1
|
Pawłowski M, Furmanek MP, Juras G. Does muscle fatigue change motor synergies at different levels of neuromotor control? Front Hum Neurosci 2025; 18:1519462. [PMID: 39839368 PMCID: PMC11747471 DOI: 10.3389/fnhum.2024.1519462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
We investigated the effects of static and dynamic fatigue on motor synergies, focusing on their hierarchical control. Specifically, we examined whether changes in fatigue influence the central nervous system's ability to preserve movement stability. In addition to exploring the direct impact of fatigue on motor synergies, we also analyzed its effects at two distinct levels of hierarchical control, aiming to elucidate the mechanisms by which fatigue alters motor coordination and stability. Thirteen healthy, young and right-handed male participants took part in the study. Participants performed a bilateral accurate force production task under static and dynamic fatigue conditions at 30% of maximal voluntary contraction level with elbow flexors. Muscle activity level were collected from five muscles of each limb: biceps brachii, brachialis, brachioradialis, flexor carpi radialis, and flexor carpi ulnaris. The results revealed distinct effects of fatigue on isometric force production in the elbow joint tasks. On the higher level of hierarchy control of synergies, there were non-significant effects of different types of fatigue on movement performance, however, on the lower level we observed a strong effect of fatigue on forming motor synergies. There was no significant difference between the type of applied fatigue protocol on force and muscle activity data, nevertheless, the contribution of involved muscles to the task has changed. Our findings indicate that the central nervous system employs specific strategies to counteract fatigue and preserve movement stability during performance. However, the precise mechanisms by which variability at lower levels of hierarchical control influence higher levels remain unclear, highlighting a critical gap in our understanding of motor coordination under fatigue. Future studies should explore how these interactions across hierarchical levels contribute to movement stability under different fatigue conditions.
Collapse
Affiliation(s)
- Michał Pawłowski
- Institute of Sport Sciences, Department of Human Motor Behavior, Academy of Physical Education, Katowice, Poland
| | - Mariusz P. Furmanek
- Institute of Sport Sciences, Department of Human Motor Behavior, Academy of Physical Education, Katowice, Poland
- Department of Physical Therapy, University of Rhode Island, Kingston, RI, United States
| | - Grzegorz Juras
- Institute of Sport Sciences, Department of Human Motor Behavior, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
2
|
Bertrand MF, Varesco G, Millet GY, Féasson L, Lapole T, Rozand V. Are females getting more fatigable as they age? Eur J Appl Physiol 2024:10.1007/s00421-024-05637-6. [PMID: 39417863 DOI: 10.1007/s00421-024-05637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE The aim of this study was to compare performance fatigability between young (n = 13; 18-35 yr.; 23.5 ± 3.3 yr.), old (n = 13; 60-79 yr.; 68.2 ± 4.3 yr.), and very old (n = 11; ≥ 80 yr.; 85.6 ± 1.8 yr.) females during single-limb isometric (ISO) vs. isokinetic concentric (CON) vs. cycling (BIKE) fatiguing tasks. METHODS Participants randomly performed three incremental fatiguing tasks where increments were set as percentage of body weight to better reflect the daily life: (1) ISO and (2) CON consisted of stages of 75 contractions (120 s, 0.8 s on/0.8 s off) on an isokinetic dynamometer and (3) BIKE consisted of stages of 120 s at 37.5 rpm with similar duty cycle. Knee extensors maximal force, voluntary activation and potentiated twitch amplitude were measured at baseline, after each stage and at exhaustion. RESULTS Compared to young, exercise performance was 20% and 53% lower in old and very old females in ISO, 46% and 76% lower in CON and 32% and 62% lower in BIKE (all p < 0.01). For a given workload (i.e. common stages), performance fatigability (i.e. force loss) was greater for very old compared to young females in CON only (p = 0.018). At exhaustion, performance fatigability was similar across groups and conditions (~ 30%; all p > 0.05), with similar impairments in both voluntary activation and twitch amplitude. CONCLUSION These results emphasize the importance of the kind of fatiguing task and modalities of evaluation when investigating the effects of aging on performance fatigability.
Collapse
Affiliation(s)
- Mathilde Fiona Bertrand
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, 42023, Saint-Etienne, France
| | - Giorgio Varesco
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Center for Advanced Research in Sleep Medicine (CEAMS), Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord de l'Île-de- Montréal, Montreal, QC, Canada
- Institut National du Sport du Québec, Montréal, QC, Canada
| | - Guillaume Y Millet
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, 42023, Saint-Etienne, France
- IUF, Institut Universitaire de France, Paris, France
| | - Léonard Féasson
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, 42023, Saint-Etienne, France
- Unité de Myologie, Service de Physiologie Clinique et de l'Exercice, Centre Référent Maladies Neuromusculaires Euro-NmD, CHU de Saint-Etienne, Saint-Etienne, France
| | - Thomas Lapole
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, 42023, Saint-Etienne, France
- IUF, Institut Universitaire de France, Paris, France
| | - Vianney Rozand
- CAPS, Inserm UMR1093, UFR des Sciences du Sport, Faculté des Sciences du Sport, Université de Bourgogne, BP 27877, 21078, Dijon, France.
| |
Collapse
|
3
|
Heimhofer C, Neumann A, Odermatt I, Bächinger M, Wenderoth N. Finger-specific effects of age on tapping speed and motor fatigability. Front Hum Neurosci 2024; 18:1427336. [PMID: 39386279 PMCID: PMC11461208 DOI: 10.3389/fnhum.2024.1427336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Increased motor fatigability is a symptom of many neuromuscular and neurodegenerative disorders. However, it is difficult to pinpoint pathological motor fatigability, since the phenomena has not yet been fully characterized in the healthy population. In this study, we investigate how motor fatigability differs across age. Given that many disorders involve supraspinal components, we characterize motor fatigability with a paradigm that has previously been associated with supraspinal mechanisms. Finger tapping at maximal speed results in a rapid decrease in movement speed, which is a measure of motor fatigability. Methods We collected finger tapping data in a field experiment from the general population with a smartphone app, and we investigated age differences in maximal tapping speed, as well as the decrease in tapping speed for the index, middle, and little fingers. Results We found that the maximal tapping speed differed significantly between young (18-30 years, n = 194) and aged (50-70 years, n = 176), whereas the fatigability-induced relative decrease in movement speed did not differ between the age groups (average decrease: 17.0% ± 6.9% (young) vs. 16.5% ± 7.5% (aged) decrease). Furthermore, tapping speed and motor fatigability depended on which finger was used. Discussion These findings might relate to dexterity, with more dexterous movements being more resistant to fatigue. In this study, we provide a characterization of motor fatigability in the general population which can be used as a comparison for clinical populations in the future.
Collapse
Affiliation(s)
- Caroline Heimhofer
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Amira Neumann
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ingrid Odermatt
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marc Bächinger
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, University of Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Zurich, Switzerland
| |
Collapse
|
4
|
Arieta LR, Smith ZH, Paluch AE, Kent JA. Effects of older age on contraction-induced intramyocellular acidosis and inorganic phosphate accumulation in vivo: A systematic review and meta-analysis. PLoS One 2024; 19:e0308336. [PMID: 39321147 PMCID: PMC11424002 DOI: 10.1371/journal.pone.0308336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/22/2024] [Indexed: 09/27/2024] Open
Abstract
Although it is clear that the bioenergetic basis of skeletal muscle fatigue (transient decrease in peak torque or power in response to contraction) involves intramyocellular acidosis (decreased pH) and accumulation of inorganic phosphate (Pi) in response to the increased energy demand of contractions, the effects of old age on the build-up of these metabolites has not been evaluated systematically. The purpose of this study was to compare pH and [Pi] in young (18-45 yr) and older (55+ yr) human skeletal muscle in vivo at the end of standardized contraction protocols. Full study details were prospectively registered on PROSPERO (CRD42022348972). PubMed, Web of Science, and SPORTDiscus databases were systematically searched and returned 12 articles that fit the inclusion criteria for the meta-analysis. Participant characteristics, contraction mode (isometric, dynamic), and final pH and [Pi] were extracted. A random-effects model was used to calculate the mean difference (MD) and 95% confidence interval (CI) for pH and [Pi] across age groups. A subgroup analysis for contraction mode was also performed. Young muscle acidified more than older muscle (MD = -0.12 pH; 95%CI = -0.18,-0.06; p<0.01). There was no overall difference by age in final [Pi] (MD = 2.14 mM; 95%CI = -0.29,4.57; p = 0.08), although sensitivity analysis revealed that removing one study resulted in greater [Pi] in young than older muscle (MD = 3.24 mM; 95%CI = 1.72,4.76; p<0.01). Contraction mode moderated these effects (p = 0.02) such that young muscle acidified (MD = -0.19 pH; 95%CI = -0.27,-0.11; p<0.01) and accumulated Pi (MD = 4.69 mM; 95%CI = 2.79,6.59; p<0.01) more than older muscle during isometric, but not dynamic, contractions. The smaller energetic perturbation in older muscle indicated by these analyses is consistent with its relatively greater use of oxidative energy production. During dynamic contractions, elimination of this greater reliance on oxidative energy production and consequently lower metabolite accumulations in older muscle may be important for understanding task-specific, age-related differences in fatigue.
Collapse
Affiliation(s)
- Luke R. Arieta
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
| | - Zoe H. Smith
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
| | - Amanda E. Paluch
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Jane A. Kent
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
5
|
Chartogne M, Rahmani A, Landry S, Morel B. Comparison of neuromuscular fatigability amplitude and etiologies between fatigued and non-fatigued cancer patients. Eur J Appl Physiol 2024; 124:1175-1184. [PMID: 37952231 DOI: 10.1007/s00421-023-05347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Cancer-related fatigue (CRF) is the most reported side effect of cancer and its treatments. Mechanisms of CRF are multidimensional, including neuromuscular alterations leading to decreased muscle strength and endurance (i.e., fatigability). Recently, exercise fatigability and CRF have been related, while fatigability mechanisms remain unclear. Traditionally, fatigability is assessed from maximal voluntary contractions (MVC) decrease, but some authors hypothesized that the rate of force development (RFD) determined during a rapid contraction could also be an interesting indicator of functional alterations. However, to our knowledge, no study investigated RFD in cancer patients. The purpose of this study was to determine whether RFD, fatigability amplitude, and etiology are different between fatigued and non-fatigued cancer patients. METHODS Eighteen participants with cancer, divided in fatigued or non-fatigued groups according their CRF level, completed a 5-min all-out exercise in ankle plantar flexor muscles composed of 62 isometric MVC of 4 s with 1 s rest, to assess fatigability amplitude as the force-time relationship asymptote (FA). Before and after exercise, fatigability etiologies (i.e., voluntary activation (VA) and evoked forces by electrical stimulation (Db100)) were assessed as well as RFD in 50 and 100 ms (RFD50 and RFD100, respectively) during rapid contractions. RESULTS FA is significantly lower in fatigued group. Significant differences were found between pre- and post-exercise VA, Db100, RFD50, and RFD100 for both groups, with no statistical difference between groups. CONCLUSION During treatments, fatigability is higher in fatigued patients; however, the mechanisms of fatigability and RFD alterations are similar in both groups. TRIAL REGISTRATION ClinicalTrials.gov, NCT04391543, May 2020.
Collapse
Affiliation(s)
- M Chartogne
- Le Mans University, Movement-Interactions-Performance, MIP, UR 4334, 72000, Le Mans, France.
- Nantes University, Movement-Interactions-Performance, MIP, UR 4334, 44322, Nantes Cedex 3, France.
| | - A Rahmani
- Le Mans University, Movement-Interactions-Performance, MIP, UR 4334, 72000, Le Mans, France
| | - S Landry
- Centre de Cancérologie de la Sarthe, 72000, Le Mans, France
| | - B Morel
- Le Mans University, Movement-Interactions-Performance, MIP, UR 4334, 72000, Le Mans, France
- Univ Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, 73000, Chambéry, France
| |
Collapse
|
6
|
Varesco G, Luneau E, Millet GY, Féasson L, Lapole T, Rozand V. Age-Related Differences between Old and Very Old Men in Performance and Fatigability Are Evident after Cycling but Not Isometric or Concentric Single-Limb Tasks. Med Sci Sports Exerc 2023; 55:1641-1650. [PMID: 37580874 DOI: 10.1249/mss.0000000000003181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
PURPOSE This study aimed to compare performance and fatigability between young (n = 13; 18-30 yr), old (n = 13; 60-80 yr), and very old (n = 12; >80 yr) men during a single-joint isometric (ISO) and concentric (CON) task performed on an isokinetic dynamometer and a cycling (BIKE) task. METHODS Participants randomly performed incremental tasks consisting of stages of 75 contractions (i.e., 120 s, 0.8 s on/0.8 s off) for ISO and CON and 120 s at 37.5 rpm (similar duty cycle) for BIKE. Increments were set as a percentage of body weight. Knee extensor maximal force, voluntary activation, and twitch amplitude were measured at baseline, after each stage, and at task failure (five out of eight contractions below the target force or 6 s in a row at a cadence <37.5 rpm). RESULTS Compared with young men, performance (number of stages) was 24% and 40% lower in old and very old men in ISO, 54% and 59% lower in CON, and 36% and 60% lower in BIKE (all P < 0.05). Performance of old and very old differed only in BIKE (P < 0.01). For the last common stages performed, compared with young, force loss was greater for very old men in ISO and for old and very old men in BIKE (all P < 0.05). Overall, for the last common stage performed and task failure, old and very old men presented similar force loss, alterations in voluntary activation, and twitch amplitude. CONCLUSIONS Our findings reveal that, with workloads relative to body weight, differences in performance between old and very old men could only be observed during BIKE (i.e., the more ecologically valid task). Results from isometric or concentric conditions might not be transferable to dynamic exercise with large muscle masses.
Collapse
Affiliation(s)
- Giorgio Varesco
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023, Saint-Etienne, FRANCE
| | - Eric Luneau
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023, Saint-Etienne, FRANCE
| | | | | | - Thomas Lapole
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023, Saint-Etienne, FRANCE
| | - Vianney Rozand
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023, Saint-Etienne, FRANCE
| |
Collapse
|
7
|
Wang B, Davies TB, Way KL, Tran DL, Davis GM, Singh MF, Hackett DA. Effect of resistance training on local muscle endurance in middle-aged and older adults: A systematic review with meta-analysis and meta-regression. Arch Gerontol Geriatr 2023; 109:104954. [PMID: 36758486 DOI: 10.1016/j.archger.2023.104954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/06/2023]
Abstract
BACKGROUND Local muscle endurance (LME) is a significant indicator of muscle health and function in middle-aged and older adults. However, resistance training (RT) practices which optimise performance in this population are currently unclear. This study examined: 1) the effect of RT on LME; and 2) the impact of acute resistance exercise program variables on LME in middle-aged and older adults. METHODS Five electronic databases were searched using terms related to RT, LME, and older adults. Random effects (Hedges' g) meta-analyses were undertaken to estimate the effect of RT on upper and lower body LME assessed via maximal repetitions during an isotonic test. The impact of resistance exercise program variables on LME effects was explored using meta-regression analyses. RESULTS Fifteen studies met the inclusion criteria for this review. Upon sensitivity analysis, one study was removed. Large effects favoured RT for LME of the upper body (g = 1.10, p < 0.001) and lower body (g = 1.18, p < 0.001). Large effects on LME from RT were found irrespective of training intensity or other resistance exercise program variables. Moderate heterogeneity and publication bias were found in most analyses. DISCUSSION RT is an effective means for improving LME in middle-aged and older adults. Optimal training characteristics have not been defined by this review, as improvement in LME was unrelated to RT volume or loading intensity. Caution is warranted when interpreting the findings due to heterogeneity and bias present in existing literature. Additional studies are needed with direct comparisons of various training techniques.
Collapse
Affiliation(s)
- Boliang Wang
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Timothy B Davies
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Kimberley L Way
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia; Division of Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Derek L Tran
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; The University of Sydney School of Medicine, Central Clinical School, Camperdown, NSW, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Glen M Davis
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Maria Fiatarone Singh
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; The University of New South Wales, Australia; Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
| | - Daniel A Hackett
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
8
|
Millet GY, Bertrand MF, Lapole T, Féasson L, Rozand V, Hupin D. Measuring objective fatigability and autonomic dysfunction in clinical populations: How and why? Front Sports Act Living 2023; 5:1140833. [PMID: 37065809 PMCID: PMC10101442 DOI: 10.3389/fspor.2023.1140833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
Fatigue is a major symptom in many diseases, often among the most common and severe ones and may last for an extremely long period. Chronic fatigue impacts quality of life, reduces the capacity to perform activities of daily living, and has socioeconomical consequences such as impairing return to work. Despite the high prevalence and deleterious consequences of fatigue, little is known about its etiology. Numerous causes have been proposed to explain chronic fatigue. They encompass psychosocial and behavioral aspects (e.g., sleep disorders) and biological (e.g., inflammation), hematological (e.g., anemia) as well as physiological origins. Among the potential causes of chronic fatigue is the role of altered acute fatigue resistance, i.e. an increased fatigability for a given exercise, that is related to physical deconditioning. For instance, we and others have recently evidenced that relationships between chronic fatigue and increased objective fatigability, defined as an abnormal deterioration of functional capacity (maximal force or power), provided objective fatigability is appropriately measured. Indeed, in most studies in the field of chronic diseases, objective fatigability is measured during single-joint, isometric exercises. While those studies are valuable from a fundamental science point of view, they do not allow to test the patients in ecological situations when the purpose is to search for a link with chronic fatigue. As a complementary measure to the evaluation of neuromuscular function (i.e., fatigability), studying the dysfunction of the autonomic nervous system (ANS) is also of great interest in the context of fatigue. The challenge of evaluating objective fatigability and ANS dysfunction appropriately (i.e.,. how?) will be discussed in the first part of the present article. New tools recently developed to measure objective fatigability and muscle function will be presented. In the second part of the paper, we will discuss the interest of measuring objective fatigability and ANS (i.e. why?). Despite the beneficial effects of physical activity in attenuating chronic fatigue have been demonstrated, a better evaluation of fatigue etiology will allow to personalize the training intervention. We believe this is key in order to account for the complex, multifactorial nature of chronic fatigue.
Collapse
Affiliation(s)
- Guillaume Y. Millet
- Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, F-42023, Saint-Etienne, Lyon, France
- Institut Universitaire de France (IUF), Paris, France
- Correspondence: Guillaume Y. Millet
| | - Mathilde F. Bertrand
- Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, F-42023, Saint-Etienne, Lyon, France
| | - Thomas Lapole
- Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, F-42023, Saint-Etienne, Lyon, France
| | - Léonard Féasson
- Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, F-42023, Saint-Etienne, Lyon, France
- Service de physiologie clinique et de l'exercice, CHU de Saint-Étienne, Saint-Étienne, France
- Centre Référent Maladies Neuromusculaires rares - Euro-NmD, CHU de Saint-Étienne, Saint-Étienne, France
| | - Vianney Rozand
- Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, F-42023, Saint-Etienne, Lyon, France
| | - David Hupin
- Service de physiologie clinique et de l'exercice, CHU de Saint-Étienne, Saint-Étienne, France
- Jean Monnet University Saint-Etienne, Mines Saint-Etienne, University hospital of Saint-Etienne, INSERM, SAINBIOSE, U1059, DVH team, Saint-Etienne, France
| |
Collapse
|
9
|
Dark Chocolate Intake May Reduce Fatigue and Mediate Cognitive Function and Gray Matter Volume in Healthy Middle-Aged Adults. Behav Neurol 2022; 2022:6021811. [PMID: 36561325 PMCID: PMC9767741 DOI: 10.1155/2022/6021811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Background Dark chocolate has attracted attention for its potential for cognitive improvement. Though some reports indicate that dark chocolate is good for cognitive function, others raise doubts. This inconsistency in past results reflecting the relationship between dark chocolate and cognitive function indicates the potential existence of factors that mediate between dark chocolate intake and cognitive function. Methods With the hypothesis that fatigue may be one such mediating factor, we performed a four-week randomized control study to seek a link between dark chocolate consumption, cognitive function, fatigue, and the brain in middle-aged adults. Results We found that dark chocolate reduced mental and physical fatigue, and a path analysis revealed that it enhanced vitality, executive function, memory, and gray matter volume both directly and indirectly. Fatigue reduction was also associated with an improvement in physical function, which had a positive impact on emotional functioning, relief of bodily pain, and social functioning. Conclusions Our results suggest that dark chocolate may help reduce fatigue in individuals, leading to improvements in brain health and various cognitive functions as well as in quality of life.
Collapse
|
10
|
Performance fatigability during isometric vs. concentric quadriceps fatiguing tasks in men and women. J Electromyogr Kinesiol 2022; 67:102715. [PMID: 36274441 DOI: 10.1016/j.jelekin.2022.102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/13/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022] Open
Abstract
In the present study, we aimed to provide a robust comparison of the fatigability of the knee extensors following isometric (ISO) and concentric (CON) tasks. Twenty young adults (25 ± 4 yr, 10 women) randomly performed the ISO and CON quadriceps intermittent fatigue test, consisting of ten (5 s on/5-s off, ISO) or one-hundred (0.5-s on/0.5-s off, CON) contractions with 10 % increments per stage until exhaustion. Performance fatigability was quantified as maximal isometric (MVIC) and concentric (MVCC) torque loss. Voluntary activation and contractile function (peak-twitch) were investigated using peripheral nerve stimulation. Number of stages (6.2 ± 0.7 vs. 4.9 ± 0.8; P < 0.001) and torque-time integral (20,166 ± 7,821 vs. 11,285 ± 4,933 Nm.s; P < 0.001) were greater for ISO than CON. MVIC, MVCC and voluntary activation decreased similarly between sessions (P > 0.05) whereas peak-twitch amplitude decreased more for CON (P < 0.001). The number of contractions was similar across sexes (ISO: men = 62 ± 8, women = 61 ± 5; CON: men = 521 ± 67, women = 458 ± 76, P > 0.05). MVCC was more reduced in women for both sessions (all P < 0.05), while MVIC loss was similar between sexes. We concluded that, despite greater torque-time integral and duration for ISO, both sessions induced a similar performance fatigability at exhaustion. Contractile function was more altered in CON. Finally, sex-related difference in fatigability depends on the contraction mode used during testing.
Collapse
|
11
|
Souron R, Carayol M, Martin V, Piponnier E, Duché P, Gruet M. Differences in time to task failure and fatigability between children and young adults: A systematic review and meta-analysis. Front Physiol 2022; 13:1026012. [DOI: 10.3389/fphys.2022.1026012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
The transition from childhood to adulthood is characterized by many physiological processes impacting exercise performance. Performance fatigability and time to task failure are commonly used to capture exercise performance. This review aimed to determine the differences in fatigability and TTF between youth (including both children and adolescents) and young adults, and to evaluate the influence of exercise modalities (i.e., exercise duration and type of exercise) on these differences. Medline, SPORTDiscus and Cochrane Library were searched. Thirty-four studies were included. The meta-analyses revealed that both children (SMD −1.15; p < 0.001) and adolescents (SMD −1.26; p = 0.022) were less fatigable than adults. Additional analysis revealed that children were less fatigable during dynamic exercises (SMD −1.58; p < 0.001) with no differences during isometric ones (SMD –0.46; p = 0.22). Children (SMD 0.89; p = 0.018) but not adolescents (SMD 0.75; p = 0.090) had longer TTF than adults. Additional analyses revealed 1) that children had longer TTF for isometric (SMD 1.25; p < 0.001) but not dynamic exercises (SMD −0.27; p = 0.83), and 2) that TTF differences between children and adults were larger for short- (SMD 1.46; p = 0.028) than long-duration exercises (SMD 0.20; p = 0.64). Children have higher endurance and are less fatigable than adults. These differences are influenced by the exercise modality, suggesting distinct physiological functioning during exercise between children and adults. The low number of studies comparing these outcomes between adolescents versus children and adults prevents robust conclusions and warrants further investigations in adolescent individuals.
Collapse
|
12
|
Paris MT, McNeil CJ, Power GA, Rice CL, Dalton BH. Age-related performance fatigability: a comprehensive review of dynamic tasks. J Appl Physiol (1985) 2022; 133:850-866. [PMID: 35952347 DOI: 10.1152/japplphysiol.00319.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adult ageing is associated with a myriad of changes within the neuromuscular system, leading to reductions in contractile function of old adults. One of the consequences of these age-related neuromuscular adaptations is altered performance fatigability, which can limit the ability of old adults to perform activities of daily living. Whereas age-related fatigability of isometric tasks has been well characterized, considerably less is known about fatigability of old adults during dynamic tasks involving movement about a joint, which provides a more functionally relevant task compared to static contractions. This review provides a comprehensive summary of age-related fatigability in dynamic contractions, where the importance of task specificity is highlighted with a brief discussion of the potential mechanisms responsible for differences in fatigability between young and old adults. The angular velocity of the task is critical for evaluating age-related fatigability, as tasks which constrain angular velocity (i.e., isokinetic) produce equivocal age-related differences in fatigability, whereas tasks involving unconstrained velocity (i.e., isotonic-like) consistently induce greater fatigability of old compared to young adults. These unconstrained velocity tasks, that are more closely associated with natural movements, offer an excellent model to uncover the underlying age-related mechanisms of increased fatigability. Future work evaluating the mechanisms of increased age-related fatigability of dynamic tasks should be evaluated using task-specific contractions (i.e., dynamic), particularly for assessment of spinal and supra-spinal components. Advancing our understanding of age-related fatigability is likely to yield novel insights and approaches for improving mobility limitations in old adults.
Collapse
Affiliation(s)
- Michael T Paris
- School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Chris J McNeil
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Charles L Rice
- School of Kinesiology, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Brian H Dalton
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
13
|
Varesco G, Luneau E, Féasson L, Lapole T, Rozand V. Very old adults show impaired fatigue resistance compared to old adults independently of sex during a knee-extensors isometric test. Exp Gerontol 2022; 161:111732. [DOI: 10.1016/j.exger.2022.111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
|
14
|
Fatigue Measured in Dynamic Versus Isometric Modes After Trail Running Races of Various Distances. Int J Sports Physiol Perform 2021; 17:67-77. [PMID: 34359049 DOI: 10.1123/ijspp.2020-0940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Fatigue has previously been investigated in trail running by comparing maximal isometric force before and after the race. Isometric contractions may not entirely reflect fatigue-induced changes, and therefore dynamic evaluation is warranted. The aim of the present study was to compare the magnitude of the decrement of maximal isometric force versus maximal power, force, and velocity after trail running races ranging from 40 to 170 km. METHODS Nineteen trail runners completed races shorter than 60 km, and 21 runners completed races longer than 100 km. Isometric maximal voluntary contractions (IMVCs) of knee extensors and plantar flexors and maximal 7-second sprints on a cycle ergometer were performed before and after the event. RESULTS Maximal power output (Pmax; -14% [11%], P < .001), theoretical maximum force (F0; -11% [14%], P < .001), and theoretical maximum velocity (-3% [8%], P = .037) decreased significantly after both races. All dynamic parameters but theoretical maximum velocity decreased more after races longer than 100 km than races shorter than 60 km (P < .05). Although the changes in IMVCs were significantly correlated (P < .05) with the changes in F0 and Pmax, reductions in IMVCs for knee extensors (-29% [16%], P < .001) and plantar flexors (-26% [13%], P < .001) were larger (P < .001) than the reduction in Pmax and F0. CONCLUSIONS After a trail running race, reductions in isometric versus dynamic forces were correlated, yet they are not interchangeable because the losses in isometric force were 2 to 3 times greater than the reductions in Pmax and F0. This study also shows that the effect of race distance on fatigue measured in isometric mode is true when measured in dynamic mode.
Collapse
|
15
|
Abstract
Neuromuscular fatigue (NMF) is usually assessed non-invasively in healthy, athletic or clinical populations with the combination of voluntary and evoked contractions. Although it might appear relatively straightforward to magnetically or electrically stimulate at different levels (cortical/spinal/muscle) and to measure mechanical and electromyographic responses to quantify neuromuscular adjustments due to sustained/repeated muscle contractions, there are drawbacks that researchers and clinicians need to bear in mind. The aim of this opinion paper is to highlight the pitfalls inevitably faced when NMF is quantified. The first problem might arise from the definition of fatigue itself and the parameter(s) used to measure it; for instance, measuring power vs. isometric torque may lead to different conclusions. Another potential limitation is the delay between exercise termination and the evaluation of neuromuscular function; the possible underestimation of exercise-induced neural and contractile impairment and misinterpretation of fatigue etiology will be discussed, as well as solutions recently proposed to overcome this problem. Quantification of NMF can also be biased (or not feasible) because of the techniques themselves (e.g. results may depend on stimulation intensity for transcranial magnetic stimulation) or the way data are analyzed (e.g. M wave peak-to-peak vs first phase amplitude). When available, alternatives recently suggested in the literature to overcome these pitfalls are considered and recommendations about the best practices to assess NMF (e.g. paying attention to the delay between exercise and testing, adapting the method to the characteristics of the population to be tested and considering the limitations associated with the techniques) are proposed.
Collapse
Affiliation(s)
- Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Guillaume Y Millet
- Univ Lyon, UJM-Saint-Etienne, Inter-University Laboratory of Human Movement Biology, EA 7424, 42023, Saint-Étienne, France. .,Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| |
Collapse
|
16
|
Zarrouk N, Mtibaa K, Hammouda O, Chtourou H, Chaabouni K, Ayadi-Makni F, Rebai H. Assessment of acute neuromuscular fatigue manifestations and functional performances after heavy resistance exercise. J Sports Med Phys Fitness 2021; 61:1596-1604. [PMID: 33586932 DOI: 10.23736/s0022-4707.21.12015-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND This study aimed to assess neuromuscular fatigue after heavy resistance exercise in rugby players. METHODS Twelve male rugby players performed five sets of knee extension exercise lifting 80% of their one repetition maximum until failure, with 3min of rest in-between. Maximal voluntary contraction (MVC) and surface electromyographic activity from quadriceps muscles, as well as ions (i.e., Na+, K+, and Cl-) and metabolic responses (i.e., blood lactate and ammonia concentrations) were measured before and after exercise. Maximum repetitions performance and both peripheral (RPEp) and overall body (RPEo) rating of perceived exertion were recorded following each set. RESULTS The number of maximum repetitions decreased significantly across sets (P<0.001). Both RPEp and RPEo increased significantly across sets (P<0.001) with higher RPEp values after each set (P<0.001). Both RPEp (r=-0.98, P<0.01) and RPEo (r=-0.99, P<0.001) were negatively correlated with the changes in the number of maximum repetitions. MVC (P<0.001), root mean square (P<0.05), and neuromuscular efficiency (P<0.01) as well as Na+ (P<0.01), Cl- (P<0.001) and blood concentrations of lactate (P<0.001) and ammonia (P<0.001) decreased significantly after the exercise. However, K+ (P<0.001) increased after the resistance exercise. CONCLUSIONS Heavy resistance exercise affected both objective (i.e., neuromuscular and biochemical parameters) and subjective (i.e., RPE) aspects of neuromuscular fatigue.
Collapse
Affiliation(s)
- Nidhal Zarrouk
- Research Laboratory: Education, Motricité, Sport et Santé (EM2S), LR 19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia -
| | - Khouloud Mtibaa
- Qatar University, Sports Science Program, College of Arts and Sciences, Doha, Qatar
| | - Omar Hammouda
- Research Laboratory: Molecular Bases of Human Pathology, LR 19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia.,Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), UFR STAPS, UPL, Paris Nanterre University, Nanterre, France
| | - Hamdi Chtourou
- Research Unit: Physical Activity, Sport and Health, UR 18JS01, National Sport Observatory, Tunis, Tunisia
| | - Khansa Chaabouni
- Research Laboratory: Molecular Bases of Human Pathology, LR 19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia.,Laboratory of Biochemistry, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Fatma Ayadi-Makni
- Research Laboratory: Molecular Bases of Human Pathology, LR 19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia.,Laboratory of Biochemistry, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Haithem Rebai
- Research Laboratory: Education, Motricité, Sport et Santé (EM2S), LR 19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
17
|
Gollie JM, Patel SS, Scholten JD, Harris-Love MO. Preliminary Study of the Effects of Eccentric-Overload Resistance Exercise on Physical Function and Torque Capacity in Chronic Kidney Disease. J Funct Morphol Kinesiol 2020; 5:E97. [PMID: 33467312 PMCID: PMC7804887 DOI: 10.3390/jfmk5040097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
The purpose of this preliminary study was to describe changes in physical function and torque capacity in adults with chronic kidney disease (CKD) in response to a novel progressive eccentric-overload resistance exercise (ERE) regime. Participants included men (n = 4) diagnosed with CKD according to estimated glomerular filtration rate (eGFR) between 59 and 15 mL/kg/1.73 m2 and not requiring dialysis. Physical function was determined by the Short Physical Performance Battery (SPPB), five repetitions of a sit-to-stand (STS) task, and timed-up and go (TUG). Knee extensor strength was assessed using both isometric and isokinetic contractions and performance fatigability indexes were calculated during a 30-s maximal isometric test and a 30-contraction isokinetic test at 180°/second. None of the patients exhibited significant worsening in their health status after training. Participants demonstrated improvements in several measures of physical function and torque capacity following 24 sessions of ERE. Following training, performance fatigability remained relatively stable despite the increases in torque capacity, indicating the potential for greater fatigue resistance. These findings provide initial evidence for ERE as a potential treatment option to combat declines in physical function and neuromuscular impairments in people with CKD. Future research is required to determine optimal progression strategies for maximizing specific neuromuscular and functional outcomes when using ERE in this patient population.
Collapse
Affiliation(s)
- Jared M. Gollie
- Physical Medicine and Rehabilitation and Research Services, Veterans Affairs Medical Center, Washington, DC 20422, USA;
- Department of Rehabilitation Science, George Mason University, Fairfax, VA 22030, USA
- Department of Health, Human Function, and Rehabilitation Sciences, The George Washington University, Washington, DC 20006, USA
| | - Samir S. Patel
- Renal Service, Veterans Affairs Medical Center, Washington, DC 20422, USA;
- Department of Medicine, The George Washington University, Washington, DC 20006, USA
| | - Joel D. Scholten
- Physical Medicine and Rehabilitation Service, Veterans Affairs Medical Center, Washington, DC 20422, USA;
| | - Michael O. Harris-Love
- Department of Physical Medicine and Rehabilitation, University of Colorado, Aurora, CO 80045, USA
- Geriatric Research Education and Clinical Center, VA Eastern Colorado Healthcare System, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Varesco G, Royer N, Singh B, Parent A, Féasson L, Lapole T, Millet GY, Rozand V. Reliability and agreement of a dynamic quadriceps incremental test for the assessment of neuromuscular function. J Electromyogr Kinesiol 2020; 56:102503. [PMID: 33248368 DOI: 10.1016/j.jelekin.2020.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022] Open
Abstract
The quadriceps-intermittent-fatigue (QIF) test assesses knee extensors strength, endurance and performance fatigability in isometric condition. We aimed to assess reliability and agreement for this test in dynamic conditions and with the use of transcranial magnetic stimulation. On two separate sessions, 20 young adults (25 ± 4 yr, 10 women) performed stages of 100 knee extensors concentric contractions at 120°/s (60° range-of-motion) with 10% increments of the initial maximal concentric torque until exhaustion. Performance fatigability across the test was quantified as maximal isometric and concentric torque loss, and its mechanisms were investigated through the responses to transcranial magnetic and electrical stimulations. Reliability and agreement were assessed using ANOVAs, coefficients of variation (CVs) and intra-class correlation coefficients (ICCs) with 95% CI. Good inter-session reliability and high agreement were found for number of contractions [489 ± 75 vs. 503 ± 95; P = 0.20; ICC = 0.85 (0.66; 0.94); CV = 5% (3; 7)] and total work [11,285 ± 4,932 vs. 11,792 ± 5838 Nm.s; P = 0.20; ICC = 0.95 (0.87; 0.98); CV = 8% (5; 11)]. Poor reliability but high agreement were observed for isometric [-33 ± 6 vs. -31 ± 7%; P = 0.13; ICC = 0.47 (0.05; 0.75); CV = 6% (4;8)] and concentric [-20 ± 11% vs. -19 ± 9%; P = 0.82; ICC = 0.26 (-0.22; 0.63); CV = 9% (6; 12)] torque loss. The dynamic QIF test represents a promising tool for neuromuscular evaluation in isokinetic mode.
Collapse
Affiliation(s)
- Giorgio Varesco
- Université de Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-42023 Saint-Etienne, France.
| | - Nicolas Royer
- Université de Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-42023 Saint-Etienne, France
| | - Benjamin Singh
- Université de Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-42023 Saint-Etienne, France
| | - Audrey Parent
- Université du Québec à Montréal (UQAM), Montréal, Canada
| | - Léonard Féasson
- Université de Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-42023 Saint-Etienne, France; Unité de Myologie, Service de Physiologie Clinique et de l'Exercice, Centre Référent Maladies Neuromusculaires Euro-NmD, CHU de Saint-Etienne, France
| | - Thomas Lapole
- Université de Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-42023 Saint-Etienne, France
| | - Guillaume Y Millet
- Université de Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-42023 Saint-Etienne, France; Institut Universitaire de France (IUF) , France
| | - Vianney Rozand
- Université de Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-42023 Saint-Etienne, France
| |
Collapse
|
19
|
Wu R, Ditroilo M, Delahunt E, De Vito G. Age Related Changes in Motor Function (II). Decline in Motor Performance Outcomes. Int J Sports Med 2020; 42:215-226. [PMID: 33137831 DOI: 10.1055/a-1265-7073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Age-related impairments in motor performance are caused by a deterioration in mechanical and neuromuscular functions, which have been investigated from the macro-level of muscle-tendon unit to the micro-level of the single muscle fiber. When compared to the healthy young skeletal muscle, aged skeletal muscle is: (1) weaker, slower and less powerful during the performance of voluntary contractions; (2) less steady during the performance of isometric contractions, particularly at low levels of force; and (3) less susceptible to fatigue during the performance of sustained isometric contractions, but more susceptible to fatigue during the performance of high-velocity dynamic contractions. These impairments have been discussed to be mainly the result of: a) loss of muscle mass and selective atrophy of type II muscle fibers; b) altered tendon mechanical properties (decreased tendon stiffness); c) reduced number and altered function of motor units; d) slower muscle fiber shortening velocity; e) increased oscillation in common synaptic input to motor neurons; and f) altered properties and activity of sarcoplasmic reticulum. In this second part of a two-part review we have detailed the age-related impairments in motor performance with a reference to the most important mechanical and neuromuscular contributing factors.
Collapse
Affiliation(s)
- Rui Wu
- School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin
| | - Massimiliano Ditroilo
- School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin
| | - Eamonn Delahunt
- School of Public Health Physiotherapy and Sports Science, University College Dublin, Dublin
| | | |
Collapse
|
20
|
Age-related neuromuscular fatigue and recovery after cycling: Measurements in isometric and dynamic modes. Exp Gerontol 2020; 133:110877. [DOI: 10.1016/j.exger.2020.110877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 01/02/2023]
|
21
|
Older Adults Differentially Modulate Transcranial Magnetic Stimulation-Electroencephalography Measures of Cortical Inhibition during Maximal Single-joint Exercise. Neuroscience 2019; 425:181-193. [PMID: 31809730 DOI: 10.1016/j.neuroscience.2019.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
The effects of muscle fatigue are known to be altered in older adults, and age-related changes in the brain are likely to be a contributing factor. However, the neural mechanisms underlying these changes are not known. The aim of the current study was to use transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) to investigate age-related changes in cortical excitability with muscle fatigue. In 23 young (mean age ± SD: 22 ± 2 years) and 17 older (mean age ± SD: 68.3 ± 5.6 years) adults, single-pulse TMS-EEG was applied before, during and after the performance of fatiguing, intermittent isometric abduction of the index finger. Motor-evoked potential (MEP) measures of cortical excitability were increased during (estimated mean difference, 123.3%; P < 0.0001) and after (estimated mean difference, 117.5%; P = 0.001) fatigue and this was not different between groups (P > 0.5). For TMS-EEG, the amplitude of the P30 and P180 potentials were unaffected by fatigue in older participants (P > 0.05). In contrast, the amplitude of the N45 potential in older adults was significantly reduced both during (positive cluster: mean voltage difference = 0.7 µV, P < 0.005; negative cluster: mean voltage difference = 0.9 µV, P < 0.0005) and after (mean voltage difference = 0.5 µV, P < 0.005) fatiguing exercise, whereas this response was absent in young participants. These results suggest that performance of maximal intermittent isometric exercise in old but not young adults is associated with modulation of cortical inhibition likely mediated by activation of gamma-aminobutyric acid type A receptors.
Collapse
|
22
|
Krüger RL, Aboodarda SJ, Jaimes LM, MacIntosh BR, Samozino P, Millet GY. Fatigue and recovery measured with dynamic properties versus isometric force: effects of exercise intensity. ACTA ACUST UNITED AC 2019; 222:jeb.197483. [PMID: 30890621 DOI: 10.1242/jeb.197483] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/13/2019] [Indexed: 11/20/2022]
Abstract
Although fatigue can be defined as an exercise-related decrease in maximal power or isometric force, most studies have assessed only isometric force. The main purpose of this experiment was to compare dynamic measures of fatigue [maximal torque (T max), maximal velocity (V max) and maximal power (P max)] with measures associated with maximal isometric force [isometric maximal voluntary contraction (IMVC) and maximal rate of force development (MRFD)] 10 s after different fatiguing exercises and during the recovery period (1-8 min after). Ten young men completed six experimental sessions (3 fatiguing exercises×2 types of fatigue measurements). The fatiguing exercises were: 30 s all-out intensity (AI), 10 min at severe intensity (SI) and 90 min at moderate intensity (MI). Relative P max decreased more than IMVC after AI exercise (P=0.005) while the opposite was found after SI (P=0.005) and MI tasks (P<0.001). There was no difference between the decrease in IMVC and T max after the AI exercise, but IMVC decreased more than T max immediately following and during the recovery from the SI (P=0.042) and MI exercises (P<0.001). Depression of MRFD was greater than V max after all fatiguing exercises and during recovery (all P<0.05). Despite the general definition of fatigue, isometric assessment of fatigue is not interchangeable with dynamic assessment following dynamic exercises with large muscle mass of different intensities, i.e. the results from isometric function cannot be used to estimate dynamic function and vice versa. This implies different physiological mechanisms for the various measures of fatigue.
Collapse
Affiliation(s)
- Renata L Krüger
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Saied Jalal Aboodarda
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Libia Marcela Jaimes
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Pierre Samozino
- Univ Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, EA 7424, F-73000 Chambéry, France
| | - Guillaume Y Millet
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| |
Collapse
|