Nutr 2023; 20:2204071. [PMID: 37096381 PMCID: PMC10132248 DOI: 10.1080/15502783.2023.2204071] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Creatine supplementation is an effective ergogenic aid to augment resistance training and improve intense, short duration, intermittent performance. The effects on endurance performance are less known. The purpose of this brief narrative review is to discuss the potential mechanisms of how creatine can affect endurance performance, defined as large muscle mass activities that are cyclical in nature and are >~3 min in duration, and to highlight specific nuances within the literature. Mechanistically, creatine supplementation elevates skeletal muscle phosphocreatine (PCr) stores facilitating a greater capacity to rapidly resynthesize ATP and buffer hydrogen ion accumulation. When co-ingested with carbohydrates, creatine enhances glycogen resynthesis and content, an important fuel to support high-intensity aerobic exercise. In addition, creatine lowers inflammation and oxidative stress and has the potential to increase mitochondrial biogenesis. In contrast, creatine supplementation increases body mass, which may offset the potential positive effects, particularly in weight-bearing activities. Overall, creatine supplementation increases time to exhaustion during high-intensity endurance activities, likely due to increasing anaerobic work capacity. In terms of time trial performances, results are mixed; however, creatine supplementation appears to be more effective at improving performances that require multiple surges in intensity and/or during end spurts, which are often key race-defining moments. Given creatines ability to enhance anaerobic work capacity and performance through repeated surges in intensity, creatine supplementation may be beneficial for sports, such as cross-country skiing, mountain biking, cycling, triathlon, and for short-duration events where end-spurts are critical for performance, such as rowing, kayaking, and track cycling.
Collapse
Affiliation(s)
- Scott C Forbes
- Brandon University, Department of Physical Education Studies, Brandon, MB, Canada
| | - Darren G Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | | | - Michael D Kennedy
- University of Alberta, Faculty of Kinesiology, Sport, and Recreation, Edmonton, AB, Canada
| | - Jennifer L Forbes
- Brandon University, Department of Physical Education Studies, Brandon, MB, Canada
| | | | - Erik Bustillo
- Train 8Nine/CrossFit Coconut Grove, Erik Bustillo Consulting, Miami, FL, USA
| | - Jose Gomez-Lopez
- Rehab & Nutrition Center, Human Performance Laboratory, Motion Training, Lo Barnechea, Chile
| | | | - Jose Antonio
- Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| |
Collapse
|
7
|
Martínez-Noguera FJ, Alcaraz PE, Carlos-Vivas J, Marín-Pagán C. 8 weeks of 2 S-hesperidin prevents a decrease in pO 2 at submaximal intensity in amateur cyclists in off-season: randomized controlled trial. Food Funct 2023; 14:2750-2767. [PMID: 36857626 DOI: 10.1039/d2fo03007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although chronic supplementation with 2S-hesperidin has been shown to improve performance, to date, the possible mechanisms underlying this effect have not been explored. Therefore, the aim of this study was to assess whether changes in gasometry may be associated with improved performance after the intake of 2S-hesperidin (500 mg d-1, 8 weeks). Forty amateur cyclists (n = 20 2S-hesperidin, n = 20 placebo) performed a rectangular test, during which capillary blood samples were taken at the baseline, FatMax1, ventilatory threshold 1 and 2 (VT1 and VT2), power maximum (PMAX), FatMax2 and excess post-exercise O2 consumption (EPOC) to measure gasometry parameters. Significantly increased CO2 and tCO2 was found at FatMax1, VT1, FatMax2 and EPOC (p = <0.05) after 8 weeks of 2S-hesperidin ingestion. Conversely, the placebo group had a significant decrease in pO2 at VT2 (p = 0.04) during the rectangular test, with no changes in the 2S-hesperidin group. Therefore, chronic supplementation with 2S-hesperidin prevents decreases in pO2 at submaximal intensities in amateur cyclists in an off-season period.
Collapse
Affiliation(s)
- Francisco Javier Martínez-Noguera
- Research Center for High Performance Sport, Catholic University of Murcia, Campus de los Jerónimos N° 135, UCAM, 30107, Murcia, Spain.
| | - Pedro E Alcaraz
- Research Center for High Performance Sport, Catholic University of Murcia, Campus de los Jerónimos N° 135, UCAM, 30107, Murcia, Spain.
| | - Jorge Carlos-Vivas
- Health, Economy, Motricity and Education Research Group (HEME), Faculty of Sport Sciences, University of Extremadura, Avda. de Elvas, s/n., 06006, Badajoz, Spain.
| | - Cristian Marín-Pagán
- Research Center for High Performance Sport, Catholic University of Murcia, Campus de los Jerónimos N° 135, UCAM, 30107, Murcia, Spain.
| |
Collapse
|
8
|
Martínez-Noguera FJ, Alcaraz PE, Carlos-Vivas J, Marín-Pagán C. Chronic Supplementation of 2S-Hesperidin Improves Acid-Base Status and Decreases Lactate at FatMax, at Ventilatory Threshold 1 and 2 and after an Incremental Test in Amateur Cyclists. BIOLOGY 2022; 11:biology11050736. [PMID: 35625464 PMCID: PMC9138540 DOI: 10.3390/biology11050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary Currently, hesperidin is a molecule found mainly in citrus fruits and is being widely researched in the area of chronic disease, but also in the field of sports nutrition. Some studies have shown its antioxidant, anti-inflammatory, lipid and carbohydrate metabolism modulating effects, including the enhancement of nitric oxide synthesis. However, few human studies have demonstrated a positive effect of hesperidin intake, in particular 2S-hesperidin, on sports performance, particularly in anaerobic and aerobic tests. However, the biochemical mechanisms that may be responsible for this enhanced performance have not yet been described. Therefore, one of the aims of this study was to assess whether an eight-week intake of 2S-hesperidin can improve acid-base status and metabolic status (lactate and glucose) in an incremental test in amateur cyclists. The results showed that amateur cyclists chronically supplemented with 2S-hesperidin improved acid-base status and lactate at FatMax, ventilatory thresholds 1 and 2, and in the acute phase of recovery after maximal effort. Abstract Chronic supplementation with 2S-hesperidin improves performance; however, the mechanisms underlying this effect have not yet been explored. Therefore, the aim of this study was to assess whether changes in acid-base status may be associated with improved performance after 2S-hesperidin supplementation compared to microcellulose (placebo). Forty amateur cyclists (n = 20 per group) underwent a rectangular test where capillary blood samples were taken at baseline, FatMax1, VT1, VT2, PMAX, FatMax2 and EPOC to measure acid-base parameters. After eight weeks of 2S-hesperidin supplementation (500 mg/d) increased HCO3−, SBC, ABE (p ≤ 0.05) and decreased Lac were found at FatMax1, VT1, FatMax2 and EPOC (p ≤ 0.05), while decreased Lac at VT2 was found with a large effect size (ES = 1.15) compared to placebo. Significant group differences in the area under the curve were observed when comparing pre-post-intervention pH changes (p = 0.02) between groups. Chronic supplementation with 2S-hesperidin improved acid-base status and Lac, both at low-moderate and submaximal intensities, improving recovery after exercise-to-exhaustion in amateur cyclists.
Collapse
Affiliation(s)
- Francisco Javier Martínez-Noguera
- Research Center for High Performance Sport, Catholic University of Murcia (UCAM), Campus de los Jerónimos Nº 135, 30107 Murcia, Spain; (P.E.A.); (C.M.-P.)
- Correspondence: ; Tel.: +34-968-278-566
| | - Pedro E. Alcaraz
- Research Center for High Performance Sport, Catholic University of Murcia (UCAM), Campus de los Jerónimos Nº 135, 30107 Murcia, Spain; (P.E.A.); (C.M.-P.)
| | - Jorge Carlos-Vivas
- Health, Economy, Motricity and Education Research Group (HEME), Faculty of Sport Sciences, University of Extremadura, Avda. de Elvas, s/n., 06006 Badajoz, Spain;
| | - Cristian Marín-Pagán
- Research Center for High Performance Sport, Catholic University of Murcia (UCAM), Campus de los Jerónimos Nº 135, 30107 Murcia, Spain; (P.E.A.); (C.M.-P.)
| |
Collapse
|
9
|
Burke LM. Nutritional approaches to counter performance constraints in high-level sports competition. Exp Physiol 2021; 106:2304-2323. [PMID: 34762329 PMCID: PMC9299184 DOI: 10.1113/ep088188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
New Findings What is the topic of this review? The nutritional strategies that athletes use during competition events to optimize performance and the reasons they use them. What advances does it highlight? A range of nutritional strategies can be used by competitive athletes, alone or in combination, to address various event‐specific factors that constrain event performance. Evidence for such practices is constantly evolving but must be combined with understanding of the complexities of real‐life sport for optimal implementation.
Abstract High‐performance athletes share a common goal despite the unique nature of their sport: to pace or manage their performance to achieve the highest sustainable outputs over the duration of the event. Periodic or sustained decline in the optimal performance of event tasks, involves an interplay between central and peripheral phenomena that can often be reduced or delayed in onset by nutritional strategies. Contemporary nutrition practices undertaken before, during or between events include strategies to ensure the availability of limited muscle fuel stores. This includes creatine supplementation to increase muscle phosphocreatine content and consideration of the type, amount and timing of dietary carbohydrate intake to optimize muscle and liver glycogen stores or to provide additional exogenous substrate. Although there is interest in ketogenic low‐carbohydrate high‐fat diets and exogenous ketone supplements to provide alternative fuels to spare muscle carbohydrate use, present evidence suggests a limited utility of these strategies. Mouth sensing of a range of food tastants (e.g., carbohydrate, quinine, menthol, caffeine, fluid, acetic acid) may provide a central nervous system derived boost to sports performance. Finally, despite decades of research on hypohydration and exercise capacity, there is still contention around their effect on sports performance and the best guidance around hydration for sporting events. A unifying model proposes that some scenarios require personalized fluid plans while others might be managed by an ad hoc approach (ad libitum or thirst‐driven drinking) to fluid intake.
Collapse
Affiliation(s)
- Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
10
|
The Validity of Ultrasound Technology in Providing an Indirect Estimate of Muscle Glycogen Concentrations Is Equivocal. Nutrients 2021; 13:nu13072371. [PMID: 34371881 PMCID: PMC8308826 DOI: 10.3390/nu13072371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/04/2022] Open
Abstract
Researchers and practitioners in sports nutrition would greatly benefit from a rapid, portable, and non-invasive technique to measure muscle glycogen, both in the laboratory and field. This explains the interest in MuscleSound®, the first commercial system to use high-frequency ultrasound technology and image analysis from patented cloud-based software to estimate muscle glycogen content from the echogenicity of the ultrasound image. This technique is based largely on muscle water content, which is presumed to act as a proxy for glycogen. Despite the promise of early validation studies, newer studies from independent groups reported discrepant results, with MuscleSound® scores failing to correlate with the glycogen content of biopsy-derived mixed muscle samples or to show the expected changes in muscle glycogen associated with various diet and exercise strategies. The explanation of issues related to the site of assessment do not account for these discrepancies, and there are substantial problems with the premise that the ratio of glycogen to water in the muscle is constant. Although further studies investigating this technique are warranted, current evidence that MuscleSound® technology can provide valid and actionable information around muscle glycogen stores is at best equivocal.
Collapse
|
11
|
Abstract
ABSTRACT Creatine is a popular and widely used ergogenic dietary supplement among athletes, for which studies have consistently shown increased lean muscle mass and exercise capacity when used with short-duration, high-intensity exercise. In addition to strength gains, research has shown that creatine supplementation may provide additional benefits including enhanced postexercise recovery, injury prevention, rehabilitation, as well as a number of potential neurologic benefits that may be relevant to sports. Studies show that short- and long-term supplementation is safe and well tolerated in healthy individuals and in a number of patient populations.
Collapse
Affiliation(s)
- Matthew Hall
- Sports Medicine, UConn Primary Care Sports Medicine Fellowship, Department of Orthopedics, UConn Health, Farmington, CT
| | - Elizabeth Manetta
- Department of Family Medicine, University of Connecticut, St. Francis Hospital, Hartford, CT
| | - Kristofer Tupper
- Department of Family Medicine, University of Connecticut, St. Francis Hospital, Hartford, CT
| |
Collapse
|
12
|
Lawler TP, Cialdella-Kam L. Non-carbohydrate Dietary Factors and Their Influence on Post-Exercise Glycogen Storage: a Review. Curr Nutr Rep 2020; 9:394-404. [PMID: 33128726 DOI: 10.1007/s13668-020-00335-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The optimization of post-exercise glycogen synthesis can improve endurance performance, delay fatigue in subsequent bouts, and accelerate recovery from exercise. High carbohydrate intakes (1.2 g/kg of body weight/h) are recommended in the first 4 h after exercise. However, athletes may struggle to consume carbohydrates at those levels. PURPOSE OF REVIEW: Thus, we aimed to determine whether the consumption of non-carbohydrate dietary factors (creatine, glutamine, caffeine, flavonoids, and alcohol) enhances post-exercise glycogen synthesis. RECENT FINDINGS: Trained athletes may not realize the benefits of creatine loading on glycogen synthesis. The impacts of caffeine, glutamine, flavonoids, and alcohol on post-exercise glycogen synthesis are poorly understood. Other ergogenic benefits to exercise performance, however, have been reported for creatine, glutamine, caffeine, and flavonoids, which were beyond the scope of this review. Evidence in trained athletes is limited and inconclusive on the impact of these non-carbohydrate dietary factors on post-exercise glycogen synthesis.
Collapse
Affiliation(s)
- Thomas P Lawler
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Nutritional Sciences, University of Wisconsin, Madison, Madison, WI, USA
| | - Lynn Cialdella-Kam
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, USA. .,Warfigther Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA, 92106, USA.
| |
Collapse
|
13
|
Rothschild JA, Bishop DJ. Effects of Dietary Supplements on Adaptations to Endurance Training. Sports Med 2020; 50:25-53. [PMID: 31531769 DOI: 10.1007/s40279-019-01185-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endurance training leads to a variety of adaptations at the cellular and systemic levels that serve to minimise disruptions in whole-body homeostasis caused by exercise. These adaptations are differentially affected by training volume, training intensity, and training status, as well as by nutritional choices that can enhance or impair the response to training. A variety of supplements have been studied in the context of acute performance enhancement, but the effects of continued supplementation concurrent to endurance training programs are less well characterised. For example, supplements such as sodium bicarbonate and beta-alanine can improve endurance performance and possibly training adaptations during endurance training by affecting buffering capacity and/or allowing an increased training intensity, while antioxidants such as vitamin C and vitamin E may impair training adaptations by blunting cellular signalling but appear to have little effect on performance outcomes. Additionally, limited data suggest the potential for dietary nitrate (in the form of beetroot juice), creatine, and possibly caffeine, to further enhance endurance training adaptation. Therefore, the objective of this review is to examine the impact of dietary supplements on metabolic and physiological adaptations to endurance training.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand. .,TriFit Performance Center, Santa Monica, CA, USA.
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
14
|
Contemporary Nutrition Strategies to Optimize Performance in Distance Runners and Race Walkers. Int J Sport Nutr Exerc Metab 2019; 29:117-129. [PMID: 30747558 DOI: 10.1123/ijsnem.2019-0004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Distance events in Athletics include cross country, 10,000-m track race, half-marathon and marathon road races, and 20- and 50-km race walking events over different terrain and environmental conditions. Race times for elite performers span ∼26 min to >4 hr, with key factors for success being a high aerobic power, the ability to exercise at a large fraction of this power, and high running/walking economy. Nutrition-related contributors include body mass and anthropometry, capacity to use fuels, particularly carbohydrate (CHO) to produce adenosine triphosphate economically over the duration of the event, and maintenance of reasonable hydration status in the face of sweat losses induced by exercise intensity and the environment. Race nutrition strategies include CHO-rich eating in the hours per days prior to the event to store glycogen in amounts sufficient for event fuel needs, and in some cases, in-race consumption of CHO and fluid to offset event losses. Beneficial CHO intakes range from small amounts, including mouth rinsing, in the case of shorter events to high rates of intake (75-90 g/hr) in the longest races. A personalized and practiced race nutrition plan should balance the benefits of fluid and CHO consumed within practical opportunities, against the time, cost, and risk of gut discomfort. In hot environments, prerace hyperhydration or cooling strategies may provide a small but useful offset to the accrued thermal challenge and fluid deficit. Sports foods (drinks, gels, etc.) may assist in meeting training/race nutrition plans, with caffeine, and, perhaps nitrate being used as evidence-based performance supplements.
Collapse
|
15
|
Close GL, Kasper AM, Morton JP. From Paper to Podium: Quantifying the Translational Potential of Performance Nutrition Research. Sports Med 2019; 49:25-37. [PMID: 30671902 PMCID: PMC6445818 DOI: 10.1007/s40279-018-1005-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sport nutrition is one of the fastest growing and evolving disciplines of sport and exercise science, demonstrated by a 4-fold increase in the number of research papers between 2012 and 2018. Indeed, the scope of contemporary nutrition-related research could range from discovery of novel nutrient-sensitive cell-signalling pathways to the assessment of the effects of sports drinks on exercise performance. For the sport nutrition practitioner, the goal is to translate innovations in research to develop and administer practical interventions that contribute to the delivery of winning performances. Accordingly, step one in the translation of research to practice should always be a well-structured critique of the translational potential of the existing scientific evidence. To this end, we present an operational framework (the "Paper-2-Podium Matrix") that provides a checklist of criteria for which to prompt the critical evaluation of performance nutrition-related research papers. In considering the (1) research context, (2) participant characteristics, (3) research design, (4) dietary and exercise controls, (5) validity and reliability of exercise performance tests, (6) data analytics, (7) feasibility of application, (8) risk/reward and (9) timing of the intervention, we aimed to provide a time-efficient framework to aid practitioners in their scientific appraisal of research. Ultimately, it is the combination of boldness of reform (i.e. innovations in research) and quality of execution (i.e. ease of administration of practical solutions) that is most likely to deliver the transition from paper to podium.
Collapse
Affiliation(s)
- Graeme L Close
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Andreas M Kasper
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - James P Morton
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, L3 3AF, UK
| |
Collapse
|
16
|
Richard NA, Koehle MS. Optimizing recovery to support multi-evening cycling competition performance. Eur J Sport Sci 2018; 19:811-823. [PMID: 30589619 DOI: 10.1080/17461391.2018.1560506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Road criterium and track bicycle racing occur at high speeds, demand repeated high power outputs, last 10-90 min, and offer little chance for recovery after the event. Consecutive evenings of criterium and track racing are respectively known as speed-week or six-day events and take place in evening hours over the course of a week. Given the schedule and timing of these competitions, return to homeostasis can be compromised. No recommendations exist on how to optimize recovery for cyclists participating in these types of repeated evening competitions. Criterium and track cyclists spend considerable time, near and above the individual lactate threshold and therefore mostly utilize carbohydrate as their chief energy substrate. Henceforth, pre - and post-race nutrition and hydration is examined and recommendations are brought forward for carbohydrate, protein, and fluid intake. As evening high-intensity exercise perturbs sleep, strategies to optimize sleep are discussed and recommendations for an optimal sleep environment are given. Active recovery is examined, and the benefits of a short duration low intensity exercise reviewed. Passive recovery methods such as compression garments and cold water immersion are recommended, while evidence for massage, pneumatic compression devices, and neuromuscular electrical stimulation is still lacking. Optimizing recovery strategies will facilitate a return to the resting state following strenuous night competition.
Collapse
Affiliation(s)
- Normand A Richard
- a Ministry of Health , HealthLink BC Physical Activity Services , Burnaby , Canada
| | - Michael S Koehle
- b School of Kinesiology , University of British Columbia , Vancouver , Canada.,c Division of Sports Medicine , University of British Columbia , Vancouver , Canada
| |
Collapse
|
17
|
Abstract
A strong foundation in physical conditioning and sport-specific experience, in addition to a bespoke and periodized training and nutrition program, are essential for athlete development. Once these underpinning factors are accounted for, and the athlete reaches a training maturity and competition level where marginal gains determine success, a role may exist for the use of evidence-based performance supplements. However, it is important that any decisions surrounding performance supplements are made in consideration of robust information that suggests the use of a product is safe, legal, and effective. The following review focuses on the current evidence-base for a number of common (and emerging) performance supplements used in sport. The supplements discussed here are separated into three categories based on the level of evidence supporting their use for enhancing sports performance: (1) established (caffeine, creatine, nitrate, beta-alanine, bicarbonate); (2) equivocal (citrate, phosphate, carnitine); and (3) developing. Within each section, the relevant performance type, the potential mechanisms of action, and the most common protocols used in the supplement dosing schedule are summarized.
Collapse
|