1
|
Nie Y, Lin L, Yang Q, Hu J, Sun M, Xiang F, Cao X, Yu J, Wang Y, Teng J, Ding X, Shen B, Zhang Z. Mitochondrial Dysfunction and Ion Imbalance in a Rat Model of Hemodialysis-Induced Myocardial Stunning. Biomedicines 2024; 12:2402. [PMID: 39457714 PMCID: PMC11504215 DOI: 10.3390/biomedicines12102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Hemodialysis-induced myocardial stunning (HIMS) is a frequent complication in patients undergoing maintenance hemodialysis, characterized by transient left ventricular dysfunction due to ischemic episodes. Mitochondrial dysfunction and fluctuations in key ions such as potassium (K+) and calcium (Ca2+) are implicated in the pathogenesis of HIMS. This study aims to investigate the role of mitochondrial dysfunction and the protective potential of mitochondrial ATP-sensitive potassium channels (mitoKATP) in mitigating HIMS. Methods: A 5/6 nephrectomy rat model was established to mimic chronic kidney disease and the subsequent HIMS. The effects of mitoKATP channel modulators were evaluated by administering diazoxide (DZX), a mitoKATP opener, and 5-hydroxydecanoate (5-HD), a mitoKATP blocker, before hemodialysis. Mitochondrial function was assessed by measuring membrane potential, ATP synthase activity, and intramitochondrial Ca2+ levels. Myocardial function was evaluated using speckle tracking echocardiography. Results: Rats undergoing hemodialysis exhibited significant reductions in left ventricular strain and synchrony. DZX administration significantly improved mitochondrial function and reduced myocardial strain compared to controls. Conversely, 5-HD worsened mitochondrial swelling and disrupted myocardial function. Higher K+ and Ca2+ concentrations in the dialysate were associated with improved mitochondrial energy metabolism and myocardial strain. Conclusions: Mitochondrial dysfunction and ion imbalances during hemodialysis are key contributors to HIMS. The activation of mitoKATP channels provides mitochondrial protection and may serve as a potential therapeutic strategy to mitigate HIMS.
Collapse
Affiliation(s)
- Yuxin Nie
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Liyu Lin
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
- Department of Nephrology, Zhongshan Hospital (Xiamen), Fudan University, No. 668 Jinhu Road, Xiamen 361015, China
- Nephrology Clinical Quality Control Center of Xiamen, No. 668 Jinhu Road, Xiamen 361015, China
| | - Qiang Yang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Jiachang Hu
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Minmin Sun
- Department of Echocardiography, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China;
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Fangfang Xiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Xuesen Cao
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Jinbo Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Yaqiong Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
- Department of Nephrology, Zhongshan Hospital (Xiamen), Fudan University, No. 668 Jinhu Road, Xiamen 361015, China
- Nephrology Clinical Quality Control Center of Xiamen, No. 668 Jinhu Road, Xiamen 361015, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
- Department of Nephrology, Zhongshan Hospital (Xiamen), Fudan University, No. 668 Jinhu Road, Xiamen 361015, China
- Nephrology Clinical Quality Control Center of Xiamen, No. 668 Jinhu Road, Xiamen 361015, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| | - Zhen Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; (Y.N.); (L.L.); (Q.Y.); (J.H.); (F.X.); (X.C.); (J.Y.); (Y.W.); (J.T.); (X.D.)
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
2
|
Hattori Y, Hattori K, Ishii K, Kobayashi M. Challenging and target-based shifting strategies for heart failure treatment: An update from the last decades. Biochem Pharmacol 2024; 224:116232. [PMID: 38648905 DOI: 10.1016/j.bcp.2024.116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Heart failure (HF) is a major global health problem afflicting millions worldwide. Despite the significant advances in therapies and prevention, HF still carries very high morbidity and mortality, requiring enormous healthcare-related expenditure, and the search for new weapons goes on. Following initial treatment strategies targeting inotropism and congestion, attention has focused on offsetting the neurohormonal overactivation and three main therapies, including angiotensin-converting enzyme inhibitors or angiotensin II type 1 receptor antagonists, β-adrenoceptor antagonists, and mineralocorticoid receptor antagonists, have been the foundation of standard treatment for patients with HF. Recently, a paradigm shift, including angiotensin receptor-neprilysin inhibitor, sodium glucose co-transporter 2 inhibitor, and ivabradine, has been added. Moreover, soluble guanylate cyclase stimulator, elamipretide, and omecamtiv mecarbil have come out as a next-generation therapeutic agent for patients with HF. Although these pharmacologic therapies have been significantly successful in relieving symptoms, there is still no complete cure for HF. We may be currently entering a new era of treatment for HF with animal experiments and human clinical trials assessing the value of antibody-based immunotherapy and gene therapy as a novel therapeutic strategy. Such tempting therapies still have some challenges to be addressed but may become a weighty option for treatment of HF. This review article will compile the paradigm shifts in HF treatment over the past dozen years or so and illustrate current landscape of antibody-based immunotherapy and gene therapy as a new therapeutic algorithm for patients with HF.
Collapse
Affiliation(s)
- Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan; Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Kuniaki Ishii
- Department of Pharmacology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masanobu Kobayashi
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan
| |
Collapse
|
3
|
Nishikawa T, Miyahara E, Yamazaki I, Ikawa K, Nakagawa S, Kodama Y, Kawano Y, Okamoto Y. Effects of High-Dose Cyclophosphamide on Ultrastructural Changes and Gene Expression Profiles in the Cardiomyocytes of C57BL/6J Mice. Diseases 2024; 12:85. [PMID: 38785740 PMCID: PMC11120609 DOI: 10.3390/diseases12050085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The pathogenesis of cyclophosphamide (CY)-induced cardiotoxicity remains unknown, and methods for its prevention have not been established. To elucidate the acute structural changes that take place in myocardial cells and the pathways leading to myocardial damage under high-dose CY treatments, we performed detailed pathological analyses of myocardial tissue obtained from C57BL/6J mice subjected to a high-dose CY treatment. Additionally, we analysed the genome-wide cardiomyocyte expression profiles of mice subjected to the high-dose CY treatment. Treatment with CY (400 mg/kg/day intraperitoneally for two days) caused marked ultrastructural aberrations, as observed using electron microscopy, although these aberrations could not be observed using optical microscopy. The expansion of the transverse tubule and sarcoplasmic reticulum, turbulence in myocardial fibre travel, and a low contractile protein density were observed in cardiomyocytes. The high-dose CY treatment altered the cardiomyocyte expression of 1210 genes (with 675 genes upregulated and 535 genes downregulated) associated with cell-cell junctions, inflammatory responses, cardiomyopathy, and cardiac muscle function, as determined using microarray analysis (|Z-score| > 2.0). The expression of functionally important genes related to myocardial contraction and the regulation of calcium ion levels was validated using real-time polymerase chain reaction analysis. The results of the gene expression profiling, functional annotation clustering, and Kyoto Encyclopedia of Genes and Genomes pathway functional-classification analysis suggest that CY-induced cardiotoxicity is associated with the disruption of the Ca2+ signalling pathway.
Collapse
Affiliation(s)
- Takuro Nishikawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| | - Emiko Miyahara
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| | | | - Kazuro Ikawa
- Department of Clinical Pharmacotherapy, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Shunsuke Nakagawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| | - Yuichi Kodama
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| | - Yoshifumi Kawano
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| | - Yasuhiro Okamoto
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| |
Collapse
|
4
|
Kashimura T, Ishizuka M, Tanaka K, Inomata T. Successful β-blocker introduction under intra-aortic balloon pumping and ivabradine in a patient with new-onset dilated cardiomyopathy and pulsus alternans: a case report. Eur Heart J Case Rep 2024; 8:ytad620. [PMID: 38152114 PMCID: PMC10751564 DOI: 10.1093/ehjcr/ytad620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/26/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
Background Pulsus alternans has been considered a sign of poor prognosis in patients undergoing treatments for heart failure. However, it may be overlooked in patients with intra-aortic balloon pumps (IABPs). The use of IABP and ivabradine for a β-blocker introduction in a patient with dilated cardiomyopathy (DCM) and pulsus alternans and its consequence have never been reported. Case summary In a 16-year-old high school boy with idiopathic DCM [left ventricular end-diastolic diameter (LVDd), 72 mm; left ventricular ejection fraction (LVEF), 18%], the introduction of carvedilol therapy failed, causing cardiogenic shock under inotropes. Therefore, an IABP support was provided, and he was transferred to our hospital. The arterial pressure waveform under IABP demonstrated pulsus alternans with sinus tachycardia at 135/min. Ivabradine reduced the heart rate to ∼100/min and eliminated the pulsus alternans neither decreasing the cardiac index nor increasing the pulmonary artery wedge pressure. Subsequently, carvedilol was reintroduced, and IABP and inotropes were discontinued. Then, 112 days after his transfer to our hospital, left ventricular reverse remodelling was confirmed (LVDd, 54 mm; LVEF, 44%), and he returned to school. The carvedilol dose reached 20 mg/day in 4 months after discharge, and further improvement was observed a year after discharge (LVDd, 54 mm; LVEF, 52%). Discussion Pulsus alternans is considered a predictor of poor prognosis. However, IABP and ivabradine may stabilize the haemodynamics in pulsus alternans, leading to a successful β-blocker introduction.
Collapse
Affiliation(s)
- Takeshi Kashimura
- Department of Cardiovascular Medicine, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata-city 951-8520, Japan
- Department of Advanced Cardiopulmonary Vascular Therapeutics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-city 951-8510, Japan
| | - Mitsuo Ishizuka
- Department of Cardiovascular Medicine, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata-city 951-8520, Japan
| | - Komei Tanaka
- Department of Cardiology, Niigata City General Hospital, Niigata-city, Japan
| | - Takayuki Inomata
- Department of Cardiovascular Medicine, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata-city 951-8520, Japan
| |
Collapse
|
5
|
Yoshimura A, Ohmori T, Hirao D, Kishimoto M, Iwanaga T, Miura N, Suzuki K, Fukushima R. Protective Effect on Pancreatic Acinar Cell by Maintaining Cardiac Output in Canine Heart Failure Model With Decreased Pancreatic Blood Flow. Front Vet Sci 2022; 9:925847. [PMID: 35909700 PMCID: PMC9337850 DOI: 10.3389/fvets.2022.925847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure cause hypoperfusion-induced damage to abdominal organs due to decreased cardiac output (CO). Using a model dog with heart failure caused by rapid ventricular pacing (RVP), we have previously demonstrated that a decrease in CO reduces pancreatic blood flow (PBF). Furthermore, we have revealed that pancreatic acinar cell atrophy, which is a change in the pre-stage of pancreatitis was caused. However, the mechanism by which pancreatic acinar cell atrophy was caused in RVP dogs remains unknown. This study aimed to clarify the association between cardiac function, PBF, and histopathological changes in pancreatic acinar cells by administrating pimobendan, which increase CO, to RVP dogs. RVP dogs were divided into the control group (no medication, n = 5) and the pimobendan group (pimobendan at 0.25 mg/kg BID, n = 5). Non-invasive blood pressure measurement, echocardiography, and contrast-enhanced ultrasonography for PBF measurement were performed before initiating RVP and at 4 weeks after initiating RVP (4 weeks). At 4 weeks, the decreases in CO, mean blood pressure and PBF due to RVP were suppressed in pimobendan group. Furthermore, histopathological examination showed no changes in pancreatic acinar cells in the pimobendan group. Overall, it was clarified that the decrease in PBF due to cardiac dysfunction was a direct cause of pancreatic acinar cell atrophy. This suggests that maintaining PBF is clinically important for treating dogs with heart failure. In addition, these findings offer a reliable basis for developing new therapeutic strategies for heart failure in dogs, that is, pancreatic protection.
Collapse
Affiliation(s)
- Aritada Yoshimura
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Takahiro Ohmori
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Daiki Hirao
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Miori Kishimoto
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tomoko Iwanaga
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Naoki Miura
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kazuhiko Suzuki
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryuji Fukushima
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- *Correspondence: Ryuji Fukushima
| |
Collapse
|
6
|
Ozawa SM, Guzman DSM, Hawkins MG, Diao SM, Masri AE, Gunther-Harrington CT, Knych HK. Pharmacokinetics of pimobendan following oral administration to New Zealand White rabbits (Oryctolagus cuniculus). Am J Vet Res 2022; 83:356-363. [PMID: 35038306 DOI: 10.2460/ajvr.21.03.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the pharmacokinetics and potential adverse effects of pimobendan after oral administration in New Zealand White rabbits (Ocytolagus cuniculi). ANIMALS 10 adult sexually intact (5 males and 5 females) rabbits. PROCEDURES 2 pilot studies were performed with a pimobendan suspension or oral tablets. Eight rabbits received 7.5 mg of pimobendan (mean 2.08 mg/kg) suspended in a critical care feeding formula. Plasma concentrations of pimobendan and O-demethylpimobendan (ODMP) were measured, and pharmacokinetic parameters were calculated for pimobendan by noncompartmental analysis. Body weight, food and water consumption, mentation, urine, and fecal output were monitored. RESULTS Mean ± SD maximum concentration following pimobendan administration was 15.7 ± 7.54 ng/mL and was detected at 2.79 ± 1.25 hours. The half-life was 3.54 ± 1.32 hours. Plasma concentrations of pimobendan were detectable for up to 24 hours. The active metabolite, ODMP, was detected in rabbits for 24 to 36 hours. An adverse event occurred following administration of pimobendan in tablet form in 1 pilot study, resulting in death secondary to aspiration. No other adverse events occurred. CLINICAL RELEVANCE Plasma concentrations of pimobendan were lower than previously reported for dogs and cats, despite administration of higher doses, and had longer time to maximum concentration and half-life. Based on this study, 2 mg/kg of pimobendan in a critical care feeding formulation should maintain above a target plasma concentration for 12 to 24 hours. However, further studies evaluating multiple-dose administration as well as pharmacodynamic studies and clinical trials in rabbits with congestive heart failure are needed to determine accurate dose and frequency recommendations.
Collapse
Affiliation(s)
- Sarah M Ozawa
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raliegh, NC
| | | | - Michelle G Hawkins
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Stephanie M Diao
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raliegh, NC
| | - Acacia E Masri
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raliegh, NC
| | | | - Heather K Knych
- K. L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA
| |
Collapse
|
7
|
Cai F, Kampourakis T, Klein BA, Sykes BD. A Potent Fluorescent Reversible-Covalent Inhibitor of Cardiac Muscle Contraction. ACS Med Chem Lett 2021; 12:1503-1507. [PMID: 34531960 DOI: 10.1021/acsmedchemlett.1c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022] Open
Abstract
Compounds that directly modulate the response of the cardiac sarcomere have potential in the treatment of cardiac disease. While a number of sarcomere activators have been discovered and extensively studied, very few inhibitors have been identified. We report a potent cardiac sarcomere inhibitor, DN-F01, targeting the cardiac muscle thin filament protein troponin complex. Functional studies show that DN-F01 has a strong inhibitory calcium-dependent effect on cardiac myofibrillar ATPase activity with an IC50 value of 11 ± 4 nmol/L. DN-F01 is shown to bind to a cardiac troponin C-troponin I chimera (cChimera) with a K D of ∼50 nM using fluorescence spectroscopy, indicating that troponin is the likely target for DN-F01. NMR titrations of DN-F01 to C35S and A-Cys cChimera show covalent and noncovalent binding of DN-F01 bound to the calcium-saturated cChimera.
Collapse
Affiliation(s)
- Fangze Cai
- Department of Biochemistry, University of Alberta, Edmonton AB T6G 2R3, Canada
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Brittney A. Klein
- Department of Biochemistry, University of Alberta, Edmonton AB T6G 2R3, Canada
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton AB T6G 2R3, Canada
| |
Collapse
|
8
|
Magrone T, Jirillo E. Sepsis: From Historical Aspects to Novel Vistas. Pathogenic and Therapeutic Considerations. Endocr Metab Immune Disord Drug Targets 2020; 19:490-502. [PMID: 30857516 DOI: 10.2174/1871530319666181129112708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Sepsis is a clinical condition due to an infectious event which leads to an early hyper-inflammatory phase followed by a status of tolerance or immune paralysis. Hyper-inflammation derives from a massive activation of immune (neutrophils, monocytes/macrophages, dendritic cells and lymphocytes) and non-immune cells (platelets and endothelial cells) in response to Gram-negative and Gram-positive bacteria and fungi. DISCUSSION A storm of pro-inflammatory cytokines and reactive oxygen species accounts for the systemic inflammatory response syndrome. In this phase, bacterial clearance may be associated with a severe organ failure development. Tolerance or compensatory anti-inflammatory response syndrome (CARS) depends on the production of anti-inflammatory mediators, such as interleukin-10, secreted by T regulatory cells. However, once triggered, CARS, if prolonged, may also be detrimental to the host, thus reducing bacterial clearance. CONCLUSION In this review, the description of pathogenic mechanisms of sepsis is propaedeutic to the illustration of novel therapeutic attempts for the prevention or attenuation of experimental sepsis as well as of clinical trials. In this direction, inhibitors of NF-κB pathway, cell therapy and use of dietary products in sepsis will be described in detail.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
9
|
Tikunova SB, Cuesta A, Price M, Li MX, Belevych N, Biesiadecki BJ, Reiser PJ, Hwang PM, Davis JP. 3-Chlorodiphenylamine activates cardiac troponin by a mechanism distinct from bepridil or TFP. J Gen Physiol 2018; 151:9-17. [PMID: 30442775 PMCID: PMC6314390 DOI: 10.1085/jgp.201812131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/02/2018] [Indexed: 01/14/2023] Open
Abstract
Cardiac troponin activators could be beneficial in systolic heart failure. Tikunova et al. demonstrate that, unlike previously known calcium sensitizers, the small molecule 3-chlorodiphenylamine does not activate isolated cardiac troponin C but instead activates the intact troponin complex. Despite extensive efforts spanning multiple decades, the development of highly effective Ca2+ sensitizers for the heart remains an elusive goal. Existing Ca2+ sensitizers have other targets in addition to cardiac troponin (cTn), which can lead to adverse side effects, such as hypotension or arrhythmias. Thus, there is a need to design Ca2+-sensitizing drugs with higher affinity and selectivity for cTn. Previously, we determined that many compounds based on diphenylamine (DPA) were able to bind to a cTnC–cTnI chimera with moderate affinity (Kd ∼10–120 µM). Of these compounds, 3-chlorodiphenylamine (3-Cl-DPA) bound most tightly (Kd of 10 µM). Here, we investigate 3-Cl-DPA further and find that it increases the Ca2+ sensitivity of force development in skinned cardiac muscle. Using NMR, we show that, like the known Ca2+ sensitizers, trifluoperazine (TFP) and bepridil, 3-Cl-DPA is able to bind to the isolated N-terminal domain (N-domain) of cTnC (Kd of 6 µM). However, while the bulky molecules of TFP and bepridil stabilize the open state of the N-domain of cTnC, the small and flexible 3-Cl-DPA molecule is able to bind without stabilizing this open state. Thus, unlike TFP, which drastically slows the rate of Ca2+ dissociation from the N-domain of isolated cTnC in a dose-dependent manner, 3-Cl-DPA has no effect on the rate of Ca2+ dissociation. On the other hand, the affinity of 3-Cl-DPA for a cTnC–TnI chimera is at least an order of magnitude higher than that of TFP or bepridil, likely because 3-Cl-DPA is less disruptive of cTnI binding to cTnC. Therefore, 3-Cl-DPA has a bigger effect on the rate of Ca2+ dissociation from the entire cTn complex than TFP and bepridil. Our data suggest that 3-Cl-DPA activates the cTn complex via a unique mechanism and could be a suitable scaffold for the development of novel treatments for systolic heart failure.
Collapse
Affiliation(s)
- Svetlana B Tikunova
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| | - Andres Cuesta
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| | - Morgan Price
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| | - Monica X Li
- Departments of Medicine and Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | | | - Peter J Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH
| | - Peter M Hwang
- Departments of Medicine and Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH
| |
Collapse
|
10
|
Yamashita S, Suzuki T, Iguchi K, Sakamoto T, Tomita K, Yokoo H, Sakai M, Misawa H, Hattori K, Nagata T, Watanabe Y, Matsuda N, Yoshimura N, Hattori Y. Cardioprotective and functional effects of levosimendan and milrinone in mice with cecal ligation and puncture-induced sepsis. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1021-1032. [PMID: 29922941 DOI: 10.1007/s00210-018-1527-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022]
Abstract
Levosimendan and milrinone may be used in place of dobutamine to increase cardiac output in septic patients with a low cardiac output due to impaired cardiac function. The effects of the two inotropic agents on cardiac inflammation and left ventricular (LV) performance were examined in mice with cecal ligation and puncture (CLP)-induced sepsis. CLP mice displayed significant cardiac inflammation, as indicated by highly increased pro-inflammatory cytokines and neutrophil infiltration in myocardial tissues. When continuously given, levosimendan prevented but milrinone exaggerated cardiac inflammation, but they significantly reduced the elevations in plasma cardiac troponin-I and heart-type fatty acid-binding protein, clinical markers of cardiac injury. Echocardiographic assessment of cardiac function showed that the effect of levosimendan, given by an intravenous bolus injection, on LV performance was impaired in CLP mice, whereas milrinone produced inotropic responses equally in sham-operated and CLP mice. A lesser effect of levosimendan on LV performance after CLP was also found in spontaneously beating Langendorff-perfused hearts. In ventricular myocytes isolated from control and CLP mice, levosimendan, but not milrinone, caused a large increase in the L-type calcium current. This study represents that levosimendan and milrinone have cardioprotective properties but provide different advantages and drawbacks to cardiac inflammation/dysfunction in sepsis.
Collapse
Affiliation(s)
- Shigeyuki Yamashita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.,Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Tokiko Suzuki
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Keisuke Iguchi
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan.,Department of Internal Medicine III (Cardiology), Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Takuya Sakamoto
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kengo Tomita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hiroki Yokoo
- Department of Health and Nutritional Sciences, Faculty of Health Promotional Sciences, Tokoha University, Hamamatsu, 431-2102, Japan
| | - Mari Sakai
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Hiroki Misawa
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Toshi Nagata
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Yasuhide Watanabe
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Naoki Yoshimura
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
11
|
Modification of levosimendan-induced suppression of atrial natriuretic peptide secretion in hypertrophied rat atria. Eur J Pharmacol 2018; 829:54-62. [PMID: 29653089 DOI: 10.1016/j.ejphar.2018.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
This study aimed to determine the effects of levosimendan, a calcium sensitizer, on atrial contractility and atrial natriuretic peptide (ANP) secretion and its modification in hypertrophied atria. Isolated perfused beating rat atria were used from control and isoproterenol-treated rats. Levosimendan and its metabolite OR-1896 caused a positive inotropic effect and suppressed ANP secretion in rat atria. Similar to levosimendan, the selective phosphodiesterase 3 (PDE3) or PDE4 inhibitor also suppressed ANP secretion. Suppression of ANP secretion by 1 µM levosimendan was abolished by PDE3 inhibitor, but reversed by PDE4 inhibitor. Levosimendan-induced suppression of ANP secretion was potentiated by KATP channel blocker, but blocked by KATP channel opener. Levosimendan alone did not significantly change cyclic adenosine monophosphate (cAMP) efflux in the perfusate; however, levosimendan combined with PDE4 inhibitor markedly increased this efflux. The stimulation of ANP secretion induced by levosimendan combined with PDE4 inhibitor was blocked by the protein kinase A (PKA) inhibitor. In isoproterenol-treated atria, levosimendan augmented the positive inotropic effect and ANP secretion in response to an increased extracellular calcium concentration ([Ca+]o). These results suggests that levosimendan suppresses ANP secretion by both inhibiting PDE3 and opening KATP channels and that levosimendan combined with PDE4 inhibitor stimulates ANP secretion by activating the cAMP-PKA pathway. Modification of the effects of levosimendan on [Ca+]o-induced positive inotropic effects and ANP secretion in isoproterenol-treated rat atria might be related to a disturbance in calcium metabolism.
Collapse
|
12
|
Nánási P, Komáromi I, Almássy J. Perspectives of a myosin motor activator agent with increased selectivity. Can J Physiol Pharmacol 2018; 96:676-680. [PMID: 29792814 DOI: 10.1139/cjpp-2017-0741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Clinical treatment of heart failure is still not fully solved. A novel class of agents, the myosin motor activators, acts directly on cardiac myosin resulting in an increased force generation and prolongation of contraction. Omecamtiv mecarbil, the lead molecule of this group, is now in human phase 3 displaying promising clinical performance. However, omecamtiv mecarbil is not selective to myosin, because it readily binds to and activates cardiac ryanodine receptors (RyR-2), an effect that may cause complications in case of overdose. In this study, in silico analysis was performed to investigate the docking of omecamtiv mecarbil and other structural analogues to cardiac myosin heavy chain and RyR-2 to select the structure that has a higher selectivity to myosin over RyR-2. In silico docking studies revealed that omecamtiv mecarbil has comparable affinity to myosin and RyR-2: the respective Kd values are 0.60 and 0.87 μmol/L. Another compound, CK-1032100, has much lower affinity to RyR-2 than omecamtiv mecarbil, while it still has a moderate affinity to myosin. It was concluded that further research starting from the chemical structure of CK-1032100 may result a better myosin activator burdened probably less by the RyR-2 binding side effect. It also is possible, however, that the selectivity of omecamtiv mecarbil to myosin over RyR-2 cannot be substantially improved, because similar moieties seem to be responsible for the high affinity to both myosin and RyR-2.
Collapse
Affiliation(s)
- Péter Nánási
- a Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Komáromi
- b Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Almássy
- c Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Robbins N, Gilbert M, Kumar M, McNamara JW, Daly P, Koch SE, Conway G, Effat M, Woo JG, Sadayappan S, Rubinstein J. Probenecid Improves Cardiac Function in Patients With Heart Failure With Reduced Ejection Fraction In Vivo and Cardiomyocyte Calcium Sensitivity In Vitro. J Am Heart Assoc 2018; 7:JAHA.117.007148. [PMID: 29331959 PMCID: PMC5850150 DOI: 10.1161/jaha.117.007148] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Transient receptor potential vanilloid 2 is a calcium channel activated by probenecid. Probenecid is a Food and Drug Administration-approved uricosuric drug that has recently been shown to induce positive lusitropic and inotropic effects in animal models through cardiomyocyte transient receptor potential vanilloid 2 activation. The aim of this study was to test the hypothesis that oral probenecid can improve cardiac function and symptomatology in patients with heart failure with reduced ejection fraction and to further elucidate its calcium-dependent effects on myocyte contractility. METHODS AND RESULTS The clinical trial recruited stable outpatients with heart failure with reduced ejection fraction randomized in a single-center, double-blind, crossover design. Clinical data were collected including a dyspnea assessment, physical examination, ECG, echocardiogram to assess systolic and diastolic function, a 6-minute walk test, and laboratory studies. In vitro force generation studies were performed on cardiomyocytes isolated from murine tissue exposed to probenecid or control treatments. The clinical trial recruited 20 subjects (mean age 57 years, mean baseline fractional shortening of 13.6±1.0%). Probenecid therapy increased fractional shortening by 2.1±1.0% compared with placebo -1.7±1.0% (P=0.007). Additionally, probenecid improved diastolic function compared with placebo by decreasing the E/E' by -2.95±1.21 versus 1.32±1.21 in comparison to placebo (P=0.03). In vitro probenecid increased myofilament force generation (92.36 versus 80.82 mN/mm2, P<0.05) and calcium sensitivity (pCa 5.67 versus 5.60, P<0.01) compared with control. CONCLUSIONS Probenecid improves cardiac function with minimal effects on symptomatology and no significant adverse effects after 1 week in patients with heart failure with reduced ejection fraction and increases force development and calcium sensitivity at the cardiomyocyte level. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT01814319.
Collapse
Affiliation(s)
- Nathan Robbins
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Mark Gilbert
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Mohit Kumar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - James W McNamara
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Patrick Daly
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Sheryl E Koch
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Ginger Conway
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Mohamed Effat
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Jessica G Woo
- Division of Biostatistics and Epidemiology, The Heart Institute Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Jack Rubinstein
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
14
|
Schlecht W, Dong WJ. Dynamic Equilibrium of Cardiac Troponin C's Hydrophobic Cleft and Its Modulation by Ca 2+ Sensitizers and a Ca 2+ Sensitivity Blunting Phosphomimic, cTnT(T204E). Bioconjug Chem 2017; 28:2581-2590. [PMID: 28876897 DOI: 10.1021/acs.bioconjchem.7b00418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several studies have suggested that conformational dynamics are important in the regulation of thin filament activation in cardiac troponin C (cTnC); however, little direct evidence has been offered to support these claims. In this study, a dye homodimerization approach is developed and implemented that allows the determination of the dynamic equilibrium between open and closed conformations in cTnC's hydrophobic cleft. Modulation of this equilibrium by Ca2+, cardiac troponin I (cTnI), cardiac troponin T (cTnT), Ca2+-sensitizers, and a Ca2+-desensitizing phosphomimic of cTnT (cTnT(T204E) is characterized. Isolated cTnC contained a small open conformation population in the absence of Ca2+ that increased significantly upon the addition of saturating levels of Ca2+. This suggests that the Ca2+-induced activation of thin filament arises from an increase in the probability of hydrophobic cleft opening. The inclusion of cTnI increased the population of open cTnC, and the inclusion of cTnT had the opposite effect. Samples containing Ca2+-desensitizing cTnT(T204E) showed a slight but insignificant decrease in open conformation probability compared to samples with cardiac troponin T, wild type [cTnT(wt)], while Ca2+ sensitizer treated samples generally increased open conformation probability. These findings show that an equilibrium between the open and closed conformations of cTnC's hydrophobic cleft play a significant role in tuning the Ca2+ sensitivity of the heart.
Collapse
Affiliation(s)
- William Schlecht
- The Voiland School of Chemical Engineering and Bioengineering and ‡The Department of Integrated Neuroscience and Physiology, Washington State University , Pullman, Washington 99164, United States
| | - Wen-Ji Dong
- The Voiland School of Chemical Engineering and Bioengineering and ‡The Department of Integrated Neuroscience and Physiology, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
15
|
Hattori Y, Hattori K, Suzuki T, Matsuda N. Recent advances in the pathophysiology and molecular basis of sepsis-associated organ dysfunction: Novel therapeutic implications and challenges. Pharmacol Ther 2017; 177:56-66. [DOI: 10.1016/j.pharmthera.2017.02.040] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Bubulis A, Garalienė V, Jurėnas V, Navickas J, Giedraitis S. Effect of Low-Intensity Cavitation on the Isolated Human Thoracic Artery In Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1040-1047. [PMID: 28196770 DOI: 10.1016/j.ultrasmedbio.2016.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 12/03/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
Reported here are the results of an experimental study on the response to low-intensity cavitation induced by low-frequency (4-6 W/cm2, 20 kHz and 32.6 kHz) ultrasound of isolated human arterial samples taken during conventional myocardial revascularization operations. Studies have found that low-frequency ultrasound results in a significant (48%-54%) increase in isometric contraction force and does not depend on the number of exposures (10 or 20) or the time passed since the start of ultrasound (0, 10 and 20 min), but does depend on the frequency and location (internal or external) of the blood vessels for the application of ultrasound. Diltiazem (an inhibitor of slow calcium channels) and carbachol (an agonist of muscarinic receptors) used in a concentration-dependent manner did not modify the relaxation dynamics of smooth muscle affected by ultrasound. Thus, ultrasound conditioned to the augmentation of the isometric contraction force the smooth muscle of blood vessels and did not improve endothelial- and calcium channel blocker-dependent relaxation.
Collapse
|
17
|
Guerrero-Beltrán CE, Bernal-Ramírez J, Lozano O, Oropeza-Almazán Y, Castillo EC, Garza JR, García N, Vela J, García-García A, Ortega E, Torre-Amione G, Ornelas-Soto N, García-Rivas G. Silica nanoparticles induce cardiotoxicity interfering with energetic status and Ca 2+ handling in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2017; 312:H645-H661. [PMID: 28130337 DOI: 10.1152/ajpheart.00564.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/12/2016] [Accepted: 01/02/2017] [Indexed: 12/20/2022]
Abstract
Recent evidence has shown that nanoparticles that have been used to improve or create new functional properties for common products may pose potential risks to human health. Silicon dioxide (SiO2) has emerged as a promising therapy vector for the heart. However, its potential toxicity and mechanisms of damage remain poorly understood. This study provides the first exploration of SiO2-induced toxicity in cultured cardiomyocytes exposed to 7- or 670-nm SiO2 particles. We evaluated the mechanism of cell death in isolated adult cardiomyocytes exposed to 24-h incubation. The SiO2 cell membrane association and internalization were analyzed. SiO2 showed a dose-dependent cytotoxic effect with a half-maximal inhibitory concentration for the 7 nm (99.5 ± 12.4 µg/ml) and 670 nm (>1,500 µg/ml) particles, which indicates size-dependent toxicity. We evaluated cardiomyocyte shortening and intracellular Ca2+ handling, which showed impaired contractility and intracellular Ca2+ transient amplitude during β-adrenergic stimulation in SiO2 treatment. The time to 50% Ca2+ decay increased 39%, and the Ca2+ spark frequency and amplitude decreased by 35 and 21%, respectively, which suggest a reduction in sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity. Moreover, SiO2 treatment depolarized the mitochondrial membrane potential and decreased ATP production by 55%. Notable glutathione depletion and H2O2 generation were also observed. These data indicate that SiO2 increases oxidative stress, which leads to mitochondrial dysfunction and low energy status; these underlie reduced SERCA activity, shortened Ca2+ release, and reduced cell shortening. This mechanism of SiO2 cardiotoxicity potentially plays an important role in the pathophysiology mechanism of heart failure, arrhythmias, and sudden death.NEW & NOTEWORTHY Silica particles are used as novel nanotechnology-based vehicles for diagnostics and therapeutics for the heart. However, their potential hazardous effects remain unknown. Here, the cardiotoxicity of silica nanoparticles in rat myocytes has been described for the first time, showing an impairment of mitochondrial function that interfered directly with Ca2+ handling.
Collapse
Affiliation(s)
- Carlos Enrique Guerrero-Beltrán
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México.,Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnológico de Monterrey, San Pedro Garza-García, México
| | - Judith Bernal-Ramírez
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México
| | - Omar Lozano
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México.,Namur Nanosafety Centre, Namur Research Institute for Life Sciences, Research Centre for the Physics of Matter and Radiation, University of Namur, Namur, Belgium
| | - Yuriana Oropeza-Almazán
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México
| | - Elena Cristina Castillo
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México
| | - Jesús Roberto Garza
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México
| | - Noemí García
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México.,Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnológico de Monterrey, San Pedro Garza-García, México
| | - Jorge Vela
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México
| | - Alejandra García-García
- Centro de Investigación en Materiales Avanzados S.C. Unidad Monterrey, Apodaca Nuevo León, México
| | - Eduardo Ortega
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas
| | - Guillermo Torre-Amione
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México.,Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnológico de Monterrey, San Pedro Garza-García, México.,Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, Texas; and
| | - Nancy Ornelas-Soto
- Laboratorio de Nanotecnología Ambiental, Centro del Agua, Tecnológico de Monterrey, Monterrey, México
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, Escuela Nacional de Medicina, Tecnológico de Monterrey, Monterrey, México; .,Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnológico de Monterrey, San Pedro Garza-García, México
| |
Collapse
|
18
|
Toyota N, Fujitsuka C, Ishibashi G, S Yoshida L, Takano-Ohmuro H. Morphological Modifications in Myofibrils by Suppressing Tropomyosin 4α in Chicken Cardiac Myocytes. Cell Struct Funct 2016; 41:45-54. [PMID: 27118431 DOI: 10.1247/csf.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tropomyosin (TPM) localizes along F-actin and, together with troponin T (TnT) and other components, controls calcium-sensitive muscle contraction. The role of the TPM isoform (TPM4α) that is expressed in embryonic and adult cardiac muscle cells in chicken is poorly understood. To analyze the function of TPM4α in myofibrils, the effects of TPM4α-suppression were examined in embryonic cardiomyocytes by small interference RNA transfection. Localization of myofibril proteins such as TPM, actin, TnT, α-actinin, myosin and connectin was examined by immunofluorescence microscopy on day 5 when almost complete TPM4α-suppression occurred in culture. A unique large structure was detected, consisting of an actin aggregate bulging from the actin bundle, and many curved filaments projecting from the aggregate. TPM, TnT and actin were detected on the large structure, but myosin, connectin, α-actinin and obvious myofibril striations were undetectable. It is possible that TPM4α-suppressed actin filaments are sorted and excluded at the place of the large structure. This suggests that TPM4α-suppression significantly affects actin filament, and that TPM4α plays an important role in constructing and maintaining sarcomeres and myofibrils in cardiac muscle.
Collapse
Affiliation(s)
- Naoji Toyota
- Department of Environmental Biology, Kumamoto Gakuen University
| | | | | | | | | |
Collapse
|
19
|
Nánási P, Váczi K, Papp Z. The myosin activator omecamtiv mecarbil: a promising new inotropic agent. Can J Physiol Pharmacol 2016; 94:1033-1039. [PMID: 27322915 DOI: 10.1139/cjpp-2015-0573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heart failure became a leading cause of mortality in the past few decades with a progressively increasing prevalence. Its current therapy is restricted largely to the suppression of the sympathetic activity and the renin-angiotensin system in combination with diuretics. This restrictive strategy is due to the potential long-term adverse effects of inotropic agents despite their effective influence on cardiac function when employed for short durations. Positive inotropes include inhibitors of the Na+/K+ pump, β-receptor agonists, and phosphodiesterase inhibitors. Theoretically, Ca2+ sensitizers may also increase cardiac contractility without resulting in Ca2+ overload; nevertheless, their mechanism of action is frequently complicated by other pleiotropic effects. Recently, a new positive inotropic agent, the myosin activator omecamtiv mecarbil, has been developed. Omecamtiv mecarbil binds directly to β-myosin heavy chain and enhances cardiac contractility by increasing the number of the active force-generating cross-bridges, presumably without major off-target effects. This review focuses on recent in vivo and in vitro results obtained with omecamtiv mecarbil, and discusses its mechanism of action at a molecular level. Based on clinical data, omecamtiv mecarbil is a promising new tool in the treatment of systolic heart failure.
Collapse
Affiliation(s)
- Péter Nánási
- a Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Váczi
- b Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- c Division of Clinical Physiology, Department of Cardiology, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
20
|
Pineda-Sanabria SE, Robertson IM, Sun YB, Irving M, Sykes BD. Probing the mechanism of cardiovascular drugs using a covalent levosimendan analog. J Mol Cell Cardiol 2016; 92:174-84. [PMID: 26853943 PMCID: PMC4831045 DOI: 10.1016/j.yjmcc.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/24/2016] [Accepted: 02/02/2016] [Indexed: 01/16/2023]
Abstract
One approach to improve contraction in the failing heart is the administration of calcium (Ca2 +) sensitizers. Although it is known that levosimendan and other sensitizers bind to troponin C (cTnC), their in vivo mechanism is not fully understood. Based on levosimendan, we designed a covalent Ca2 + sensitizer (i9) that targets C84 of cTnC and exchanged this complex into cardiac muscle. The NMR structure of the covalent complex showed that i9 binds deep in the hydrophobic pocket of cTnC. Despite slightly reducing troponin I affinity, i9 enhanced the Ca2 + sensitivity of cardiac muscle. We conclude that i9 enhances Ca2 + sensitivity by stabilizing the open conformation of cTnC. These findings provide new insights into the in vivo mechanism of Ca2 + sensitization and demonstrate that directly targeting cTnC has significant potential in cardiovascular therapy. A Ca2 + sensitizer, i9 was designed that forms a covalent bond with C84 of cTnC. i9 stabilized the open state of the N-domain of cTnC. The structure of the covalent cTnC-cTnI-i9 complex was solved by NMR. The structure showed that i9 binds deep in the hydrophobic pocket of cTnC. Despite slightly reducing cTnI affinity, i9 enhanced the Ca2 + sensitivity of cardiac muscle.
Collapse
Affiliation(s)
- Sandra E Pineda-Sanabria
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ian M Robertson
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Malcolm Irving
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Brian D Sykes
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
21
|
Neves JS, Leite-Moreira AM, Neiva-Sousa M, Almeida-Coelho J, Castro-Ferreira R, Leite-Moreira AF. Acute Myocardial Response to Stretch: What We (don't) Know. Front Physiol 2016; 6:408. [PMID: 26779036 PMCID: PMC4700209 DOI: 10.3389/fphys.2015.00408] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022] Open
Abstract
Myocardial stretch, as result of acute hemodynamic overload, is one of the most frequent challenges to the heart and the ability of the heart to intrinsically adapt to it is essential to prevent circulatory congestion. In this review, we highlight the historical background, the currently known mechanisms, as well as the gaps in the understanding of this physiological response. The systolic adaptation to stretch is well-known for over 100 years, being dependent on an immediate increase in contractility—known as the Frank-Starling mechanism—and a further progressive increase—the slow force response. On the other hand, its diastolic counterpart remains largely unstudied. Mechanosensors are structures capable of perceiving mechanical signals and activating pathways that allow their transduction into biochemical responses. Although the connection between these structures and stretch activated pathways remains elusive, we emphasize those most likely responsible for the initiation of the acute response. Calcium-dependent pathways, including angiotensin- and endothelin-related pathways; and cGMP-dependent pathways, comprising the effects of nitric oxide and cardiac natriuretic hormones, embody downstream signaling. The ischemic setting, a paradigmatic situation of acute hemodynamic overload, is also touched upon. Despite the relevant knowledge accumulated, there is much that we still do not know. The quest for further understanding the myocardial response to acute stretch may provide new insights, not only in its physiological importance, but also in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- João S Neves
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - André M Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Manuel Neiva-Sousa
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - João Almeida-Coelho
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Ricardo Castro-Ferreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| |
Collapse
|
22
|
Anti-Inflammatory Profile of Levosimendan in Cecal Ligation-Induced Septic Mice and in Lipopolysaccharide-Stimulated Macrophages*. Crit Care Med 2015; 43:e508-20. [DOI: 10.1097/ccm.0000000000001269] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Uhl S, Freichel M, Mathar I. Contractility Measurements on Isolated Papillary Muscles for the Investigation of Cardiac Inotropy in Mice. J Vis Exp 2015:53076. [PMID: 26436250 PMCID: PMC4692609 DOI: 10.3791/53076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Papillary muscle isolated from adult mouse hearts can be used to study cardiac contractility during different physiological/pathological conditions. The contractile characteristics can be evaluated independently of external influences such as vascular tonus or neurohumoral status. It depicts a scientific approach between single cell measurements with isolated cardiac myocytes and in vivo studies like echocardiography. Thus, papillary muscle preparations serve as an excellent model to study cardiac physiology/pathophysiology and can be used for investigations like the modulation by pharmacological agents or the exploration of transgenic animal models. Here, we describe a method of isolating the murine left anterior papillary muscle to investigate cardiac contractility in an organ bath setup. In contrast to a muscle strip preparation isolated from the ventricular wall, the papillary muscle can be prepared in toto without damaging the muscle tissue severely. The organ bath setup consists of several temperature-controlled, gassed and electrode-equipped organ bath chambers. The isolated papillary muscle is fixed in the organ bath chamber and electrically stimulated. The evoked twitch force is recorded using a pressure transducer and parameters such as twitch force amplitude and twitch kinetics are analyzed. Different experimental protocols can be performed to investigate the calcium- and frequency-dependent contractility as well as dose-response curves of contractile agents such as catecholamines or other pharmaceuticals. Additionally, pathologic conditions like acute ischemia can be simulated.
Collapse
Affiliation(s)
| | | | - Ilka Mathar
- Pharmakologisches Institut, Universität Heidelberg;
| |
Collapse
|
24
|
Schlecht W, Li KL, Hu D, Dong W. Fluorescence Based Characterization of Calcium Sensitizer Action on the Troponin Complex. Chem Biol Drug Des 2015; 87:171-81. [PMID: 26375298 DOI: 10.1111/cbdd.12651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/15/2015] [Accepted: 08/05/2015] [Indexed: 11/29/2022]
Abstract
Calcium sensitizers enhance the transduction of the Ca(2+) signal into force within the heart and have found use in treating heart failure. However the mechanisms of action for most Ca(2+) sensitizers remain unclear. To address this issue an efficient fluorescence based approach to Ca(2+) sensitizer screening was developed which monitors cardiac troponin C's (cTnC's) hydrophobic cleft. This approach was tested on four common Ca(2+) -sensitizers, EMD 57033, levosimendan, bepridil and pimobendan with the aim of elucidating the mechanisms of action for each as well as proving the efficacy of the new screening method. Ca(2+) -titration experiments were employed to determine the effect on Ca(2+) sensitivity and cooperativity of cTnC opening, while stopped flow experiments were used to investigate the impact on cTnC relaxation kinetics. Bepridil was shown to increase the sensitivity of cTnC for Ca(2+) under all reconstitution conditions, sensitization by the other drugs was context dependent. Levosimendan and pimobendan reduced the rate of cTnC closing consistent with a stabilization of cTnC's open conformation while bepridil increased the rate of relaxation. Experiments were also run on samples containing cTnT(T204E), a known Ca(2+) -desensitizing phosphorylation mimic. Levosimendan, bepridil, and pimobendan were found to elevate the Ca(2+) -sensitivity of cTnT(T204E) containing samples in this context.
Collapse
Affiliation(s)
- William Schlecht
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, PO Box 646515, Washington State University, Pullman, WA 99164-6515, USA
| | - King-Lun Li
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, PO Box 646515, Washington State University, Pullman, WA 99164-6515, USA
| | - Dehong Hu
- The Environmental and Molecular Science Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard Richland, WA 99354, USA
| | - Wenji Dong
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, PO Box 646515, Washington State University, Pullman, WA 99164-6515, USA
| |
Collapse
|
25
|
Endoh M. Does levosimendan act as a Ca 2+ sensitizer or PDE3 inhibitor?: Commentary on Orstavik et al., Br J Pharmacol 171: 5169-5181. Br J Pharmacol 2015; 172:4594-4596. [PMID: 24547894 DOI: 10.1111/bph.12649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/10/2023] Open
Abstract
LINKED ARTICLE This article is a Commentary on Orstavik O, Ata SH, Riise J, Dahl CP, Andersen GO, Levy FO, Skomedal T, Osnes J-B, and Qvigstad E (2014). PDE3-inhibition by levosimendan is sufficient to account for its inotropic effect in failing human heart . Br J Pharmacol 171: 5169-5181. doi: 10.1111/bph.12647.
Collapse
Affiliation(s)
- Masao Endoh
- Department of Pharmacology, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
26
|
Orstavik O, Ata SH, Riise J, Dahl CP, Andersen GØ, Levy FO, Skomedal T, Osnes JB, Qvigstad E. Inhibition of phosphodiesterase-3 by levosimendan is sufficient to account for its inotropic effect in failing human heart. Br J Pharmacol 2015; 171:5169-81. [PMID: 24547784 DOI: 10.1111/bph.12647] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 10/28/2013] [Accepted: 11/10/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Levosimendan is known as a calcium sensitizer, although it is also known to inhibit PDE3. We aimed to isolate each component and estimate their contribution to the increased cardiac contractility induced by levosimendan. EXPERIMENTAL APPROACH Contractile force was measured in electrically stimulated ventricular strips from explanted failing human hearts and left ventricular strips from normal male Wistar rats. PDE activity was measured in a two-step PDE activity assay on failing human ventricle. KEY RESULTS Levosimendan exerted a positive inotropic effect (PIE) reaching maximum at 10(-5) M in ventricular strips from failing human hearts. In the presence of the selective PDE3 inhibitor cilostamide, the PIE of levosimendan was abolished. During treatment with a PDE4 inhibitor and a supra-threshold concentration of isoprenaline, levosimendan generated an amplified inotropic response. This effect was reversed by β-adrenoceptor blockade and undetectable in strips pretreated with cilostamide. Levosimendan (10(-6) M) increased the potency of β-adrenoceptor agonists by 0.5 log units in failing human myocardium, but not in the presence of cilostamide. Every inotropic response to levosimendan was associated with a lusitropic response. Levosimendan did not affect the concentration-response curve to calcium in rat ventricular strips, in contrast to the effects of a known calcium sensitizer, EMD57033 [5-(1-(3,4-dimethoxybenzoyl)-1,2,3,4-tetrahydroquinolin-6-yl)-6-methyl-3,6-dihydro-2H-1,3,4-thiadiazin-2-one]. PDE activity assays confirmed that levosimendan inhibited PDE3 as effectively as cilostamide. CONCLUSIONS AND IMPLICATIONS Our results indicate that the PDE3-inhibitory property of levosimendan was enough to account for its inotropic effect, leaving a minor, if any, effect to a calcium-sensitizing component.
Collapse
Affiliation(s)
- O Orstavik
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; K.G. Jebsen Cardiac Research Centre, Faculty of Medicine, University of Oslo, Oslo, Norway; Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wagner S, Schürmann S, Hein S, Schüttler J, Friedrich O. Septic cardiomyopathy in rat LPS-induced endotoxemia: relative contribution of cellular diastolic Ca(2+) removal pathways, myofibrillar biomechanics properties and action of the cardiotonic drug levosimendan. Basic Res Cardiol 2015; 110:507. [PMID: 26243667 DOI: 10.1007/s00395-015-0507-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/13/2015] [Accepted: 07/30/2015] [Indexed: 01/19/2023]
Abstract
Cardiac dysfunction is a common complication in sepsis and is characterized by forward pump failure. Hallmarks of septic cardiomyopathy are decreased myofibrillar contractility and reduced Ca(2+) sensitivity but it is still not clear whether reduced pump efficiency is predominantly a diastolic impairment. Moreover, a comprehensive picture of upstream Ca(2+) handling mechanisms and downstream myosin biomechanical parameters is still missing. Ca(2+)-sensitizing agents in sepsis may be promising but mechanistic insights for drugs like levosimendan are scarce. Here, we used an endotoxemic LPS rat model to study mechanisms of sepsis on in vivo hemodynamics, multicellular myofibrillar Ca(2+) sensitivity, in vitro cellular Ca(2+) homeostasis and subcellular actomyosin interaction with intracardiac catheters, force transducers, confocal Fluo-4 Ca(2+) recordings in paced cardiomyocytes, and in vitro motility assay, respectively. Left ventricular ejection fraction and myofibrillar Ca(2+) sensitivity were depressed in LPS animals but restored by levosimendan. Diastolic Ca(2+) transient kinetics was slowed down by LPS but ameliorated by levosimendan. Selectively blocking intracellular and sarcolemmal Ca(2+) extrusion pathways revealed minor contribution of sarcoplasmic reticulum Ca(2+) ATPase (SERCA) to Ca(2+) transient diastole in LPS-evoked sepsis but rather depressed Na(+)/Ca(2+) exchanger and plasmalemmal Ca(2+) ATPase. This was mostly compensated by levosimendan. Actin sliding velocities were depressed in myosin heart extracts from LPS rats. We conclude that endotoxemia specifically impairs sarcolemmal diastolic Ca(2+) extrusion pathways resulting in intracellular diastolic Ca(2+) overload. Levosimendan, apart from stabilizing Ca(2+)-troponin C complexes, potently improves cellular Ca(2+) extrusion in the septic heart.
Collapse
Affiliation(s)
- S Wagner
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str.3, 91052, Erlangen, Germany
| | | | | | | | | |
Collapse
|
28
|
Nagy L, Kovács Á, Bódi B, Pásztor ET, Fülöp GÁ, Tóth A, Édes I, Papp Z. The novel cardiac myosin activator omecamtiv mecarbil increases the calcium sensitivity of force production in isolated cardiomyocytes and skeletal muscle fibres of the rat. Br J Pharmacol 2015; 172:4506-4518. [PMID: 26140433 DOI: 10.1111/bph.13235] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/18/2015] [Accepted: 06/21/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Omecamtiv mecarbil (OM) is a novel cardiac myosin activator drug for inotropic support in systolic heart failure. Here we have assessed the concentration-dependent mechanical effects of OM in permeabilized cardiomyocyte-sized preparations and single skeletal muscle fibres of Wistar-Kyoto rats under isometric conditions. EXPERIMENTAL APPROACHES Ca2+ -dependent active force production (Factive ), its Ca2+ sensitivity (pCa50 ), the kinetic characteristics of Ca2+ -regulated activation and relaxation, and Ca2+ -independent passive force (Fpassive ) were monitored in Triton X-100-skinned preparations with and without OM (3nM-10 μM). KEY RESULTS In permeabilized cardiomyocytes, OM increased the Ca2+ sensitivity of force production (ΔpCa50 : 0.11 or 0.34 at 0.1 or 1 μM respectively). The concentration-response relationship of the Ca2+ sensitization was bell-shaped, with maximal effects at 0.3-1 μM OM (EC50 : 0.08 ± 0.01 μM). The kinetics of force development and relaxation slowed progressively with increasing OM concentration. Moreover, OM increased Fpassive in the cardiomyocytes with an apparent EC50 value of 0.26 ± 0.11 μM. OM-evoked effects in the diaphragm muscle fibres with intrinsically slow kinetics were largely similar to those in cardiomyocytes, while they were less apparent in muscle fibres with fast kinetics. CONCLUSIONS AND IMPLICATIONS OM acted as a Ca2+ -sensitizing agent with a downstream mechanism of action in both cardiomyocytes and diaphragm muscle fibres. The mechanism of action of OM is connected to slowed activation-relaxation kinetics and at higher OM concentrations increased Fpassive production.
Collapse
Affiliation(s)
- L Nagy
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Á Kovács
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - B Bódi
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - E T Pásztor
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - G Á Fülöp
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - A Tóth
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - I Édes
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Z Papp
- Division of Clinical Physiology, Institute of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
29
|
Li MX, Hwang PM. Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs. Gene 2015; 571:153-66. [PMID: 26232335 DOI: 10.1016/j.gene.2015.07.074] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/24/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
Abstract
In striated muscle, the protein troponin complex turns contraction on and off in a calcium-dependent manner. The calcium-sensing component of the complex is troponin C, which is expressed from the TNNC1 gene in both cardiac muscle and slow-twitch skeletal muscle (identical transcript in both tissues) and the TNNC2 gene in fast-twitch skeletal muscle. Cardiac troponin C (cTnC) is made up of two globular EF-hand domains connected by a flexible linker. The structural C-domain (cCTnC) contains two high affinity calcium-binding sites that are always occupied by Ca(2+) or Mg(2+) under physiologic conditions, stabilizing an open conformation that remains anchored to the rest of the troponin complex. In contrast, the regulatory N-domain (cNTnC) contains a single low affinity site that is largely unoccupied at resting calcium concentrations. During muscle activation, calcium binding to cNTnC favors an open conformation that binds to the switch region of troponin I, removing adjacent inhibitory regions of troponin I from actin and allowing muscle contraction to proceed. Regulation of the calcium binding affinity of cNTnC is physiologically important, because it directly impacts the calcium sensitivity of muscle contraction. Calcium sensitivity can be modified by drugs that stabilize the open form of cNTnC, post-translational modifications like phosphorylation of troponin I, or downstream thin filament protein interactions that impact the availability of the troponin I switch region. Recently, mutations in cTnC have been associated with hypertrophic or dilated cardiomyopathy. A detailed understanding of how calcium sensitivity is regulated through the troponin complex is necessary for explaining how mutations perturb its function to promote cardiomyopathy and how post-translational modifications in the thin filament affect heart function and heart failure. Troponin modulating drugs are being developed for the treatment of cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Monica X Li
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Peter M Hwang
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
30
|
Abstract
Acute heart failure (AHF) emerges as a major and growing epidemiological concern with high morbidity and mortality rates. Current therapies in patients with acute heart failure rely on different strategies. Patients with hypotension, hypoperfusion, or shock require inotropic support, whereas diuretics and vasodilators are recommended in patients with systemic or pulmonary congestion. Traditionally inotropic agents, referred to as Ca2+ mobilizers load the cardiomyocyte with Ca2+ and thereby increase oxygen consumption and risk for arrhythmias. These limitations of traditional inotropes may be avoided by sarcomere targeted agents. Direct activation of the cardiac sarcomere may be achieved by either sensitizing the cardiac myofilaments to Ca2+ or activating directly the cardiac myosin. In this review, we focus on sarcomere targeted inotropic agents, emphasizing their mechanisms of action and overview the most relevant clinical considerations.
Collapse
|
31
|
Effect of myofilament Ca(2+) sensitivity on Ca(2+) wave propagation in rat ventricular muscle. J Mol Cell Cardiol 2015; 84:162-9. [PMID: 25953256 DOI: 10.1016/j.yjmcc.2015.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/02/2015] [Accepted: 04/29/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND The propagation velocity of Ca(2+) waves determines delayed afterdepolarization and affects the occurrence of triggered arrhythmias in cardiac muscle. We focused on myofilament Ca(2+) sensitivity, investigating how the velocity of Ca(2+) waves responds to its increased sensitivity resulting from muscle stretch or the addition of a myofilament Ca(2+) sensitizer, SCH00013. We further investigated whether production of reactive oxygen species (ROS) may be involved in the change in velocity. METHODS Trabeculae were obtained from rat hearts. Force, sarcomere length, and [Ca(2+)]i were measured. ROS production was estimated from 2',7'-dichlorofluorescein (DCF) fluorescence. Trabeculae were exposed to a 10 mM Ca(2+) jet for the induction of Ca(2+) leak from the sarcoplasmic reticulum in its exposed region. Ca(2+) waves were induced by 2.5-Hz stimulus trains for 7.5s (24 °C, 2.0 mM [Ca(2+)]o). Muscle stretch of 5, 10, and 15% was applied 300 ms after the last stimulus of the train. RESULTS Muscle stretch increased the DCF fluorescence, the amplitude of aftercontractions, and the velocity of Ca(2+) waves depending on the degree of stretch. After preincubation with 3 μM diphenyleneiodonium (DPI), muscle stretch increased only the amplitude of aftercontractions but not the DCF fluorescence nor the velocity of Ca(2+) waves. SCH00013 (30 μM) increased the DCF fluorescence, the amplitude of aftercontractions, and the velocity of Ca(2+) waves. DPI suppressed these increases. CONCLUSIONS Muscle stretch increases the velocity of Ca(2+) waves by increasing ROS production, not by increasing myofilament Ca(2+) sensitivity. In the case of SCH00013, ROS production increases myofilament Ca(2+) sensitivity and the velocity of Ca(2+) waves. These results suggest that ROS rather than myofilament Ca(2+) sensitivity plays an important role in the determination of the velocity of Ca(2+) waves, that is, arrhythmogenesis.
Collapse
|
32
|
SERCA2 Haploinsufficiency in a Mouse Model of Darier Disease Causes a Selective Predisposition to Heart Failure. BIOMED RESEARCH INTERNATIONAL 2015; 2015:251598. [PMID: 26064889 PMCID: PMC4433638 DOI: 10.1155/2015/251598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 12/28/2022]
Abstract
Null mutations in one copy of ATP2A2, the gene encoding sarco/endoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2), cause Darier disease in humans, a skin condition involving keratinocytes. Cardiac function appears to be unimpaired in Darier disease patients, with no evidence that SERCA2 haploinsufficiency itself causes heart disease. However, SERCA2 deficiency is widely considered a contributing factor in heart failure. We therefore analyzed Atp2a2 heterozygous mice to determine whether SERCA2 haploinsufficiency can exacerbate specific heart disease conditions. Despite reduced SERCA2a levels in heart, Atp2a2 heterozygous mice resembled humans in exhibiting normal cardiac physiology. When subjected to hypothyroidism or crossed with a transgenic model of reduced myofibrillar Ca(2+)-sensitivity, SERCA2 deficiency caused no enhancement of the disease state. However, when combined with a transgenic model of increased myofibrillar Ca(2+)-sensitivity, SERCA2 haploinsufficiency caused rapid onset of hypertrophy, decompensation, and death. These effects were associated with reduced expression of the antiapoptotic Hax1, increased levels of the proapoptotic genes Chop and Casp12, and evidence of perturbations in energy metabolism. These data reveal myofibrillar Ca(2+)-sensitivity to be an important determinant of the cardiac effects of SERCA2 haploinsufficiency and raise the possibility that Darier disease patients are more susceptible to heart failure under certain conditions.
Collapse
|
33
|
Ait Mou Y, Bollensdorff C, Cazorla O, Magdi Y, de Tombe PP. Exploring cardiac biophysical properties. Glob Cardiol Sci Pract 2015; 2015:10. [PMID: 26779498 PMCID: PMC4448074 DOI: 10.5339/gcsp.2015.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/26/2015] [Indexed: 11/03/2022] Open
Abstract
The heart is subject to multiple sources of stress. To maintain its normal function, and successfully overcome these stresses, heart muscle is equipped with fine-tuned regulatory mechanisms. Some of these mechanisms are inherent within the myocardium itself and are known as intrinsic mechanisms. Over a century ago, Otto Frank and Ernest Starling described an intrinsic mechanism by which the heart, even ex vivo, regulates its function on a beat-to-beat basis. According to this phenomenon, the higher the ventricular filling is, the bigger the stroke volume. Thus, the Frank-Starling law establishes a direct relationship between the diastolic and systolic function of the heart. To observe this biophysical phenomenon and to investigate it, technologic development has been a pre-requisite to scientific knowledge. It allowed for example to observe, at the cellular level, a Frank-Starling like mechanism and has been termed: Length Dependent Activation (LDA). In this review, we summarize some experimental systems that have been developed and are currently still in use to investigate cardiac biophysical properties from the whole heart down to the single myofibril. As a scientific support, investigation of the Frank-Starling mechanism will be used as a case study.
Collapse
Affiliation(s)
- Younss Ait Mou
- Qatar Cardiovascular Research Center, Qatar Foundation, Doha, Qatar
| | | | - Olivier Cazorla
- U1046 INSERM - UMR9214 CNRS- Université de Montpellier, Montpellier, France
| | - Yacoub Magdi
- Qatar Cardiovascular Research Center, Qatar Foundation, Doha, Qatar
| | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Heath Science Division, Loyola University Chicago, Maywood, Illinois 60153
| |
Collapse
|
34
|
|
35
|
Pineda-Sanabria SE, Julien O, Sykes BD. Versatile cardiac troponin chimera for muscle protein structural biology and drug discovery. ACS Chem Biol 2014; 9:2121-30. [PMID: 25010113 DOI: 10.1021/cb500249j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Investigation of the molecular interactions within and between subunits of the heterotrimeric troponin complex, and with other proteins in the sarcomere, has revealed salient structural elements involved in regulation of muscle contraction. The discovery of new cardiotonic drugs and structural studies utilizing intact troponin, or regulatory complexes formed between the key regions identified in troponin C and troponin I, face intrinsic and technical difficulties associated with weak protein-protein interactions and with solubility, aggregation, stability of the overall architecture, isotope labeling, and size, respectively. We have designed and characterized a chimeric troponin C-troponin I hybrid protein with a cleavable linker that is useful for producing isotopically labeled troponin peptides, stabilizes their interaction, and has proven to be a faithful representation of the original complex in the systolic state, but lacking its disadvantages, making it particularly suitable for drug screening and structural studies.
Collapse
Affiliation(s)
- Sandra E. Pineda-Sanabria
- Department of Biochemistry, University of Alberta, 4-19 Medical
Sciences Building, Edmonton, Alberta Canada, T6G 2H7
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, 4-19 Medical
Sciences Building, Edmonton, Alberta Canada, T6G 2H7
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, 4-19 Medical
Sciences Building, Edmonton, Alberta Canada, T6G 2H7
| |
Collapse
|
36
|
Uhl S, Mathar I, Vennekens R, Freichel M. Adenylyl cyclase-mediated effects contribute to increased Isoprenaline-induced cardiac contractility in TRPM4-deficient mice. J Mol Cell Cardiol 2014; 74:307-17. [PMID: 24972051 DOI: 10.1016/j.yjmcc.2014.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
TRPM4 and TRPM5 proteins belong to the Transient Receptor Potential (TRP) ion channel family and form Ca(2+)-activated nonselective cation channels. Recently we showed a significant increase of Isoprenaline-induced inotropy in TRPM4-deficient (Trpm4(-/-)) mice. This is caused by increased Ca(2+) entry via L-type calcium channels due to faster action potential repolarization in Trpm4(-/-) ventricular myocytes [Mathar et al., 2013]. Here, we investigated the contribution of various steps of the β-adrenergic signalling cascade to the augmented positive inotropic response in the absence of TRPM4, and whether the closely related TRPM5 additively contributes to this process using TRPM4/TRPM5-double deficient (Trpm4/Trpm5((-/-)2)) mice. We performed contractility measurements on isolated papillary muscles from wild type, Trpm4(-/-) and Trpm4/Trpm5((-/-)2) mice. As shown in Trpm4(-/-) mice, Isoprenaline-induced inotropy in Trpm4/Trpm5((-/-)2) papillary muscles was significantly increased compared to wild type, whereas basal, frequency- and Ca(2+)-dependent contractility was unaltered. Equivalent to Isoprenaline, activation of adenylyl cyclase using Forskolin led to a significantly increased twitch force in Trpm4(-/-) heart preparations whereas the Isoprenaline-mediated increase in cAMP level was comparable to wild type mice. Notably, the positive inotropic response evoked by phosphodiesterase inhibition with 3-isobutyl-1-methylxanthine (IBMX) was unchanged between both genotypes. Furthermore, experiments performed with increasing concentrations of IBMX after prestimulation with Forskolin and vice versa did not provide evidence that the increased β-adrenergic positive inotropic response in TRPM4-deficient papillary muscles is due to differences in accumulation of cAMP. Compared to inhibition of phosphodiesterase, the rise of intracellular cAMP by activating adenylyl cyclase is accompanied by ATP breakdown. To test the relevance of TRPM4 during forced ATP consumption we measured contractility under ischemic conditions. Here, Trpm4(-/-) papillary muscles showed improved contractile function in comparison to wild type. Our results are consistent with the hypothesis that TRPM4 has a limiting effect on cardiac contractility specifically in ATP depleting conditions. The increased positive inotropic response in Trpm4(-/-) papillary muscles evoked by stimulation of adenylyl cyclase activity is not observed without active enhancement of ATP hydrolysis. Furthermore, the contractility of Trpm4(-/-) papillary muscles was also increased during ischemic simulation. These data underscore the potential of TRPM4 inactivation as an approach to increase inotropy in specific conditions associated with increased catecholamine levels, such as heart failure and ischemia.
Collapse
Affiliation(s)
- Sebastian Uhl
- Pharmakologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | - Ilka Mathar
- Pharmakologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany; Laboratory of Ion Channel Research, Department of Molecular and Cellular Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, Department of Molecular and Cellular Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Marc Freichel
- Pharmakologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany; Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| |
Collapse
|
37
|
Hamabe L, Kawamura K, Kim SM, Yoshiyuki R, Fukayama T, Shimizu M, Fukushima R, Tanaka R. Comparative evaluation of calcium-sensitizing agents, pimobendan and SCH00013, on the myocardial function of canine pacing-induced model of heart failure. J Pharmacol Sci 2014; 124:386-93. [PMID: 24599141 DOI: 10.1254/jphs.13196fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Pimobendan and SCH00013 are calcium sensitizers that possess dual action of calcium sensitization and phosphodiesterase-III inhibition. This study was conducted to comparatively evaluate the effect of these medications on the myocardial function of the canine pacing-induced heart failure model using echocardiography. Heart failure was induced in 20 dogs, to which pimobendan and two different doses of SCH00013 were administered orally to 15 dogs for 3 weeks, and the remaining 5 dogs served as the control. Cardiac evaluations were performed at baseline, week 1, week 2, and week 3. Significant thinning and dilation of the left ventricles, with systolic dysfunction, indicated by reduction of fractional shortening (FS) and strain values, were observed with a low dose of SCH00013. Whereas, although systolic dysfunction was observed with reduction of FS and radial strain, significant dilation and thinning of the left ventricles and reduction of circumferential strain were not observed with pimobendan. Pimobendan had a potent positive inotropic effect, with little effect on synchronicity, while low-dose SCH00013 had a weaker positive inotropic effect but was able to sustain synchronicity. Although, it failed to show significant statistical differences, the results of this study allow speculations that administration of pimobendan and SCH00013 may have differing effect on the myocardial function in the canine pacinginduced heart failure model.
Collapse
Affiliation(s)
- Lina Hamabe
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Stoehr A, Neuber C, Baldauf C, Vollert I, Friedrich FW, Flenner F, Carrier L, Eder A, Schaaf S, Hirt MN, Aksehirlioglu B, Tong CW, Moretti A, Eschenhagen T, Hansen A. Automated analysis of contractile force and Ca2+ transients in engineered heart tissue. Am J Physiol Heart Circ Physiol 2014; 306:H1353-63. [PMID: 24585781 DOI: 10.1152/ajpheart.00705.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Contraction and relaxation are fundamental aspects of cardiomyocyte functional biology. They reflect the response of the contractile machinery to the systolic increase and diastolic decrease of the cytoplasmic Ca(2+) concentration. The analysis of contractile function and Ca(2+) transients is therefore important to discriminate between myofilament responsiveness and changes in Ca(2+) homeostasis. This article describes an automated technology to perform sequential analysis of contractile force and Ca(2+) transients in up to 11 strip-format, fibrin-based rat, mouse, and human fura-2-loaded engineered heart tissues (EHTs) under perfusion and electrical stimulation. Measurements in EHTs under increasing concentrations of extracellular Ca(2+) and responses to isoprenaline and carbachol demonstrate that EHTs recapitulate basic principles of heart tissue functional biology. Ca(2+) concentration-response curves in rat, mouse, and human EHTs indicated different maximal twitch forces (0.22, 0.05, and 0.08 mN in rat, mouse, and human, respectively; P < 0.001) and different sensitivity to external Ca(2+) (EC50: 0.15, 0.39, and 1.05 mM Ca(2+) in rat, mouse, and human, respectively; P < 0.001) in the three groups. In contrast, no difference in myofilament Ca(2+) sensitivity was detected between skinned rat and human EHTs, suggesting that the difference in sensitivity to external Ca(2+) concentration is due to changes in Ca(2+) handling proteins. Finally, this study confirms that fura-2 has Ca(2+) buffering effects and is thereby changing the force response to extracellular Ca(2+).
Collapse
Affiliation(s)
- Andrea Stoehr
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Altered regional cardiac wall mechanics are associated with differential cardiomyocyte calcium handling due to nebulette mutations in preclinical inherited dilated cardiomyopathy. J Mol Cell Cardiol 2013; 60:151-60. [PMID: 23632046 DOI: 10.1016/j.yjmcc.2013.04.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 11/22/2022]
Abstract
Nebulette (NEBL) is a sarcomeric Z-disk protein involved in mechanosensing and force generation via its interaction with actin and tropomyosin-troponin complex. Genetic abnormalities in NEBL lead to dilated cardiomyopathy (DCM) in humans and animal models. The objectives of this study are to determine the earliest preclinical mechanical changes in the myocardium and define underlying molecular mechanisms by which NEBL mutations lead to cardiac dysfunction. We examined cardiac function in 3-month-old non-transgenic (non-Tg) and transgenic (Tg) mice (WT-Tg, G202R-Tg, A592E-Tg) by cardiac magnetic resonance (CMR) imaging. Contractility and calcium transients were measured in isolated cardiomyocytes. A592E-Tg mice exhibited enhanced in vivo twist and untwisting rate compared to control groups. Ex vivo analysis of A592E-Tg cardiomyocytes showed blunted calcium decay response to isoproterenol. CMR imaging of G202R-Tg mice demonstrated reduced torsion compared to non-Tg and WT-Tg, but conserved twist and untwisting rate after correcting for geometric changes. Ex vivo analysis of G202R-Tg cardiomyocytes showed elevated calcium decay at baseline and a conserved contractile response to isoproterenol stress. Protein analysis showed decreased α-actinin and connexin43, and increased cardiac troponin I phosphorylation at baseline in G202R-Tg, providing a molecular mechanism for enhanced ex vivo calcium decay. Ultrastructurally, G202R-Tg cardiomyocytes exhibited increased I-band and sarcomere length, desmosomal separation, and enlarged t-tubules. A592E-Tg cardiomyocytes also showed abnormal ultrastructural changes and desmin downregulation. This study showed distinct effects of NEBL mutations on sarcomere ultrastructure, cellular contractile function, and calcium homeostasis in preclinical DCM in vivo. We suggest that these abnormalities correlate with detectable myocardial wall motion patterns.
Collapse
|
40
|
Genchev GZ, Kobayashi T, Lu H. Calcium induced regulation of skeletal troponin--computational insights from molecular dynamics simulations. PLoS One 2013; 8:e58313. [PMID: 23554884 PMCID: PMC3598806 DOI: 10.1371/journal.pone.0058313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/01/2013] [Indexed: 01/11/2023] Open
Abstract
The interaction between calcium and the regulatory site(s) of striated muscle regulatory protein troponin switches on and off muscle contraction. In skeletal troponin binding of calcium to sites I and II of the TnC subunit results in a set of structural changes in the troponin complex, displaces tropomyosin along the actin filament and allows myosin-actin interaction to produce mechanical force. In this study, we used molecular dynamics simulations to characterize the calcium dependent dynamics of the fast skeletal troponin molecule and its TnC subunit in the calcium saturated and depleted states. We focused on the N-lobe and on describing the atomic level events that take place subsequent to removal of the calcium ion from the regulatory sites I and II. A main structural event - a closure of the A/B helix hydrophobic pocket results from the integrated effect of the following conformational changes: the breakage of H-bond interactions between the backbone nitrogen atoms of the residues at positions 2, 9 and sidechain oxygen atoms of the residue at position 12 (N2-OE12/N9-OE12) in sites I and II; expansion of sites I and II and increased site II N-terminal end-segment flexibility; strengthening of the β-sheet scaffold; and the subsequent re-packing of the N-lobe hydrophobic residues. Additionally, the calcium release allows the N-lobe to rotate relative to the rest of the Tn molecule. Based on the findings presented herein we propose a novel model of skeletal thin filament regulation.
Collapse
Affiliation(s)
- Georgi Z. Genchev
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Tomoyoshi Kobayashi
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (HL); (TK)
| | - Hui Lu
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Shanghai Institute of Medical Genetics, Children’s Hospital of Shanghai, Shanghai, China
- Key Lab of Embryo Molecular Biology, Ministry of Health, Shanghai, China
- Shanghai Lab of Embryo and Reproduction Engineering, Shanghai, China
- * E-mail: (HL); (TK)
| |
Collapse
|
41
|
Boyle KL, Leech E. A review of the pharmacology and clinical uses of pimobendan. J Vet Emerg Crit Care (San Antonio) 2013; 22:398-408. [PMID: 22928748 DOI: 10.1111/j.1476-4431.2012.00768.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To review the pharmacology, research developments, and clinical uses of pimobendan DATA SOURCES Original research articles and clinical studies from 1984 to August 2011. VETERINARY DATA SYNTHESIS Pimobendan is approved for use in dogs for the treatment of congestive heart failure (CHF) secondary to chronic valvular heart disease (CVHD) and dilated cardiomyopathy (DCM). Expert-based veterinary guidelines recommend the use of pimobendan in the management of acute, hospital-based therapy for patients with CHF attributable to CVHD. CONCLUSIONS The use of pimobendan, an inodilator with phosphodiesterase 3 (PDE3) inhibitory and calcium-sensitizing properties, is regarded as a component of the standard of care in the management of dogs with CHF secondary to both DCM and CVHD. Further studies are warranted to confirm the safety and efficacy of pimobendan for the off-label use of this drug in asymptomatic CVHD, pulmonary arterial hypertension, asymptomatic myocardial diseases, CHF from all other causes and in cats with CHF.
Collapse
Affiliation(s)
- Kimberly L Boyle
- VCA All-Care Animal Referral Center, Fountain Valley, CA, 92708, USA.
| | | |
Collapse
|
42
|
Talukder MAH, Elnakish MT, Yang F, Nishijima Y, Alhaj MA, Velayutham M, Hassanain HH, Zweier JL. Cardiomyocyte-specific overexpression of an active form of Rac predisposes the heart to increased myocardial stunning and ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2012; 304:H294-302. [PMID: 23161879 DOI: 10.1152/ajpheart.00367.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The GTP-binding protein Rac regulates diverse cellular functions including activation of NADPH oxidase, a major source of superoxide production (O(2)(·-)). Rac1-mediated NADPH oxidase activation is increased after myocardial infarction (MI) and heart failure both in animals and humans; however, the impact of increased myocardial Rac on impending ischemia-reperfusion (I/R) is unknown. A novel transgenic mouse model with cardiac-specific overexpression of constitutively active mutant form of Zea maize Rac D (ZmRacD) gene has been reported with increased myocardial Rac-GTPase activity and O(2)(·-) generation. The goal of the present study was to determine signaling pathways related to increased myocardial ZmRacD and to what extent hearts with increased ZmRacD proteins are susceptible to I/R injury. The effect of myocardial I/R was examined in young adult wild-type (WT) and ZmRacD transgenic (TG) mice. In vitro reversible myocardial I/R for postischemic cardiac function and in vivo regional myocardial I/R for MI were performed. Following 20-min global ischemia and 45-min reperfusion, postischemic cardiac contractile function and heart rate were significantly reduced in TG hearts compared with WT hearts. Importantly, acute regional myocardial I/R (30-min ischemia and 24-h reperfusion) caused significantly larger MI in TG mice compared with WT mice. Western blot analysis of cardiac homogenates revealed that increased myocardial ZmRacD gene expression is associated with concomitant increased levels of NADPH oxidase subunit gp91(phox), O(2)(·-), and P(21)-activated kinase. Thus these findings provide direct evidence that increased levels of active myocardial Rac renders the heart susceptible to increased postischemic contractile dysfunction and MI following acute I/R.
Collapse
Affiliation(s)
- M A Hassan Talukder
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ochala J, Gokhin DS, Penisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012. [DOI: 10.1093/hmg/dds289 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
44
|
Ochala J, Gokhin DS, Penisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012. [DOI: 10.1093/hmg/dds289 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
45
|
Ochala J, Gokhin DS, Penisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012. [DOI: 10.1093/hmg/dds289 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
46
|
Ochala J, Gokhin DS, Penisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012. [DOI: 10.1093/hmg/dds289 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
47
|
Ochala J, Gokhin DS, Penisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012. [DOI: 10.1093/hmg/dds289 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
48
|
Ochala J, Gokhin DS, Penisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012. [DOI: 10.1093/hmg/dds289 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
49
|
Ochala J, Gokhin DS, Penisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012. [DOI: 10.1093/hmg/dds289 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
50
|
Ochala J, Ravenscroft G, Laing NG, Nowak KJ. Nemaline myopathy-related skeletal muscle α-actin (ACTA1) mutation, Asp286Gly, prevents proper strong myosin binding and triggers muscle weakness. PLoS One 2012; 7:e45923. [PMID: 23029319 PMCID: PMC3447773 DOI: 10.1371/journal.pone.0045923] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/23/2012] [Indexed: 12/12/2022] Open
Abstract
Many mutations in the skeletal muscle α-actin gene (ACTA1) lead to muscle weakness and nemaline myopathy. Despite increasing clinical and scientific interest, the molecular and cellular pathogenesis of weakness remains unclear. Therefore, in the present study, we aimed at unraveling these mechanisms using muscles from a transgenic mouse model of nemaline myopathy expressing the ACTA1 Asp286Gly mutation. We recorded and analyzed the mechanics of membrane-permeabilized single muscle fibers. We also performed molecular energy state computations in the presence or absence of Asp286Gly. Results demonstrated that during contraction, the Asp286Gly acts as a “poison-protein” and according to the computational analysis it modifies the actin-actin interface. This phenomenon is likely to prevent proper myosin cross-bridge binding, limiting the fraction of actomyosin interactions in the strong binding state. At the cell level, this decreases the force-generating capacity, and, overall, induces muscle weakness. To counterbalance such negative events, future potential therapeutic strategies may focus on the inappropriate actin-actin interface or myosin binding.
Collapse
Affiliation(s)
- Julien Ochala
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Sweden.
| | | | | | | |
Collapse
|