1
|
Tang Q, Sun Y, Yao Z, Xueyu N, Lv B, Zhao D, Zeng X, Li C. Starch in Emulsion-Type Sausage Reduced the Gastric Digestibility of Meat Protein by Reducing the Stability and Increasing the Viscoelasticity of Gastric Digests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22279-22289. [PMID: 39316632 DOI: 10.1021/acs.jafc.4c04862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The effect of the addition of native starch (S) and modified starches (distarch phosphate (SP), acetylated distarch phosphate (AP), and starch acetate (SA)) in emulsion-type sausage on the digestion process of meat protein was studied in this work. The addition of native and modified starches reduced the release of -NH2 during the simulated gastric digestion stage, whereas the addition of SA increased the total release of -NH2 after the whole digestion. Peptidomic analysis revealed that the presence of starch decreased the release of peptides in the gastric digestion. The presence of starch reduced the stability of the digests but increased the viscosity of the gastric digestive fluid, which should largely be responsible for the decreased gastric digestibility of meat protein. These results highlighted the physical properties of digests as a key factor affecting the gastric digestion process of meat protein and provided guidance for the application of starches in meat products.
Collapse
Affiliation(s)
- Qingqing Tang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yushuo Sun
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ziqi Yao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Nanqi Xueyu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bowen Lv
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Di Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xianming Zeng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
2
|
Shi Q, Carrillo JC, Penman MG, Shen H, North CM, Jia S, Borsboom-Patel T, Tian Y, Hubert F, Manton JC, Boogaard PJ. Toxicological Assessment of Higher Olefins in OECD TG 422 Repeated Dose and Reproductive /Developmental Toxicity Screening Tests in Han Wistar Rats. Int J Toxicol 2024; 43:301-326. [PMID: 37936376 DOI: 10.1177/10915818231210856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Higher olefins (HO) are used primarily as intermediates in the production of other chemicals, such as polymers, fatty acids, plasticizer alcohols, surfactants, lubricants, amine oxides, and detergent alcohols. The potential toxicity of five HO (i.e., 1-Octene, Nonene, Decene, Hexadecene, and 1-Octadecene) with carbon ranging from C8 to C18 was examined in a combined repeated dose and reproduction/developmental toxicity screening study (OECD TG 422). These five HO were administered to Han Wistar rats by gavage at 0 (controls), 100, 300, and 1000 mg/kg bw/day. As a group of substances, adaptive changes in the liver (liver weight increase without pathological evidence), as well as increased kidney weight in male rats, were observed in HO with carbon numbers from C8 to C10. The overall systemic no observed adverse effect level (NOAEL) for all HO was determined at 1000 mg/kg bw/day. In the reproductive/developmental toxicity assessment, offspring viability, size, and weights were reduced in litters from females treated with Nonene at 1000 mg/kg bw/day. The overall no observed effects level (NOEL) for reproductive toxicity was considered to be 300 mg/kg bw/day for Nonene and 1000 mg/kg bw/day for the other four HO, respectively. These data significantly enrich the database on the toxicity of linear and branched HO, allowing comparison with similar data published on a range of linear and branched HO. Comparisons between structural class and study outcome provide further supportive data in order to validate the read-across hypothesis as part of an overall holistic testing strategy.
Collapse
Affiliation(s)
- Quan Shi
- Shell Product Stewardship, Shell Global Solutions International B.V., The Hague, The Netherlands
| | - Juan-Carlos Carrillo
- Shell Product Stewardship, Shell Global Solutions International B.V., The Hague, The Netherlands
| | | | - Hua Shen
- Shell USA, Inc., Houston, TX, USA
| | - Colin M North
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, USA
| | - Sophie Jia
- Chevron Phillips Chemical Company, The Woodlands, TX, USA
| | | | - Yuan Tian
- Institute of Ophthalmology, University College London, London, UK
| | | | - Jason C Manton
- Penman Consulting Ltd., Aspect House, Grove Business Park, Grove, Oxfordshire, OX12 9FF, UK
- Exponent International Limited, The Lenz, Hornbeam Park, Harrogate HG2 8RE, United Kingdom
| | - Peter J Boogaard
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Sharma S, Patel SN, Singh SP. A novel thermotolerant L-rhamnose isomerase variant for biocatalytic conversion of D-allulose to D-allose. Appl Microbiol Biotechnol 2024; 108:279. [PMID: 38564031 PMCID: PMC10987364 DOI: 10.1007/s00253-024-13074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024]
Abstract
A novel L-rhamnose isomerase was identified and cloned from an extreme-temperature aquatic habitat metagenome. The deduced amino acid sequence homology suggested the possible source of this metagenomic sequence to be Chloroflexus islandicus. The gene expression was performed in a heterologous host, Escherichia coli, and the recombinant protein L-rhamnose isomerase (L-RIM) was extracted and purified. The catalytic function of L-RIM was characterized for D-allulose to D-allose bioconversion. D-Allose is a sweet, rare sugar molecule with anti-tumour, anti-hypertensive, cryoprotective, and antioxidative properties. The characterization experiments showed L-RIM to be a Co++- or Mn++-dependent metalloenzyme. L-RIM was remarkably active (~ 80%) in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges. Optimal L-RIM activity with D-allulose as the substrate occurred at pH 7.0 and 75 °C. The enzyme was found to be excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively. L-RIM catalysis conducted at slightly acidic pH of 6.0 and 70 °C achieved biosynthesis of about 30 g L-1 from 100 g L-1 D-allulose in 3 h. KEY POINTS: • The present study explored an extreme temperature metagenome to identify a novel gene that encodes a thermostable l-rhamnose isomerase (L-RIM) • L-RIM exhibits substantial (80% or more) activity in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges • L-RIM is excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively.
Collapse
Affiliation(s)
- Sweety Sharma
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI Campus, SAS Nagar, Sector 81, Mohali, India, 140306
- Indian Institute of Science Education and Research Mohali, SAS Nagar, Sector 81, Mohali, India, 140306
| | - Satya Narayan Patel
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI Campus, SAS Nagar, Sector 81, Mohali, India, 140306
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI Campus, SAS Nagar, Sector 81, Mohali, India, 140306.
| |
Collapse
|
4
|
Zhang Y, Ma G, Wang S, Nian B, Hu Y. Study on the synthesis of pine sterol esters in solvent-free systems catalyzed by Candida rugosa lipase immobilized on hydrophobic macroporous resin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7849-7861. [PMID: 37467367 DOI: 10.1002/jsfa.12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Pine sterol ester is a type of novel food source nutrient with great advantages in lowering blood cholesterol levels, inhibiting tumors, preventing prostate enlargement, and regulating immunity. Macroporous resins with large specific surface area, stable structures, and various functional groups (epoxy, amino, and octadecyl groups) have been selected for immobilization of Candida rugosa lipase (CRL) to improve its stability and efficiency in the synthesis of pine sterol esters. A solvent-free strategy using oleic acid (substrate) as an esterification reaction medium is an important alternative for avoiding the use of organic solvents. RESULTS The immobilization conditions of CRL immobilized on several types of commercial macroporous resins were optimized. Fortunately, by adsorption (hydrophobic interaction), a high immobilization efficiency of CRL was obtained using macroporous resins with hydrophobic octadecyl groups with an immobilization efficiency of 86.5%, enzyme loading of 138.5 mg g-1 and enzyme activity of 34.7 U g-1 . The results showed that a 95.1% yield could be obtained with a molar ratio of oleic acid to pine sterol of 5:1, an enzyme amount of 6.0 U g-1 (relative to pine sterol mass) at 50 °C for 48 h. CONCLUSION The hydrophobic macroporous resin (ECR8806M) with a large specific surface area and abundant functional groups was used to achieve efficient immobilization of CRL. CRL@ECR8806M is an efficient catalyst for the synthesis of phytosterol esters and has the potential for further large-scale applications. Therefore, this simple, green, and low-cost strategy for lipase immobilization provides new possibilities for the high-efficiency production of pine sterol esters and other food source nutrients. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Guangzheng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Shushu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| |
Collapse
|
5
|
Zeng X, Lv B, Zhu Y, Li Q, Zhang K, Li C, Zhao D, Li C. Influence of hydrophilic polysaccharide fat replacers on the in vitro digestibility of protein in emulsion-type sausage. Food Res Int 2023; 170:113008. [PMID: 37316076 DOI: 10.1016/j.foodres.2023.113008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Hydrophilic polysaccharides have been widely applied as fat replacers in meat products, but their effects on the digestibility of meat proteins has seldom been studied. Replacement of backfat in emulsion-type sausage with konjac gum (KG), sodium alginate (SA) and xanthan gum (XG) were found to reduce the released amino group (-NH2) during simulated gastric digestion and initial intestinal digestion. The suppressed gastric digestibility of protein was verified by the denser structures of protein gastric digests and reduced generation of peptides in gastric digestion when a polysaccharide was added. After the whole gastrointestinal digestion, high level of SA and XG resulted in larger digests and a more obvious SDS-PAGE band between 5 and 15 kDa, and KG and SA significantly reduced the total release of -NH2. Additional of KG, SA and XG were found to the increase the viscosity of the gastric digests mixture, which could account for the reduced hydrolysis efficiency of pepsin during the gastric digestion, as evidenced in the pepsin activity study (decreased by 12.2-39.1%). This work highlights the influence of polysaccharide fat replacer on the digestibility of meat protein by changing the matrix characteristics.
Collapse
Affiliation(s)
- Xianming Zeng
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University Nanjing 210095, PR China
| | - Bowen Lv
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University Nanjing 210095, PR China
| | - Yuan Zhu
- State Key Laboratory of Meat Processing and Quality Control, Yurun Group, Nanjing 211806, PR China
| | - Qiuyue Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University Nanjing 210095, PR China
| | - Kexin Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University Nanjing 210095, PR China
| | - Chao Li
- State Key Laboratory of Meat Processing and Quality Control, Yurun Group, Nanjing 211806, PR China.
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University Nanjing 210095, PR China.
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University Nanjing 210095, PR China
| |
Collapse
|
6
|
Verardo D, Adelizzi B, Rodriguez-Pinzon DA, Moghaddam N, Thomée E, Loman T, Godron X, Horgan A. Multiplex enzymatic synthesis of DNA with single-base resolution. SCIENCE ADVANCES 2023; 9:eadi0263. [PMID: 37418522 PMCID: PMC10328407 DOI: 10.1126/sciadv.adi0263] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Enzymatic DNA synthesis (EDS) is a promising benchtop and user-friendly method of nucleic acid synthesis that, instead of solvents and phosphoramidites, uses mild aqueous conditions and enzymes. For applications such as protein engineering and spatial transcriptomics that require either oligo pools or arrays with high sequence diversity, the EDS method needs to be adapted and certain steps in the synthesis process spatially decoupled. Here, we have used a synthesis cycle comprising a first step of site-specific silicon microelectromechanical system inkjet dispensing of terminal deoxynucleotidyl transferase enzyme and 3' blocked nucleotide, and a second step of bulk slide washing to remove the 3' blocking group. By repeating the cycle on a substrate with an immobilized DNA primer, we show that microscale spatial control of nucleic acid sequence and length is possible, which, here, are assayed by hybridization and gel electrophoresis. This work is distinctive for enzymatically synthesizing DNA in a highly parallel manner with single base control.
Collapse
Affiliation(s)
| | | | | | | | | | - Tessa Loman
- DNA Script, 67 Avenue de Fontainebleau, 94270 Le Kremlin-Bicêtre, France
| | | | | |
Collapse
|
7
|
Deep eutectic systems for carbonic anhydrase extraction from microalgae biomass to improve carbon dioxide solubilization. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Effect of cinnamon on starch hydrolysis of rice pudding: comparing static and dynamic in vitro digestion models. Food Res Int 2022; 161:111813. [DOI: 10.1016/j.foodres.2022.111813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
|
9
|
Miller MC, Dregni AJ, Platt D, Mayo KH. PLG-007 and Its Active Component Galactomannan-α Competitively Inhibit Enzymes That Hydrolyze Glucose Polymers. Int J Mol Sci 2022; 23:ijms23147739. [PMID: 35887087 PMCID: PMC9316267 DOI: 10.3390/ijms23147739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
PLG-007 is a developmental therapeutic compound that has been clinically shown to reduce the magnitude of postprandial glucose excursions and has the potential to be an adjunct treatment for diabetes and inflammatory-related diseases. The present investigation is aimed at understanding the molecular mechanism of action of PLG-007 and its galactomannan (GM) components GMα and GMβ (in a 1:4 mass ratio, respectively) on enzyme (i.e., α-amylase, maltase, and lactase) hydrolysis of glucose polymers using colorimetric assays and 13C HSQC NMR spectroscopy. The starch–iodine colorimetric assay indicated that GMα strongly inhibits α-amylase activity (~16-fold more potent than GMβ) and thus is the primary active component in PLG-007. 13C HSQC experiments, used to follow the α-amylase-mediated hydrolysis of starch and amylopectin, further demonstrate the α-amylase inhibitory effect of GMα via α-amylase-mediated hydrolysis of starch and amylopectin. Maltohexaose (MT6) was used to circumvent the relative kinetic complexity of starch/amylopectin degradation in Michaelis–Menten analyses. The Vmax, KM, and Ki parameters were determined using peak volume integrals from 13C HSQC NMR spectra. In the presence of PLG-007 with α-amylase and MT6, the increase in KM from 7.5 ± 0.6 × 10−3 M (control) to 21 ± 1.4 × 10−3 M, with no significant change in Vmax, indicates that PLG-007 is a competitive inhibitor of α-amylase. Using KM values, Ki was estimated to be 2.1 ± 0.9 × 10−6 M; however, the microscopic Ki value of GMα is expected to be larger as the binding stoichiometry is likely to be greater than 1:1. Colorimetric assays also demonstrated that GMα is a competitive inhibitor of the enzymes maltase and lactase. Overall, this study provides insight as to how PLG-007 (GMα) is likely to function in vivo.
Collapse
Affiliation(s)
- Michelle C. Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA; (M.C.M.); (A.J.D.)
| | - Aurelio J. Dregni
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA; (M.C.M.); (A.J.D.)
| | - David Platt
- Bioxytran Inc., 75 2nd Ave., Suite 605, Needham, MA 02494, USA;
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA; (M.C.M.); (A.J.D.)
- Correspondence:
| |
Collapse
|
10
|
Dutta T, Pal K, Koner AL. Intracellular Physical Properties with Small Organic Fluorescent Probes: Recent Advances and Future Perspectives. CHEM REC 2022; 22:e202200035. [PMID: 35801859 DOI: 10.1002/tcr.202200035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Indexed: 11/09/2022]
Abstract
The intracellular physical parameters i. e., polarity, viscosity, fluidity, tension, potential, and temperature of a live cell are the hallmark of cellular health and have garnered immense interest over the past decade. In this context, small molecule organic fluorophores exhibit prominent useful properties including easy functionalizability, environmental sensitivity, biocompatibility, and fast yet efficient cellular uptakability which has made them a popular tool to understand intra-cellular micro-environmental properties. Throughout this discussion, we have outlined the basic design strategies of small molecules for specific organelle targeting and quantification of physical properties. The values of these parameters are indicative of cellular homeostasis and subtle alteration may be considered as the onset of disease. We believe this comprehensive review will facilitate the development of potential future probes for superior insight into the physical parameters that are yet to be quantified.
Collapse
Affiliation(s)
- Tanoy Dutta
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, INDIA (TD) (ALK
| | - Kaushik Pal
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, INDIA (TD) (ALK.,Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011, USA
| | - Apurba Lal Koner
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, INDIA (TD) (ALK
| |
Collapse
|
11
|
Pal S, Mitra RK. Nonpolar hydrophobic amino acids tune the enzymatic activity of lysozyme. Biophys Chem 2022; 288:106842. [PMID: 35696897 DOI: 10.1016/j.bpc.2022.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
We have used five different hydrophobic L-amino acids (Gly, Ala, Val, Leu, Ile) as molecular crowders to investigate their role on the enzymatic activity of lysozyme towards Micrococcus lysodeikticus (M. lys.)cell as substrate. We found that except Ile, all other amino acids show a bell like profile of catalytic efficiency (kcat/Km) with their increasing concentration whereas for Ile, the value is gradually increasing. The trend of activation energy (Ea) is also well correlated with the catalytic efficiency of lysozyme. At low concentration of amino acids, soft interaction predominates whereas at higher concentration range, excluded volume, viscosity, hydrophobicity combinedly decrease the activity of lysozyme.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Rajib Kumar Mitra
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
12
|
Au SX, Noor NDM, Matsumura H, Rahman RNZRA, Normi YM. Procedure of the overexpression, purification and crystallization of BLEG-1, a bifunctional and evolutionary divergent B3 metallo-β-lactamase, for structure-function studies. MethodsX 2022; 9:101740. [PMID: 35707637 PMCID: PMC9189199 DOI: 10.1016/j.mex.2022.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/21/2022] [Indexed: 10/26/2022] Open
|
13
|
Csuka P, Molnár Z, Tóth V, Imarah AO, Balogh‐Weiser D, Vértessy BG, Poppe L. Immobilization of the Aspartate Ammonia-Lyase from Pseudomonas fluorescens R124 on Magnetic Nanoparticles: Characterization and Kinetics. Chembiochem 2022; 23:e202100708. [PMID: 35114050 PMCID: PMC9307013 DOI: 10.1002/cbic.202100708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Indexed: 11/07/2022]
Abstract
Aspartate ammonia-lyases (AALs) catalyze the non-oxidative elimination of ammonia from l-aspartate to give fumarate and ammonia. In this work the AAL coding gene from Pseudomonas fluorescens R124 was identified, isolated, and cloned into the pET-15b expression vector and expressed in E. coli. The purified enzyme (PfAAL) showed optimal activity at pH 8.8, Michaelis-Menten kinetics in the ammonia elimination from l-aspartate, and no strong dependence on divalent metal ions for its activity. The purified PfAAL was covalently immobilized on epoxy-functionalized magnetic nanoparticles (MNP), and effective kinetics of the immobilized PfAAL-MNP was compared to the native solution form. Glycerol addition significantly enhanced the storability of PfAAL-MNP. Inhibiting effect of the growing viscosity (modulated by addition of glycerol or glucose) on the enzymatic activity was observed for the native and immobilized form of PfAAL, as previously described for other free enzymes. The storage stability and recyclability of PfAAL-MNP is promising for further biocatalytic applications.
Collapse
Affiliation(s)
- Pál Csuka
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Zsófia Molnár
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
- Institute of EnzymologyELKH Research Center of Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Veronika Tóth
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Ali Obaid Imarah
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Diána Balogh‐Weiser
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
- Department of Physical Chemistry and Materials ScienceBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Beáta G. Vértessy
- Institute of EnzymologyELKH Research Center of Natural SciencesMagyar tudósok krt. 21117BudapestHungary
- Department of Applied Biotechnology and Food ScienceBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - László Poppe
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
- Biocatalysis and Biotransformation Research CenterFaculty of Chemistry and Chemical EngineeringBabeş-Bolyai University of Cluj-NapocaArany János Str. 11400028Cluj-NapocaRomania
| |
Collapse
|
14
|
Protic Ionic Liquid Cation Alkyl Chain Length Effect on Lysozyme Structure. Molecules 2022; 27:molecules27030984. [PMID: 35164252 PMCID: PMC8839406 DOI: 10.3390/molecules27030984] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Solvents that stabilize protein structures can improve and expand their biochemical applications, particularly with the growing interest in biocatalytic-based processes. Aiming to select novel solvents for protein stabilization, we explored the effect of alkylammonium nitrate protic ionic liquids (PILs)-water mixtures with increasing cation alkyl chain length on lysozyme conformational stability. Four PILs were studied, that is, ethylammonium nitrate (EAN), butylammonium nitrate (BAN), hexylammonium nitrate (HAN), and octylammonium nitrate (OAN). The surface tension, viscosity, and density of PIL-water mixtures at low to high concentrations were firstly determined, which showed that an increasing cation alkyl chain length caused a decrease in the surface tension and density as well as an increase in viscosity for all PIL solutions. Small-angle X-ray scattering (SAXS) was used to investigate the liquid nanostructure of the PIL solutions, as well as the overall size, conformational flexibility and changes to lysozyme structure. The concentrated PILs with longer alkyl chain lengths, i.e., over 10 mol% butyl-, 5 mol% hexyl- and 1 mol% octylammonium cations, possessed liquid nanostructures. This detrimentally interfered with solvent subtraction, and the more structured PIL solutions prevented quantitative SAXS analysis of lysozyme structure. The radius of gyration (Rg) of lysozyme in the less structured aqueous PIL solutions showed little change with up to 10 mol% of PIL. Kratky plots, SREFLEX models, and FTIR data showed that the protein conformation was maintained at a low PIL concentration of 1 mol% and lower when compared with the buffer solution. However, 50 mol% EAN and 5 mol% HAN significantly increased the Rg of lysozyme, indicating unfolding and aggregation of lysozyme. The hydrophobic interaction and liquid nanostructure resulting from the increased cation alkyl chain length in HAN likely becomes critical. The impact of HAN and OAN, particularly at high concentrations, on lysozyme structure was further revealed by FTIR. This work highlights the negative effect of a long alkyl chain length and high concentration of PILs on lysozyme structural stability.
Collapse
|
15
|
Pathiranage WLK, Gumataotao N, Fiedler AT, Holz RC, Bennett B. Identification of an Intermediate Species along the Nitrile Hydratase Reaction Pathway by EPR Spectroscopy. Biochemistry 2021; 60:3771-3782. [PMID: 34843221 PMCID: PMC8721871 DOI: 10.1021/acs.biochem.1c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new method to trap catalytic intermediate species was employed with Fe-type nitrile hydratase from Rhodococcus equi TG328-2 (ReNHase). ReNHase was incubated with substrates in a 23% (w/w) NaCl/H2O eutectic system that remained liquid at -20 °C, thereby permitting the observation of transient species that were present at electron paramagnetic resonance (EPR)-detectable levels in samples frozen while in the steady state. FeIII-EPR signals from the resting enzyme were unaffected by the presence of 23% NaCl, and the catalytic activity was ∼55% that in the absence of NaCl at the optimum pH of 7.5. The reaction of ReNHase in the eutectic system at -20 °C with the substrates acetonitrile or benzonitrile induced significant changes in the EPR spectra. A previously unobserved signal with highly rhombic g-values (g1 = 2.31) was observed during the steady state but did not persist beyond the exhaustion of the substrate, indicating that it arises from a catalytically competent intermediate. Distinct signals due to product complexes provide a detailed mechanism for product release, the rate-limiting step of the reaction. Assignment of the observed EPR signals was facilitated by density functional theory calculations, which provided candidate structures and g-values for various proposed ReNHase intermediates. Collectively, these results provide new insights into the catalytic mechanism of NHase and offer a new approach for isolating and characterizing EPR-active intermediates in metalloenzymes.
Collapse
Affiliation(s)
| | - Natalie Gumataotao
- Department of Chemistry and Biochemistry, Loyola University, Chicago, Illinois 60660, United States
| | - Adam T. Fiedler
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Richard C. Holz
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Brian Bennett
- Department of Physics, Marquette University, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
16
|
Han GR, Jang H, Ki H, Lee H, Kim MG. Reagent Filming for Universal Point-of-Care Diagnostics. SMALL METHODS 2021; 5:e2100645. [PMID: 34928024 DOI: 10.1002/smtd.202100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/14/2021] [Indexed: 06/14/2023]
Abstract
Simplifying assays while maintaining the robustness of reagents is a challenge in diagnostics. This problem is exacerbated when translating quality diagnostic assays to developing countries that lack resources and infrastructure such as trained health workers, high-end equipment, and cold-chain systems. To solve this problem, in this study, a simple solution that films assay reagents to simplify the operation of diagnostic assays and preserve the stability of diagnostic reagents without using cold chains is presented. A polyvinyl-alcohol-based water-soluble film is used to encapsulate premeasured and premixed reagents. The reagent film, produced through a simple and scalable cast-drying process, provides a glassy inner matrix with abundant hydroxyl groups that can stabilize various reagents (ranging from chemicals to biological materials) by restricting molecular mobility and generating hydrogen bonds. The reagent film is applied to an enzymatic glucose assay, a high-sensitivity immunoassay for cardiac troponin, and a molecular assay for viral RNA detection, to test its practicability and universal applicability. The film-based assays result in excellent analytical/diagnostic performance and stable long-term reagent storage at elevated temperatures (at 25 or 37 °C, for six months), demonstrating clinical readiness. This technology advances the development and distribution of affordable high-quality diagnostics to resource-limited regions.
Collapse
Affiliation(s)
- Gyeo-Re Han
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Hyungjun Jang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Hangil Ki
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Hoyeon Lee
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|
17
|
β-Mannanase BoMan26B from Bacteroides ovatus produces mannan-oligosaccharides with prebiotic potential from galactomannan and softwood β-mannans. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Makkliang F, Siriwarin B, Yusakul G, Phaisan S, Sakdamas A, Chuphol N, Putalun W, Sakamoto S. Biocompatible natural deep eutectic solvent-based extraction and cellulolytic enzyme-mediated transformation of Pueraria mirifica isoflavones: a sustainable approach for increasing health-bioactive constituents. BIORESOUR BIOPROCESS 2021; 8:76. [PMID: 38650188 PMCID: PMC10992110 DOI: 10.1186/s40643-021-00428-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/07/2021] [Indexed: 11/10/2022] Open
Abstract
The presence of specific gut microflora limits the biotransformation of Pueraria mirifica isoflavone (PMI) glycosides into absorbable aglycones, thus limiting their health benefits. Cellulolytic enzyme-assisted extraction (CAE) potentially solves this issue; however, solvent extraction requires recovery of the hydrophobic products. Here, we established the simultaneous transformation and extraction of PMIs using cellulolytic enzymes and natural deep eutectic solvents (NADESs). The NADES compositions were optimized to allow the use of NADESs as CAE media, and the extraction parameters were optimized using response surface methodology (RSM). The optimal conditions were 14.7% (v/v) choline chloride:propylene glycol (1:2 mol ratio, ChCl:PG) at 56.1 °C for the cellulolytic enzyme (262 mU/mL) reaction in which daidzin and genistin were extracted and wholly transformed to their aglycones daidzein and genistein. The extraction of PMIs using ChCl:PG is more efficient than that using conventional solvents; additionally, biocompatible ChCl:PG enhances cellulolytic enzyme activity, catalyzing the transformation of PMIs into compounds with higher estrogenicity and absorbability.
Collapse
Affiliation(s)
- Fonthip Makkliang
- School of Languages and General Education, Walailak University, Nakhon Si Thammarat, Thailand
| | - Boondaree Siriwarin
- Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Samut Prakan, Thailand
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Biomass and Oil Palm Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand.
| | - Suppalak Phaisan
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Attapon Sakdamas
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Natthapon Chuphol
- Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
19
|
Goss R, Schwarz C, Matzner M, Wilhelm C. Influence of the compatible solute sucrose on thylakoid membrane organization and violaxanthin de-epoxidation. PLANTA 2021; 254:52. [PMID: 34392410 PMCID: PMC8364907 DOI: 10.1007/s00425-021-03699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The compatible solute sucrose reduces the efficiency of the enzymatic de-epoxidation of violaxanthin, probably by a direct effect on the protein parts of violaxanthin de-epoxidase which protrude from the lipid phase of the thylakoid membrane. The present study investigates the influence of the compatible solute sucrose on the violaxanthin cycle of higher plants in intact thylakoids and in in vitro enzyme assays with the isolated enzyme violaxanthin de-epoxidase at temperatures of 30 and 10 °C, respectively. In addition, the influence of sucrose on the lipid organization of thylakoid membranes and the MGDG phase in the in vitro assays is determined. The results show that sucrose leads to a pronounced inhibition of violaxanthin de-epoxidation both in intact thylakoid membranes and the enzyme assays. In general, the inhibition is similar at 30 and 10 °C. With respect to the lipid organization only minor changes can be seen in thylakoid membranes at 30 °C in the presence of sucrose. However, sucrose seems to stabilize the thylakoid membranes at lower temperatures and at 10 °C a comparable membrane organization to that at 30 °C can be observed, whereas control thylakoids show a significantly different membrane organization at the lower temperature. The MGDG phase in the in vitro assays is not substantially affected by the presence of sucrose or by changes of the temperature. We conclude that the presence of sucrose and the increased viscosity of the reaction buffers stabilize the protein part of the enzyme violaxanthin de-epoxidase, thereby decreasing the dynamic interactions between the catalytic site and the substrate violaxanthin. This indicates that sucrose interacts with those parts of the enzyme which are accessible at the membrane surface of the lipid phase of the thylakoid membrane or the MGDG phase of the in vitro enzyme assays.
Collapse
Affiliation(s)
- Reimund Goss
- Institute of Biology, Department of Plant Physiology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany.
| | - Christian Schwarz
- Institute of Biology, Department of Plant Physiology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Monique Matzner
- Institute of Biology, Department of Plant Physiology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Christian Wilhelm
- Institute of Biology, Department of Plant Physiology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
20
|
Digestibility of polymerized whey protein using in vitro digestion model and antioxidative property of its hydrolysate. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Quaisie J, Ma H, Yiting G, Tuly JA, Igbokwe CJ, Zhang X, Ekumah JN, Akpabli-Tsigbe NDK, Nianzhen S. Impact of sonication on slurry shear -thinning of protein from sea cucumber (Apostichopus japonicus): Proteolytic reaction kinetics, thermodynamics, and conformational modification. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Latypova L, Barshtein G, Puzenko A, Poluektov Y, Anashkina A, Petrushanko I, Fenk S, Bogdanova A, Feldman Y. Oxygenation state of hemoglobin defines dynamics of water molecules in its vicinity. J Chem Phys 2021; 153:135101. [PMID: 33032403 DOI: 10.1063/5.0023945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This study focuses on assessing the possible impact of changes in hemoglobin (Hb) oxygenation on the state of water in its hydration shell as it contributes to red blood cell deformability. Microwave Dielectric Spectroscopy (MDS) was used to monitor the changes in interactions between water molecules and Hb, the number of water molecules in the protein hydration shell, and the dynamics of pre-protein water in response to the transition of Hb from the tense (T) to the relaxed (R) state, and vice versa. Measurements were performed for Hb solutions of different concentrations (5 g/dl-30 g/dl) in phosphate-buffered saline buffer. Cole-Cole parameters of the main water relaxation peak in terms of interactions of water molecules (dipole-dipole/ionic dipole) during the oxygenation-deoxygenation cycle were used to analyze the obtained data. The water mobility-represented by α as a function of ln τ-differed dramatically between the R (oxygenated) state and the T (deoxygenated) state of Hb at physiologically relevant concentrations (30 g/dl-35 g/dl or 4.5 mM-5.5 mM). At these concentrations, oxygenated hemoglobin was characterized by substantially lower mobility of water in the hydration shell, measured as an increase in relaxation time, compared to deoxyhemoglobin. This change indicated an increase in red blood cell cytosolic viscosity when cells were oxygenated and a decrease in viscosity upon deoxygenation. Information provided by MDS on the intraerythrocytic water state of intact red blood cells reflects its interaction with all of the cytosolic components, making these measurements powerful predictors of the changes in the rheological properties of red blood cells, regardless of the cause.
Collapse
Affiliation(s)
- Larisa Latypova
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| | - Gregory Barshtein
- Department of Biochemistry, The Faculty of Medicine, The Hebrew University, Campus Ein Kerem, Jerusalem 91120, Israel
| | - Alexander Puzenko
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| | - Yuri Poluektov
- Engelhart Institute of Molecular Biology, Russian Academy of Science, Vavilov St. 32, 119991 Moscow, Russia
| | - Anastasia Anashkina
- Engelhart Institute of Molecular Biology, Russian Academy of Science, Vavilov St. 32, 119991 Moscow, Russia
| | - Irina Petrushanko
- Engelhart Institute of Molecular Biology, Russian Academy of Science, Vavilov St. 32, 119991 Moscow, Russia
| | - Simone Fenk
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | - Yuri Feldman
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| |
Collapse
|
23
|
Nikulin M, Švedas V. Prospects of Using Biocatalysis for the Synthesis and Modification of Polymers. Molecules 2021; 26:2750. [PMID: 34067052 PMCID: PMC8124709 DOI: 10.3390/molecules26092750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Trends in the dynamically developing application of biocatalysis for the synthesis and modification of polymers over the past 5 years are considered, with an emphasis on the production of biodegradable, biocompatible and functional polymeric materials oriented to medical applications. The possibilities of using enzymes not only as catalysts for polymerization but also for the preparation of monomers for polymerization or oligomers for block copolymerization are considered. Special attention is paid to the prospects and existing limitations of biocatalytic production of new synthetic biopolymers based on natural compounds and monomers from biomass, which can lead to a huge variety of functional biomaterials. The existing experience and perspectives for the integration of bio- and chemocatalysis in this area are discussed.
Collapse
Affiliation(s)
- Maksim Nikulin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Lenin Hills 1, bldg. 40, 119991 Moscow, Russia;
| | - Vytas Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Lenin Hills 1, bldg. 73, 119991 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, Lenin Hills 1, bldg. 4, 119991 Moscow, Russia
| |
Collapse
|
24
|
Wilcox XE, Chung CB, Slade KM. Macromolecular crowding effects on the kinetics of opposing reactions catalyzed by alcohol dehydrogenase. Biochem Biophys Rep 2021; 26:100956. [PMID: 33665382 PMCID: PMC7905371 DOI: 10.1016/j.bbrep.2021.100956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/03/2021] [Accepted: 02/09/2021] [Indexed: 12/01/2022] Open
Abstract
In order to better understand how the complex, densely packed, heterogeneous milieu of a cell influences enzyme kinetics, we exposed opposing reactions catalyzed by yeast alcohol dehydrogenase (YADH) to both synthetic and protein crowders ranging from 10 to 550 kDa. The results reveal that the effects from macromolecular crowding depend on the direction of the reaction. The presence of the synthetic polymers, Ficoll and dextran, decrease Vmax and Km for ethanol oxidation. In contrast, these crowders have little effect or even increase these kinetic parameters for acetaldehyde reduction. This increase in Vmax is likely due to excluded volume effects, which are partially counteracted by viscosity hindering release of the NAD+ product. Macromolecular crowding is further complicated by the presence of a depletion layer in solutions of dextran larger than YADH, which diminishes the hindrance from viscosity. The disparate effects from 25 g/L dextran or glucose compared to 25 g/L Ficoll or sucrose reveals that soft interactions must also be considered. Data from binary mixtures of glucose, dextran, and Ficoll support this “tuning” of opposing factors. While macromolecular crowding was originally proposed to influence proteins mainly through excluded volume effects, this work compliments the growing body of evidence revealing that other factors, such as preferential hydration, chemical interactions, and the presence of a depletion layer also contribute to the overall effect of crowding. Yeast alcohol dehydrogenase reduction of acetaldehyde is enhanced by crowding. Crowding effects on YADH kinetics depend on the direction of the reaction. Crowders like dextran can be used as a tool to elucidate enzyme mechanism. Excluded volume optimizes YADH hydride transfer; viscosity hinders product release. The presence of a depletion layer with large crowders mitigates their effects.
Collapse
Affiliation(s)
- Xander E Wilcox
- Department of Chemistry, University of California at Davis, CA, 95616, USA
| | - Charmaine B Chung
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney St, Geneva, NY, 14456, USA
| | - Kristin M Slade
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney St, Geneva, NY, 14456, USA
| |
Collapse
|
25
|
Sousa RR, Silva AS, Fernandez-Lafuente R, Ferreira-Leitão VS. Solvent-free esterifications mediated by immobilized lipases: a review from thermodynamic and kinetic perspectives. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00696g] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Esters are a highly relevant class of compounds in the industrial context, and biocatalysis applied to ester syntheses is already a reality for some chemical companies.
Collapse
Affiliation(s)
- Ronaldo Rodrigues Sousa
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, and Innovations, 20081-312, Rio de Janeiro, RJ, Brazil
| | - Ayla Sant'Ana Silva
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, and Innovations, 20081-312, Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, Department of Biochemistry, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Roberto Fernandez-Lafuente
- Biocatalysis Department, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain
- Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Viridiana Santana Ferreira-Leitão
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, and Innovations, 20081-312, Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, Department of Biochemistry, 21941-909, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
26
|
Switching behaviour of dSTORM dyes in glycerol-containing buffer. Sci Rep 2020; 10:13746. [PMID: 32792515 PMCID: PMC7426933 DOI: 10.1038/s41598-020-70335-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/02/2020] [Indexed: 11/08/2022] Open
Abstract
To suppress optical aberrations caused by refractive index mismatch, we employ glycerol-immersion objectives in conjunction with fused silica cover glasses and imaging buffers with a high glycerol content. Here we demonstrate that the addition of glycerol to the buffer does not degrade the switching behaviour of the dyes Alexa Fluor 647 and Alexa Fluor 568 in dSTORM measurements, which shows that this approach is suitable for dSTORM. Additionally, we report evidence that sealed sample geometries as used in our experiments reduce photobleaching due to the lower influx of oxygen into the imaging buffer.
Collapse
|
27
|
Michels L, Gorelova V, Harnvanichvech Y, Borst JW, Albada B, Weijers D, Sprakel J. Complete microviscosity maps of living plant cells and tissues with a toolbox of targeting mechanoprobes. Proc Natl Acad Sci U S A 2020; 117:18110-18118. [PMID: 32669427 PMCID: PMC7395454 DOI: 10.1073/pnas.1921374117] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mechanical patterns control a variety of biological processes in plants. The microviscosity of cellular structures effects the diffusion rate of molecules and organelles, thereby affecting processes such as metabolism and signaling. Spatial variations in local viscosity are also generated during fundamental events in the cell life cycle. While crucial to a complete understanding of plant mechanobiology, resolving subcellular microviscosity patterns in plants has remained an unsolved challenge. We present an imaging microviscosimetry toolbox of molecular rotors that yield complete microviscosity maps of cells and tissues, specifically targeting the cytosol, vacuole, plasma membrane, and wall of plant cells. These boron-dipyrromethene (BODIPY)-based molecular rotors are rigidochromic by means of coupling the rate of an intramolecular rotation, which depends on the mechanics of their direct surroundings, with their fluorescence lifetime. This enables the optical mapping of fluidity and porosity patterns in targeted cellular compartments. We show how apparent viscosity relates to cell function in the root, how the growth of cellular protrusions induces local tension, and how the cell wall is adapted to perform actuation surrounding leaf pores. These results pave the way to the noninvasive micromechanical mapping of complex tissues.
Collapse
Affiliation(s)
- Lucile Michels
- Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Vera Gorelova
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Yosapol Harnvanichvech
- Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| |
Collapse
|
28
|
Nambiar D, Sharma O, Duff MR, Howell EE. Effects of Osmolytes on Ligand Binding to Dihydropteroate Synthase from Bacillus anthracis. J Phys Chem B 2020; 124:6212-6224. [PMID: 32580556 DOI: 10.1021/acs.jpcb.0c03311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Osmolyte interactions with ligands can affect their affinity for proteins and are dependent upon the cosolute and the functional groups of the ligand. Here, we explored ligand binding to Bacillus anthracis dihydropteroate synthase (BaDHPS) under osmotic stress conditions. Osmolyte effects were specific to the cosolute and ligand, suggesting interaction of the osmolytes with the free ligands in solution. The association rates of pterin pyrophosphate were mostly unaffected by the osmolytes, except for a 2-fold decrease in the presence of 1 M trehalose, while the dissociation rates decreased in most osmolyte solutions. The viscosity and dielectric constant of the solution did not correlate with the effects of the osmolytes. Experimental results were compared with predicted preferential interaction coefficients (Δμ23/RT) between the osmolytes and ligands. The Δμ23/RT were able to predict the experimental data for most of the osmolytes. Trehalose and proline effects did not correlate with the predicted values, indicating that these two osmolytes may affect binding in more complex ways than simple preferential interactions. Additionally, osmolytes weakly interacted with the sulfa drug sulfathiazole, which altered its affinity for BaDHPS, suggesting that these types of weak interactions can also impact drug binding. As osmolytes affect ligands binding to two different folate cycle enzymes (DHFRs and DHPS), we predicted how ligand binding to other folate cycle enzymes will be altered by the presence of osmolytes.
Collapse
Affiliation(s)
- Deepika Nambiar
- Department of Biochemistry & Cellular and Molecular Biology Department, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| | - Ojaswini Sharma
- Department of Biochemistry & Cellular and Molecular Biology Department, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| | - Michael R Duff
- Department of Biochemistry & Cellular and Molecular Biology Department, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| | - Elizabeth E Howell
- Department of Biochemistry & Cellular and Molecular Biology Department, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
29
|
Thermo-responsive switchable solvents for simultaneous microalgae cell disruption, oil extraction-reaction, and product separation for biodiesel production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Abstract
The disaccharide trehalose is accumulated in the cytoplasm of some organisms in response to harsh environmental conditions. Trehalose biosynthesis and accumulation are important for the survival of such organisms by protecting the structure and function of proteins and membranes. Trehalose affects the dynamics of proteins and water molecules in the bulk and the protein hydration shell. Enzyme catalysis and other processes dependent on protein dynamics are affected by the viscosity generated by trehalose, as described by the Kramers’ theory of rate reactions. Enzyme/protein stabilization by trehalose against thermal inactivation/unfolding is also explained by the viscosity mediated hindering of the thermally generated structural dynamics, as described by Kramers’ theory. The analysis of the relationship of viscosity–protein dynamics, and its effects on enzyme/protein function and other processes (thermal inactivation and unfolding/folding), is the focus of the present work regarding the disaccharide trehalose as the viscosity generating solute. Finally, trehalose is widely used (alone or in combination with other compounds) in the stabilization of enzymes in the laboratory and in biotechnological applications; hence, considering the effect of viscosity on catalysis and stability of enzymes may help to improve the results of trehalose in its diverse uses/applications.
Collapse
|
31
|
Azouz RAM, Hegazy UM, Said MM, Bassuiny RI, Salem AM, Fahmy AS. Improving the catalytic efficiency of thermostable Geobacillus stearothermophilus xylanase XT6 by single-amino acid substitution. J Biochem 2020; 167:203-215. [PMID: 31617574 DOI: 10.1093/jb/mvz086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023] Open
Abstract
Directed evolution using error-prone polymerase chain reaction was employed in the current study to enhance the catalytic efficiency of a thermostable Geobacillus stearothermophilus xylanase XT6 parent. High-throughput screening identified two variants with enhanced activity. Sequencing analysis revealed the presence of a single-amino acid substitution (P209L or V161L) in each variant. The maximum activity of mutant V161L and P209L was at 85°C and 70°C, respectively. Both mutants exhibited maximum activity at pH 7. The thermal and alkaline tolerance of mutant V161L only were markedly improved. The two mutants were more resistant to ethanol inhibition than the parent. Substrate specificity of the two mutants was shifted from beechwood xylan to birchwood xylan. The potential of the two mutants to hydrolyze rice straw and sugarcane bagasse increased. Both turnover number (kcat) and catalytic efficiency (kcat/kM) increased 12.2- and 5.7-folds for variant P209L and 13- and 6.5-folds for variant V161L, respectively, towards birchwood xylan. Based on the previously published crystal structure of extracellular G. stearothermophilus xylanase XT6, V161L and P209L mutation locate on βα-loops. Conformational changes of the respective loops could potentiate the loop swinging, product release and consequently result in enhancement of the catalytic performance.
Collapse
Affiliation(s)
- Rasha A M Azouz
- Genetic Engineering and Biotechnology Research Division, Molecular Biology Department, National Research Centre, El-Behouth Street, Dokki, 12622 Giza, Egypt
| | - Usama M Hegazy
- Genetic Engineering and Biotechnology Research Division, Molecular Biology Department, National Research Centre, El-Behouth Street, Dokki, 12622 Giza, Egypt
| | - Mahmoud M Said
- Faculty of Science, Department of Biochemistry, Ain Shams University, El-Khalyfa El-Mamoun Street, Abbasya, 11566 Cairo, Egypt
| | - Roqaya I Bassuiny
- Genetic Engineering and Biotechnology Research Division, Molecular Biology Department, National Research Centre, El-Behouth Street, Dokki, 12622 Giza, Egypt
| | - Ahmed M Salem
- Faculty of Science, Department of Biochemistry, Ain Shams University, El-Khalyfa El-Mamoun Street, Abbasya, 11566 Cairo, Egypt
| | - Afaf S Fahmy
- Genetic Engineering and Biotechnology Research Division, Molecular Biology Department, National Research Centre, El-Behouth Street, Dokki, 12622 Giza, Egypt
| |
Collapse
|
32
|
Yusakul G, Phaisan S, Nuntawong P, Sakamoto S, Putalun W, Morimoto S, Tanaka H. Honey as a solvent for the green extraction, analysis, and bioconversion of daidzin from Pueraria candollei var. mirifica root. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_74_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
33
|
Takalloo Z, Niknaddaf F, Shahangian SS, Heydari A, Hosseinkhani S, H Sajedi R. Modulation of the competition between renaturation and aggregation of lysozyme by additive mixtures. Biotechnol Appl Biochem 2019; 67:330-342. [PMID: 31758724 DOI: 10.1002/bab.1864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022]
Abstract
The effects of 17 kinds of additive mixtures have been studied on refolding and aggregation of a model protein, lysozyme. Most of the prepared mixtures were efficient in inhibiting aggregation of the protein, and, surprisingly, four novel additive mixtures, i.e., lactic acid: l-arginine, lactic acid: l-glutamine, choline chloride: lactic acid, and imidazolium salt: β-cyclodextrin as well as choline chloride: urea exhibited a more remarkable efficacy in suppressing aggregation. Among these, lactic acid: l-arginine was identified as the most efficient additive, and lactic acid: l-glutamine and choline chloride: lactic acid were inefficient to recover the enzyme activity. In contrast, choline chloride: ethylene glycol: imidazole, choline chloride: glycerol: imidazole, imidazole: betaine: ethylene glycol were found to be less effective mixtures in preventing enzyme aggregation. Totally, it was demonstrated that the protective effects of the mixtures were improved as their concentrations increased. The improvement was more remarkable for imidazolium salt: β-cyclodextrin and choline chloride: urea, where the denatured lysozyme was reactivated and recovered up to 85% of its initial activity by enhancing their concentrations from 1 to 5% (V/V). It is suggested that such solution additives may be further employed as artificial chaperones to assist protein folding and stability.
Collapse
Affiliation(s)
- Zeinab Takalloo
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Forouzan Niknaddaf
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Gilan, Iran
| | - Akbar Heydari
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
34
|
Miranda-Molina A, Xolalpa W, Strompen S, Arreola-Barroso R, Olvera L, López-Munguía A, Castillo E, Saab-Rincon G. Deep Eutectic Solvents as New Reaction Media to Produce Alkyl-Glycosides Using Alpha-Amylase from Thermotoga maritima. Int J Mol Sci 2019; 20:ijms20215439. [PMID: 31683666 PMCID: PMC6862209 DOI: 10.3390/ijms20215439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 01/20/2023] Open
Abstract
Deep Eutectic Solvents (DES) were investigated as new reaction media for the synthesis of alkyl glycosides catalyzed by the thermostable α-amylase from Thermotoga maritima Amy A. The enzyme was almost completely deactivated when assayed in a series of pure DES, but as cosolvents, DES containing alcohols, sugars, and amides as hydrogen-bond donors (HBD) performed best. A choline chloride:urea based DES was further characterized for the alcoholysis reaction using methanol as a nucleophile. As a cosolvent, this DES increased the hydrolytic and alcoholytic activity of the enzyme at low methanol concentrations, even when both activities drastically dropped when methanol concentration was increased. To explain this phenomenon, variable-temperature, circular dichroism characterization of the protein was conducted, finding that above 60 °C, Amy A underwent large conformational changes not observed in aqueous medium. Thus, 60 °C was set as the temperature limit to carry out alcoholysis reactions. Higher DES contents at this temperature had a detrimental but differential effect on hydrolysis and alcoholysis reactions, thus increasing the alcoholyisis/hydrolysis ratio. To the best of our knowledge, this is the first report on the effect of DES and temperature on an enzyme in which structural studies made it possible to establish the temperature limit for a thermostable enzyme in DES.
Collapse
Affiliation(s)
- Alfonso Miranda-Molina
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Wendy Xolalpa
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Simon Strompen
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Rodrigo Arreola-Barroso
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Leticia Olvera
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Agustín López-Munguía
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Edmundo Castillo
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Gloria Saab-Rincon
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| |
Collapse
|
35
|
Cattaneo S, Masotti F, Silvetti T, Hidalgo A, De Noni I. Effect of dairy ingredients on the heat damage and the in vitro digestibility of infant biscuits. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03368-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Leite TS, Samaranayake CP, Sastry SK, Cristianini M. Polyphenol oxidase inactivation in viscous fluids by ohmic heating and conventional thermal processing. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thiago S. Leite
- Department of Food Technology (DTA)School of Food Engineering (FEA), University of Campinas (UNICAMP) Brazil
| | - Chaminda P. Samaranayake
- Department of FoodAgricultural and Biological Engineering Agri‐food Industry, (FABE), Ohio State University (OSU) Columbus Ohio
| | - Sudhir K. Sastry
- Department of FoodAgricultural and Biological Engineering Agri‐food Industry, (FABE), Ohio State University (OSU) Columbus Ohio
| | - Marcelo Cristianini
- Department of Food Technology (DTA)School of Food Engineering (FEA), University of Campinas (UNICAMP) Brazil
| |
Collapse
|
37
|
Lei Z, Xin K, Qiu S, Hou L, Meng X, Yang Y. A Threshold-Limited Fluorescence Probe for Viscosity. Front Chem 2019; 7:342. [PMID: 31139624 PMCID: PMC6527809 DOI: 10.3389/fchem.2019.00342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
Viscosity of body fluid is an established biomarker of pathological conditions. Abnormality of cellular viscosity occurs when cells are challenged with external stresses. Small molecule probes to assess the viscosity are sought after for both disease diagnostics and basic studies. Fluorescence based probes are particular attractive due to their potentials for convenient and high spatiotemporal resolution microscopic monitoring of biological samples. The dyes with a floppy push-pull backbone or dyes with a rotatable substituent exhibits a viscosity responsive fluorescence enhancement and therefore viable viscosity probes. The scaffold of the existing viscosity probes contains typically one such floppy site. Therefore, they typically linearly respond to log(viscosity). We argue that minor viscosity fluctuation could potentially be physiological as the biological system is dynamic. We wish to develop a type of conceptually-new, threshold-limited viscosity probes, to complement the existing probes. Such probes do not exhibit a fluorescence enhancement when challenged with minor and presumably physiological enhancement of viscosity. When the viscosity is higher than a certain threshold, their fluorescence turns on. We hypothesize that a dye with two far-apart floppy sites could potentially yield such a threshold-limited signal and designed VPZ2 and VPZ3. Through spectral titration, VPZ3 was found to yield the desired threshold-limited signal. VPZ3 was suitable for in vitro bioimaging of viscosity under one-photon or two-photon excitation. VPZ3 is potentially useful in many downstream applications. Future work includes fine-tune of the threshold to allow tailored limit for fluorescence turn-on to better meet the need of different applications. Besides the implications in the real-world applications, the design concept could also be translated to design of alternative substrates.
Collapse
Affiliation(s)
- Zuhai Lei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Department of Chemistry, Fudan University, Shanghai, China
| | - Kai Xin
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shaobing Qiu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Liling Hou
- Department of Chemistry, Anhui University, Hefei, China
| | | | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
38
|
Jimenez-Rosales A, Flores-Merino MV. Tailoring Proteins to Re-Evolve Nature: A Short Review. Mol Biotechnol 2018; 60:946-974. [DOI: 10.1007/s12033-018-0122-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Hernández-Meza JM, Sampedro JG. Trehalose Mediated Inhibition of Lactate Dehydrogenase from Rabbit Muscle. The Application of Kramers' Theory in Enzyme Catalysis. J Phys Chem B 2018; 122:4309-4317. [PMID: 29595977 DOI: 10.1021/acs.jpcb.8b01656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lactate dehydrogenase (LDH) catalyzes the reduction of pyruvate to lactate by using NADH. LDH kinetics has been proposed to be dependent on the dynamics of a loop over the active site. Kramers' theory has been useful in the study of enzyme catalysis dependent on large structural dynamics. In this work, LDH kinetics was studied in the presence of trehalose and at different temperatures. In the absence of trehalose, temperature increase raised exponentially the LDH Vmax and revealed a sigmoid transition of Km toward a low-affinity state similar to protein unfolding. Notably, LDH Vmax diminished when in the presence of trehalose, while pyruvate affinity increased and the temperature-mediated binding site transition was hindered. The effect of trehalose on kcat was viscosity dependent as described by Kramers' theory since Vmax correlated inversely with the viscosity of the medium. As a result, activation energy ( Ea) for pyruvate reduction was dramatically increased by trehalose presence. This work provides experimental evidence that the dynamics of a structural component in LDH is essential for catalysis, i.e., the closing of the loop on the active site. While the trehalose mediated-increased of pyruvate affinity is proposed to be due to the compaction and/or increase of structural order at the binding site.
Collapse
Affiliation(s)
- Juan M Hernández-Meza
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria , C.P. 78290 San Luis Potosí , SLP , México
| | - José G Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria , C.P. 78290 San Luis Potosí , SLP , México
| |
Collapse
|
40
|
Kallmyer NE, Musielewicz J, Sutter J, Reuel NF. Substrate-Wrapped, Single-Walled Carbon Nanotube Probes for Hydrolytic Enzyme Characterization. Anal Chem 2018; 90:5209-5216. [DOI: 10.1021/acs.analchem.7b05444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nathaniel E. Kallmyer
- Iowa State University, 2114 Sweeney Hall, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Joseph Musielewicz
- Iowa State University, 2114 Sweeney Hall, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Joel Sutter
- Iowa State University, 2114 Sweeney Hall, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Nigel F. Reuel
- Iowa State University, 2114 Sweeney Hall, 618 Bissell Road, Ames, Iowa 50011, United States
| |
Collapse
|
41
|
Neri L, Di Mattia CD, Sacchetti G, Pittia P, Mastrocola D. The influence of water activity and molecular mobility on pectinmethylesterase activity in salt and glucose–maltodextrin model systems. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2017.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Liyaghatdar Z, Emamzadeh R, Rasa SMM, Nazari M. Trehalose radial networks protect Renilla luciferase helical layers against thermal inactivation. Int J Biol Macromol 2017; 105:66-73. [DOI: 10.1016/j.ijbiomac.2017.06.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022]
|
43
|
Molecular motion regulates the activity of the Mitochondrial Serine Protease HtrA2. Cell Death Dis 2017; 8:e3119. [PMID: 29022916 PMCID: PMC5759095 DOI: 10.1038/cddis.2017.487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022]
Abstract
HtrA2 (high-temperature requirement 2) is a human mitochondrial protease that has a role in apoptosis and Parkinson's disease. The structure of HtrA2 with an intact catalytic triad was determined, revealing a conformational change in the active site loops, involving mainly the regulatory LD loop, which resulted in burial of the catalytic serine relative to the previously reported structure of the proteolytically inactive mutant. Mutations in the loops surrounding the active site that significantly restricted their mobility, reduced proteolytic activity both in vitro and in cells, suggesting that regulation of HtrA2 activity cannot be explained by a simple transition to an activated conformational state with enhanced active site accessibility. Manipulation of solvent viscosity highlighted an unusual bi-phasic behavior of the enzymatic activity, which together with MD calculations supports the importance of motion in the regulation of the activity of HtrA2. HtrA2 is an unusually thermostable enzyme (TM=97.3 °C), a trait often associated with structural rigidity, not dynamic motion. We suggest that this thermostability functions to provide a stable scaffold for the observed loop motions, allowing them a relatively free conformational search within a rather restricted volume.
Collapse
|
44
|
Ghosh R, Kushwaha A, Das D. Conformational Control of Ultrafast Molecular Rotor Property: Tuning Viscosity Sensing Efficiency by Twist Angle Variation. J Phys Chem B 2017; 121:8786-8794. [DOI: 10.1021/acs.jpcb.7b05947] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rajib Ghosh
- Radiation
and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Archana Kushwaha
- Department
of Chemistry, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Dipanwita Das
- Department
of Chemistry, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| |
Collapse
|
45
|
New nucleoside hydrolase with transribosylation activity from Agromyces sp. MM-1 and its application for enzymatic synthesis of 2'-O-methylribonucleosides. J Biosci Bioeng 2017; 125:38-45. [PMID: 28826816 DOI: 10.1016/j.jbiosc.2017.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
Abstract
Microorganisms were screened for transribosylation activity between 2'-O-methyluridine (2'-OMe-UR) and nucleobases, for the purpose of developing a biotransformation process to synthesize 2'-O-methylribonucleosides (2'-OMe-NRs), which are raw materials for nucleic acid drugs. An actinomycete, Agromyces sp. MM-1 was found to produce 2'-O-methyladenosine (2'-OMe-AR) when whole cells were used in a reaction mixture containing 2'-OMe-UR and adenine. The enzyme responsible for the transribosylation was partially purified from Agromyces sp. MM-1 cells through a six-step separation procedure, and identified as a nucleoside hydrolase family enzyme termed AgNH. AgNH was a bi-functional enzyme catalyzing both hydrolysis towards 2'-OMe-NRs and transribosylation between 2'-OMe-UR and various nucleobases as well as adenine. In the hydrolysis reaction, AgNH preferred guanosine analogues as its substrates. In the transribosylation reaction, AgNH showed strong activity towards 6-chloroguanine, with 25-fold relative activity when adenine was used as the acceptor substrate. The transribosylation reaction product from 2'-OMe-UR and 6-chloroguanine was determined to 2'-O-methyl-6-chloroguanosine (2'-OMe-6ClGR). Under the optimal conditions, the maximum molar yield of 2'-OMe-6ClGR reached 2.3% in a 293-h reaction, corresponding to 440 mg/L.
Collapse
|
46
|
Mitsukawa Y, Hibi M, Matsutani N, Horinouchi N, Takahashi S, Ogawa J. Enzymatic synthesis of 2'-O-methylribonucleosides with a nucleoside hydrolase family enzyme from Lactobacillus buchneri LBK78. J Biosci Bioeng 2017; 123:659-664. [PMID: 28202305 DOI: 10.1016/j.jbiosc.2017.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/25/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
2'-O-Methylribonucleosides (2'-OMe-NRs) are promising raw materials for the production of nucleic acid drugs. We previously reported that LbNH, a nucleoside hydrolase from Lactobacillus buchneri LBK78 (NITE P-01581), was the first enzyme found to act on 2'-OMe-NRs. In the present study, we determined that LbNH also has the transribosylation activity between 2'-OMe-NRs and nucleobases, in addition to the hydrolyzing activity towards 2'-OMe-NRs. When 2'-O-methyluridine (2'-OMe-UR) and adenine were reacted with LbNH, 2'-O-methyladenosine (2'-OMe-AR) was produced. LbNH preferred purine nucleobases as its acceptor substrates for the transribosylation with 2'-OMe-UR as a donor substrate. Kinetic analysis of LbNH revealed that adenine behaved as a mixed inhibitor of the hydrolysis of 2'-OMe-UR. Under the optimal reaction conditions, the maximum molar yield of enzymatic 2'-OMe-AR produced reached 0.97% towards 2'-OMe-UR, corresponding to 0.16 g/L.
Collapse
Affiliation(s)
- Yuuki Mitsukawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Makoto Hibi
- Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Narihiro Matsutani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Nobuyuki Horinouchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satomi Takahashi
- Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
47
|
da Silva OS, Gomes MHG, de Oliveira RL, Porto ALF, Converti A, Porto TS. Partitioning and extraction protease from Aspergillus tamarii URM4634 using PEG-citrate aqueous two-phase systems. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2016.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Impact of additives on the formation of protein aggregates and viscosity in concentrated protein solutions. Int J Pharm 2016; 516:82-90. [PMID: 27836754 DOI: 10.1016/j.ijpharm.2016.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
In concentrated protein solutions attractive protein interactions may not only cause the formation of undesired aggregates but also of gel-like networks with elevated viscosity. To guarantee stable biopharmaceutical processes and safe formulations, both phenomenons have to be avoided as these may hinder regular processing steps. This work screens the impact of additives on both phase behavior and viscosity of concentrated protein solutions. For this purpose, additives known for stabilizing proteins in solution or modulating the dynamic viscosity were selected. These additives were PEG 300, PEG 1000, glycerol, glycine, NaCl and ArgHCl. Concentrated lysozyme and glucose oxidase solutions at pH 3 and 9 served as model systems. Fourier-transformed-infrared spectroscopy was chosen to determine the conformational stability of selected protein samples. Influencing protein interactions, the impact of additives was strongly dependent on pH. Of all additives investigated, glycine was the only one that maintained protein conformational and colloidal stability while decreasing the dynamic viscosity. Low concentrations of NaCl showed the same effect, but increasing concentrations resulted in visible protein aggregation.
Collapse
|
49
|
Weiser D, Sóti PL, Bánóczi G, Bódai V, Kiss B, Gellért Á, Nagy ZK, Koczka B, Szilágyi A, Marosi G, Poppe L. Bioimprinted lipases in PVA nanofibers as efficient immobilized biocatalysts. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.06.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Malyan AN. The effect of medium viscosity on kinetics of ATP hydrolysis by the chloroplast coupling factor CF1. PHOTOSYNTHESIS RESEARCH 2016; 128:163-168. [PMID: 26754050 DOI: 10.1007/s11120-015-0213-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
The coupling factor CF1 is a catalytic part of chloroplast ATP synthase which is exposed to stroma whose viscosity is many-fold higher than that of reaction mixtures commonly used to measure kinetics of CF1-catalyzed ATP hydrolysis. This study is focused on the effect of medium viscosity modulated by sucrose or bovine serum albumin (BSA) on kinetics of Ca(2+)- and Mg(2+)-dependent ATP hydrolysis by CF1. These agents were shown to reduce the maximal rate of Ca(2+)-dependent ATPase without changing the apparent Michaelis constant (К m), thus supporting the hypothesis on viscosity dependence of CF1 activity. For the sulfite- and ethanol-stimulated Mg(2+)-dependent reaction, the presence of sucrose increased К m without changing the maximal rate that is many-fold as high as that of Ca(2+)-dependent hydrolysis. The hydrolysis reaction was shown to be stimulated by low concentrations of BSA and inhibited by its higher concentrations, with the increasing maximal reaction rate estimated by extrapolation. Sucrose- or BSA-induced inhibition of the Mg(2+)-dependent ATPase reaction is believed to result from diffusion-caused deceleration, while its BSA-induced stimulation is probably caused by optimization of the enzyme structure. Molecular mechanisms of the inhibitory effect of viscosity are discussed. Taking into account high protein concentrations in the chloroplast stroma, it was suggested that kinetic parameters of ATP hydrolysis, and probably those of ATP synthesis in vivo as well, must be quite different from measurements taken at a viscosity level close to that of water.
Collapse
Affiliation(s)
- Alexander N Malyan
- Institute of Basic Biological Problems Russian Academy of Sciences, Pushchino, Russia.
| |
Collapse
|