1
|
Lee EY, Park S, Kim YB, Lee M, Lim H, Ross-White A, Janssen I, Spence JC, Tremblay MS. Exploring the Interplay Between Climate Change, 24-Hour Movement Behavior, and Health: A Systematic Review. J Phys Act Health 2024; 21:1227-1245. [PMID: 39187251 DOI: 10.1123/jpah.2023-0637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Given the emergence of climate change and health risks, this review examined potential relationships between varying indicators of climate change, movement behaviors (ie, physical activity [PA], sedentary behavior, and sleep), and health. METHODS Seven databases were searched in March 2020, April 2023, and April 2024. To be included, studies must have examined indicators of climate change and at least one of the movement behaviors as either an exposure or a third variable (ie, mediator/moderator), and a measure of health as outcome. Evidence was summarized by the role (mediator/moderator) that either climate change or movement behavior(s) has with health measures. Relationships and directionality of each association, as well as the strength and certainty of evidence were synthesized. RESULTS A total of 79 studies were eligible, representing 6,671,791 participants and 3137 counties from 25 countries (40% low- and middle-income countries). Of 98 observations from 17 studies that examined PA as a mediator, 34.7% indicated that PA mediated the relationship between climate change and health measure such that indicators of adverse climate change were associated with lower PA, and worse health outcome. Of 274 observations made from 46 studies, 28% showed that PA favorably modified the negative association between climate change and health outcome. Evidence was largely lacking and inconclusive for sedentary behavior and sleep, as well as climate change indicators as an intermediatory variable. CONCLUSIONS PA may mitigate the adverse impact of climate change on health. Further evidence is needed to integrate PA into climate change mitigation, adaptation, and resilience strategies.
Collapse
Affiliation(s)
- Eun-Young Lee
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
- Department of Gender Studies, Queen's University, Kingston, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa,ON, Canada
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Seiyeong Park
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Yeong-Bae Kim
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Mikyung Lee
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Heejun Lim
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Amanda Ross-White
- Bracken Health Sciences Library, Queen's University, Kingston, ON, Canada
| | - Ian Janssen
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
- Department of Health Sciences, Queen's University, Kingston, ON, Canada
| | - John C Spence
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Mark S Tremblay
- Children's Hospital of Eastern Ontario Research Institute, Ottawa,ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Li J, Liu Q, Tian Z, Wang J, Zhang Y, Cheng X, Wang Y, Wang H, Guo X, Li H, Sun L, Hu B, Zhang D, Liang C, Sheng J, Tao F, Chen G, Yang L. The interaction between physical activity and ambient particulate matters on cognitive function among Chinese community-dwelling older adults. J Affect Disord 2024; 363:391-400. [PMID: 39029694 DOI: 10.1016/j.jad.2024.07.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/21/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND The interaction between physical activity (PA) and ambient particulate matters (PMs) on cognition is rarely investigated. Our study aimed to assess the interactions of PA and PMs on cognitive function in older adults. METHODS Our study comprised 3937 Chinese community-dwelling older adults. Cognition was evaluated using the Mini-Mental State Examination. PA information was gathered using the International Physical Activity Questionnaire. The data of PMs were obtained from China High Air Pollutants (CHAP). Linear regressions model and interaction plots were applied to assess and visualize the interaction of PA and PMs on cognition, respectively. Bayesian kernel machine regression (BKMR) method was employed to visualize discernible thresholds for the interaction. RESULTS PMs were negatively associated with MMSE scores (PM1: β = -0.40, 95 % CI: -0.58, -0.28; PM2.5: β = -0.46, 95 % CI: -0.64, -0.29; PM10: β = -0.44, 95 % CI: -0.61, -0.26), and PA was positively affiliated with MMSE scores (β = 0.18, 95 % CI: -0.01, 0.38). Interaction plots and BKMR demonstrated that adverse connotations of PMs with MMSE increased with the elevated PA levels, and the positive associations of PA with MMSE scores were attenuated by increased PMs (all Pinteraction < 0.20). Discernible thresholds for the interaction between PMs and PA on MMSE were found. CONCLUSIONS Our findings suggest that PA should not be taken at higher PMs concentrations, and that low level of PA could be performed in PMs polluted environment to improve cognitive function. Further experimental and cohort researches are required to reproduce our discovery.
Collapse
Affiliation(s)
- Junzhe Li
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Qiang Liu
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ziwei Tian
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Jun Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yan Zhang
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xuqiu Cheng
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yuan Wang
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Hongli Wang
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xianwei Guo
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Huaibiao Li
- Fuyang Center for Diseases Prevention and Control, Fuyang 236069, Anhui, China
| | - Liang Sun
- Fuyang Center for Diseases Prevention and Control, Fuyang 236069, Anhui, China
| | - Bing Hu
- Fuyang Center for Diseases Prevention and Control, Fuyang 236069, Anhui, China
| | - Dongmei Zhang
- School of Health Services Management, Anhui Medical University, Hefei 230032, Anhui, China
| | - Chunmei Liang
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Jie Sheng
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, Anhui, China
| | - Guimei Chen
- School of Health Services Management, Anhui Medical University, Hefei 230032, Anhui, China
| | - Linsheng Yang
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
3
|
Park HH, Armstrong MJ, Gorin FA, Lein PJ. Air Pollution as an Environmental Risk Factor for Alzheimer's Disease and Related Dementias. MEDICAL RESEARCH ARCHIVES 2024; 12:5825. [PMID: 39822906 PMCID: PMC11736697 DOI: 10.18103/mra.v12i10.5825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Alzheimer's disease and related dementias are a leading cause of morbidity in our aging populations. Although influenced by genetic factors, fewer than 5% of Alzheimer's disease and related dementia cases are due solely to genetic causes. There is growing scientific consensus that these dementias arise from complex gene by environment interactions. The 2020 Lancet Commission on dementia prevention, intervention, and care identified 12 modifiable risk factors of dementia, including lifestyle, educational background, comorbidities, and environmental exposures to environmental contaminants. In this review, we summarize the current understanding and data gaps regarding the role(s) of environmental pollutants in the etiology of Alzheimer's disease and related dementias with a focus on air pollution. In addition to summarizing findings from epidemiological and experimental animal studies that link airborne exposures to environmental contaminants to increased risk and/or severity of Alzheimer's disease and related dementias, we discuss currently hypothesized mechanism(s) underlying these associations, including peripheral inflammation, neuroinflammation and epigenetic changes. Key data gaps in this rapidly expanding investigative field and approaches for addressing these gaps are also addressed.
Collapse
Affiliation(s)
- Heui Hye Park
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Matthew J. Armstrong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Fredric A. Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, and Department of Neurology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Tuffier S, Zhang J, Bergmann M, So R, Napolitano GM, Cole‐Hunter T, Maric M, Antic S, Brandt J, Ketzel M, Loft S, Lim Y, Andersen ZJ. Long-term exposure to air pollution and road traffic noise and incidence of dementia in the Danish Nurse Cohort. Alzheimers Dement 2024; 20:4080-4091. [PMID: 38716818 PMCID: PMC11180848 DOI: 10.1002/alz.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION We examined the association of long-term exposure to air pollution and road traffic noise with dementia incidence in the Danish Nurse Cohort. METHODS Female nurses were followed for dementia incidence (hospital contact or medication prescription) from 1993/1999 to 2020. Air pollution and road traffic noise levels were estimated at nurses' residences, and their associations with dementia were examined using Cox regression models. RESULTS Of 25,233 nurses 1409 developed dementia. Particulate matter with a diameter of ≤2.5 µm (PM2.5) was associated with dementia incidence, after adjusting for lifestyle, socioeconomic status, and road traffic noise (hazard ratio [95% confidence interval] 1.35 [1.15-1.59] per interquartile range of 2.6 µg/m3). There was no association of PM2.5 with dementia in physically active nurses. Association with road traffic noise diminished after adjusting for PM₂.₅ (1.02 [0.93-1.11] per 7.6 dB). DISCUSSION Long-term exposure to air pollution increases risk of dementia, and physical activity may moderate this risk. HIGHLIGHTS Long-term exposure to air pollution was associated with increased risk of dementia among female nurses from the Danish Nurse Cohort. Association of air pollution with dementia was independent of road traffic noise. Association of road traffic noise with dementia diminished after adjusting for air pollution. Physical activity moderated adverse effects of air pollution on dementia.
Collapse
Affiliation(s)
- Stéphane Tuffier
- Section of Environmental HealthDepartment of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - Jiawei Zhang
- Section of Environmental HealthDepartment of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - Marie Bergmann
- Section of Environmental HealthDepartment of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - Rina So
- Section of Environmental HealthDepartment of Public HealthUniversity of CopenhagenCopenhagenDenmark
- Department of Epidemiology and Public HealthUniversity College LondonLondonUK
| | - George Maria Napolitano
- Section of Environmental HealthDepartment of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - Thomas Cole‐Hunter
- Section of Environmental HealthDepartment of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - Matija Maric
- Section of Environmental HealthDepartment of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - Sonja Antic
- Department of NeurologyAarhus University HospitalAarhusDenmark
- The Research Clinic for Functional Disorders and PsychosomaticsAarhus University HospitalAarhusDenmark
| | - Jørgen Brandt
- Department of Environmental ScienceAarhus UniversityRoskildeDenmark
- iClimateInterdisciplinary Centre for Climate ChangeAarhus UniversityRoskildeDenmark
| | - Matthias Ketzel
- Department of Environmental ScienceAarhus UniversityRoskildeDenmark
- Global Centre for Clean Air Research (GCARE)University of SurreyGuildfordUK
| | - Steffen Loft
- Section of Environmental HealthDepartment of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - Youn‐Hee Lim
- Section of Environmental HealthDepartment of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | | |
Collapse
|
5
|
Koehle MS. Physiological impacts of atmospheric pollution: Effects of environmental air pollution on exercise. Physiol Rep 2024; 12:e16005. [PMID: 38605426 PMCID: PMC11009369 DOI: 10.14814/phy2.16005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
In this review, we discuss some of the recent advances in our understanding of the physiology of the air pollution and exercise. The key areas covered include the effect of exercise intensity, the effects of pre-exposure to air pollution, acclimation to air pollution, and the utility of masks during exercise. Although higher intensity exercise leads to an increase in the inhaled dose of pollutants for a given distance traveled, the acute effects of (diesel exhaust) air pollution do not appear to be more pronounced. Second, exposure to air pollution outside of exercise bouts seems to have an effect on exercise response, although little research has examined this relationship. Third, humans appear to have an ability to acclimate to ground level ozone, but not other pollutants. And finally, masks may have beneficial effects on certain outcomes at low intensity exercise in pollution with significant levels of particles, but more study is required in realistic conditions.
Collapse
Affiliation(s)
- Michael Stephen Koehle
- School of KinesiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Division of Sport & Exercise MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Canadian Sport Institute – PacificVictoriaBritish ColumbiaCanada
- Athletics CanadaOttawaOntarioCanada
| |
Collapse
|
6
|
Feter N, de Paula D, Dos Reis RCP, Raichlen D, Patrão AL, Barreto SM, Suemoto CK, Duncan BB, Schmidt MI. Leisure-Time Physical Activity May Attenuate the Impact of Diabetes on Cognitive Decline in Middle-Aged and Older Adults: Findings From the ELSA-Brasil Study. Diabetes Care 2024; 47:427-434. [PMID: 38181314 DOI: 10.2337/dc23-1524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVE To assess leisure-time physical activity (LTPA) as a modifier of the diabetes/cognitive decline association in middle-aged and older participants in the Estudo Longitudinal de Saude do Adulto (ELSA-Brasil) study. RESEARCH DESIGN AND METHODS ELSA-Brasil is a cohort of 15,105 participants (age 35-74 years) enrolled between 2008 and 2010. We evaluated global cognitive function, summing the scores of six standardized tests evaluating memory and verbal fluency, including the Trail-Making Test, at baseline and follow-up. Incident cognitive impairment was defined as a global cognitive function score at follow-up lower than -1 SD from baseline mean. Participants reporting ≥150 min/week of moderate to vigorous LTPA at baseline were classified as physically active. We assessed the association of LTPA with global cognition change in those with diabetes in the context of our overall sample through multivariable regression models. RESULTS Participants' (N = 12,214) mean age at baseline was 51.4 (SD 8.8) years, and 55.5% were women. During a mean follow-up of 8.1 (SD 0.6) years, 9,345 (76.5%) inactive participants and 1,731 (14.1%) participants with diabetes at baseline experienced faster declines in global cognition than those who were active (β = -0.003, -0.004, and -0.002) and those without diabetes (β = -0.004, -0.005, and -0.003), respectively. Diabetes increased the risk of cognitive impairment (hazard ratio [HR] 1.71; 95% Cl 1.22, 2.39) in inactive but not in active adults (HR 1.18; 95% CI 0.73, 1.90). Among participants with diabetes, those who were active showed a delay of 2.73 (95% CI 0.94, 4.51) years in the onset of cognitive impairment. CONCLUSIONS In adults living with diabetes, LTPA attenuated the deleterious association between diabetes and cognitive function.
Collapse
Affiliation(s)
- Natan Feter
- Post Graduate Program in Epidemiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Danilo de Paula
- Post Graduate Program in Epidemiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Citton P Dos Reis
- Post Graduate Program in Epidemiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - David Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Ana Luísa Patrão
- Center for Psychology at University of Porto, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Sandhi Maria Barreto
- Deparment of Preventive and Social Medicine, Faculdade de Medicina and Clinical Hospital/Empresa Brasileira de Serviços Hospitalares, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Bruce B Duncan
- Post Graduate Program in Epidemiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Inês Schmidt
- Post Graduate Program in Epidemiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
7
|
Liu J, You Y, Liu R, Shen L, Wang D, Li X, Min L, Yin J, Zhang D, Ma X, Di Q. The joint effect and hemodynamic mechanism of PA and PM 2.5 exposure on cognitive function: A randomized controlled trial study. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132415. [PMID: 37657321 DOI: 10.1016/j.jhazmat.2023.132415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND While PM2.5 has been shown to impair cognitive function, physical activity (PA) is known to enhance it. Nonetheless, considering the increased inhalation of PM2.5 during exercise, the potential of PA to counteract the detrimental effects of PM2.5, along with the underlying hemodynamic mechanisms, remains uncertain. METHODS We conducted a double-blinded, randomized controlled trial among healthy young adults in Beijing, China. Ninety-three participants were randomly allocated to groups experiencing different intensities of PA interventions, and either subjected to purified or unpurified air conditions. Cognitive function was measured by the Color-Word Matching Stroop task, and the hemodynamic response was measured using functional near-infrared spectroscopy during participants performed the Stroop task both before and after the intervention. Linear mixed-effect models were used to estimate the impact of PA and PM2.5 on cognitive function and hemodynamic response. RESULTS The reaction time for congruent and incongruent Stroop tasks improved by - 80.714 (95% CI: -136.733, -24.695) and - 105.843 (95% CI: -188.6, -23.085) milliseconds after high-intensity interval training (HIIT) intervention. PM2.5 and HIIT had interaction effects on cognition, such that every 1 μg/m3 increase in PM2.5 attenuated the benefits of HIIT on reaction time by 2.231 (95% CI: 0.523, 3.938) and 3.305 (95% CI: 0.791, 5.819) milliseconds for congruent and incongruent Stroop tasks. Moreover, we divided participants into high and low PM2.5 exposure groups based on average PM2.5 concentration (32.980 μg/m3), and found that HIIT intervention in high PM2.5 concentration led to 69.897 (95% CI: 9.317, 130.476) and 99.269 (95% CI: 10.054, 188.485) milliseconds increased in the reaction time of congruent and incongruent Stroop, compared with the control group among low PM2.5. Furthermore, we found a significant interaction effects of PM2.5 and moderate-intensity continuous training (MICT) on the middle frontal gyrus (MFG) and dorsolateral superior frontal gyrus (DLPFC). PM2.5 and HIIT had a significant interaction effect on the DLPFC. CONCLUSIONS HIIT improved cognitive function, but the cognitive benefits of HIIT were attenuated or even reversed under high PM2.5 exposure. The activation of the DLPFC and MFG could serve as hemodynamic mechanisms to explain the joint effect of PA and PM2.5.
Collapse
Affiliation(s)
- Jianxiu Liu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China
| | - Yanwei You
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China
| | - Ruidong Liu
- Sports Coaching College, Beijing Sport University, Beijing 100084, China
| | - Lijun Shen
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dizhi Wang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China
| | - Xingtian Li
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China
| | - Leizi Min
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China
| | - Jie Yin
- College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China
| | - Dan Zhang
- Department of Psychology, Tsinghua University, Beijing 100084, China
| | - Xindong Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Liu J, Liu R, Zhang Y, Lao X, Mandeville KL, Ma X, Di Q. Leisure-time physical activity mitigated the cognitive effect of PM 2.5 and PM 2.5 components exposure: Evidence from a nationwide longitudinal study. ENVIRONMENT INTERNATIONAL 2023; 179:108143. [PMID: 37598596 DOI: 10.1016/j.envint.2023.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Exposure to fine particulate matter (PM2.5) impairs cognition, while physical activity (PA) improves cognitive function. However, whether taking PA with PM2.5 exposure is still beneficial to cognition remains unknown. METHODS We utilized national representative longitudinal data from the China Family Panel Study (CFPS), comprising a total sample of 108,099 from 2010 to 2018 in three waves. Cognitive performance and leisure-time PA were measured using the standard cognitive module and Godin-Shephard Leisure-Time Physical Activity Questionnaire. Gridded overall PM2.5 and major chemical components of PM2.5 were estimated using a two-stage machine learning model and matched to each participant based on their residential location. Mixed-effect models and difference-in-difference models were employed to investigate the individual and joint effects of total PM2.5, PM2.5 components, and leisure-time PA on cognition. RESULTS Every 1 μg/m3 increase in PM2.5 was associated with a -0.035 (95% confidence interval [CI] = -0.052, -0.018) point change in cognitive score. All PM2.5 components exhibited negative associations with cognitive change, with black carbon (BC) contributing the most significant cognitive decline (β = -1.025, 95% CI = -1.367, -0.683). Every one-time (or one-hour) increase in leisure-time PA frequency (or PA time) per week was associated with an increase in cognitive score by 0.576 (0.270) points (PA frequency: 95% CI = 0.544, 0.608, PA time: 95% CI = 0.248, 0.293). PA frequency (β = -0.005, 95% CI = -0.006, -0.003) and PA time (β = -0.002, 95% CI = -0.003, -0.001) exhibited interactive effects with PM2.5. Increased PA frequency and time were more beneficial to cognitive function in the low PM2.5 exposure group compared to those exposed to high PM2.5 levels. Moreover, relative to lower PM2.5 exposure, the cognitive benefits of physically active individuals with higher PM2.5 exposure were attenuated but still improved cognition when compared to those with no PA. CONCLUSION Engaging in leisure-time PA provides cognitive benefits even under PM2.5 exposure, although PM2.5 exposure attenuates these benefits. Among all PM2.5 components, BC demonstrated the most significant cognitive hazard and interaction with leisure-time PA. Promoting PA as a preventive measure may offer a cost-effective and convenient strategy to mitigate the negative impact of PM2.5 exposure on cognition. There is no excuse to avoid PA under PM2.5 exposure, as its cognitive benefits persist even in polluted environments.
Collapse
Affiliation(s)
- Jianxiu Liu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China.
| | - Ruidong Liu
- China Athletics College, Beijing Sport University, 100084, China.
| | - Yao Zhang
- Soochow College, Soochow University, Suzhou 215006, China.
| | - Xiangqian Lao
- Department of Biomedical Sciences, City University of Hong Kong, 999077, Hong Kong, China.
| | - Kate L Mandeville
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Xindong Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Wilker EH, Osman M, Weisskopf MG. Ambient air pollution and clinical dementia: systematic review and meta-analysis. BMJ 2023; 381:e071620. [PMID: 37019461 PMCID: PMC10498344 DOI: 10.1136/bmj-2022-071620] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE To investigate the role of air pollutants in risk of dementia, considering differences by study factors that could influence findings. DESIGN Systematic review and meta-analysis. DATA SOURCES EMBASE, PubMed, Web of Science, Psycinfo, and OVID Medline from database inception through July 2022. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Studies that included adults (≥18 years), a longitudinal follow-up, considered US Environmental Protection Agency criteria air pollutants and proxies of traffic pollution, averaged exposure over a year or more, and reported associations between ambient pollutants and clinical dementia. Two authors independently extracted data using a predefined data extraction form and assessed risk of bias using the Risk of Bias In Non-randomised Studies of Exposures (ROBINS-E) tool. A meta-analysis with Knapp-Hartung standard errors was done when at least three studies for a given pollutant used comparable approaches. RESULTS 2080 records identified 51 studies for inclusion. Most studies were at high risk of bias, although in many cases bias was towards the null. 14 studies could be meta-analysed for particulate matter <2.5 µm in diameter (PM2.5). The overall hazard ratio per 2 μg/m3 PM2.5 was 1.04 (95% confidence interval 0.99 to 1.09). The hazard ratio among seven studies that used active case ascertainment was 1.42 (1.00 to 2.02) and among seven studies that used passive case ascertainment was 1.03 (0.98 to 1.07). The overall hazard ratio per 10 μg/m3 nitrogen dioxide was 1.02 ((0.98 to 1.06); nine studies) and per 10 μg/m3 nitrogen oxide was 1.05 ((0.98 to 1.13); five studies). Ozone had no clear association with dementia (hazard ratio per 5 μg/m3 was 1.00 (0.98 to 1.05); four studies). CONCLUSION PM2.5 might be a risk factor for dementia, as well as nitrogen dioxide and nitrogen oxide, although with more limited data. The meta-analysed hazard ratios are subject to limitations that require interpretation with caution. Outcome ascertainment approaches differ across studies and each exposure assessment approach likely is only a proxy for causally relevant exposure in relation to clinical dementia outcomes. Studies that evaluate critical periods of exposure and pollutants other than PM2.5, and studies that actively assess all participants for outcomes are needed. Nonetheless, our results can provide current best estimates for use in burden of disease and regulatory setting efforts. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021277083.
Collapse
Affiliation(s)
- Elissa H Wilker
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Marwa Osman
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Marc G Weisskopf
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
10
|
Gong Y, Zhang X, Zhao X, Chang H, Zhang J, Gao Z, Mi Y, Chen Y, Zhang H, Huang C, Yu Z. Global ambient particulate matter pollution and neurodegenerative disorders: a systematic review of literature and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39418-39430. [PMID: 36763275 DOI: 10.1007/s11356-023-25731-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Previous studies on particulate matter (PM) exposure and neurodegenerative disorders showed inconsistent results, and few studies systematically examined the long-term effect of PM on neurodegenerative diseases, including all-cause dementia, Alzheimer's disease, Parkinson's disease, vascular dementia, amyotrophic lateral sclerosis, and cognitive function decline. We systematically searched for published studies in PubMed, Embase, Cochrane Library, and Web of Science up to October 31, 2022. To facilitate a comparison of effect sizes from different studies, we standardized units across studies to a 10 μg/m3 increase for PM. Heterogeneity was assessed by Cochran's Q test and I2 statistic. Publication bias was evaluated using funnel plots and Egger's tests. Subgroup analysis, meta-regression, and sensitivity analysis were performed. The protocol for this review was registered with PROSPERO (CRD42021277112). Of the 3403 originally identified studies, a meta-analysis was finally performed in 49 studies. The results showed that there was a significant positive association between long-term PM2.5 exposure and all-cause dementia, Alzheimer's disease as well as Parkinson's disease, with pooled OR of 1.30 (95%CI: 1.14, 1.47, I2 = 99.3%), 1.65 (95%CI: 1.37, 1.94, I2 = 98.2%), and 1.17 (95%CI: 1.00, 1.33, I2 = 91.8%). A positive association between PM10 and vascular dementia was observed (OR = 1.12, 95%CI: 1.04, 1.21, I2 = 0.0%). Association between PM exposure and decreased cognitive function score was found. Our results highlight the important role of PM pollution, particularly PM2.5, in the risk of age-related neurodegenerative diseases and cognitive function decline.
Collapse
Affiliation(s)
- Yuting Gong
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Chang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Zhan Gao
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Chen
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.,NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| |
Collapse
|
11
|
Raichlen DA, Klimentidis YC, Sayre MK, Bharadwaj PK, Lai MHC, Wilcox RR, Alexander GE. Leisure-time sedentary behaviors are differentially associated with all-cause dementia regardless of engagement in physical activity. Proc Natl Acad Sci U S A 2022; 119:e2206931119. [PMID: 35994664 PMCID: PMC9436362 DOI: 10.1073/pnas.2206931119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/13/2022] [Indexed: 12/28/2022] Open
Abstract
Sedentary behavior (SB) is associated with cardiometabolic disease and mortality, but its association with dementia is currently unclear. This study investigates whether SB is associated with incident dementia regardless of engagement in physical activity (PA). A total of 146,651 participants from the UK Biobank who were 60 years or older and did not have a diagnosis of dementia (mean [SD] age: 64.59 [2.84] years) were included. Self-reported leisure-time SBs were divided into two domains: time spent watching television (TV) or time spent using a computer. A total of 3,507 individuals were diagnosed with all-cause dementia over a mean follow-up of 11.87 (±1.17) years. In models adjusted for a wide range of covariates, including time spent in PA, time spent watching TV was associated with increased risk of incident dementia (HR [95% CI] = 1.24 [1.15 to 1.32]) and time spent using a computer was associated with decreased risk of incident dementia (HR [95% CI] = 0.85 [0.81 to 0.90]). In joint associations with PA, TV time and computer time remained significantly associated with dementia risk at all PA levels. Reducing time spent in cognitively passive SB (i.e., TV time) and increasing time spent in cognitively active SB (i.e., computer time) may be effective behavioral modification targets for reducing risk of dementia regardless of engagement in PA.
Collapse
Affiliation(s)
- David A. Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Department of Anthropology, University of Southern California, Los Angeles, CA 90089
| | - Yann C. Klimentidis
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724
- BIO5 Institute, University of Arizona, Tucson, AZ 85724
| | - M. Katherine Sayre
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | | | - Mark H. C. Lai
- Department of Psychology, University of Southern California, Los Angeles, CA 90089
| | - Rand R. Wilcox
- Department of Psychology, University of Southern California, Los Angeles, CA 90089
| | - Gene E. Alexander
- BIO5 Institute, University of Arizona, Tucson, AZ 85724
- Department of Psychology, University of Arizona, Tucson, AZ 85721
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721
- Department of Psychiatry, University of Arizona, Tucson, AZ 85721
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006
| |
Collapse
|